More priors, simulation- b sed 'allbratlon &
Bayes fact&i



Practicalities

o Housing keys picked up between 9-10
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Today

o Informative prior specification (original program)
o Simulation-based calibration (new)
o Hypothesis testing with Bayes factors (new)

o Afternoon: showcase your skills!
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Prior advice A&&_

Strong advice: _
1. Think about your priors! Whatever settings you choose, justify them.

Utrecht University s.hoogeveen@uu.nl



Prior advice A’kﬂ

Strong advice: ,_
1. Think about your priors! Whatever settings you choose, justify them.

a Prior b Likelihood c Posterior
When the data provide good

information via the likelihood (b), the

d  Prir o |Likeihood f  Posterior posterior is sufficiently concentrated

(c), even with a flat prior (a).
- ‘ ‘ However, when the data is not
informative enough (e,h), a weakly-

informative prior (g) is needed to
help constrain the posterior (i)

g Prior h Likelihood i Posterior
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Prior advice

Strong advice:

1. Think about your priors! Whatever settings you choose, justify them.

2. Don't use uniform priors: they seem uninformative, but because they
have fixed bounds, they can be very influential if they are
(accidentally) too narrow. Normal priors with a large variance and/or

bounds are often better choices.
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Veen, D., & Klugkist, I. (2019). 10.1016/j.jkss.2019.07.004
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Prior advice A’kﬂ

Strong advice: _
1. Think about your priors! Whatever settings you choose, justify them.

2. Don't use uniform priors: they seem uninformative, but because they
have fixed bounds, they can be very influential if they are
(accidentally) too narrow. Normal priors with a large variance and/or
bounds are often better choices.

3. Conduct prior predictive checks to make sure that the combination
of priors leads to reasonable predictions.
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Prior advice AQ'&

Strong advice:
1. Think about your priors! Whatever settings you choose, justify them.

2. Don't use uniform priors: they seem uninformative, but because they
have fixed bounds, they can be very influential if they are
(accidentally) too narrow. Normal priors with a large variance and/or
bounds are often better choices.

3. Conduct prior predictive checks to make sure that the combination
of priors leads to reasonable predictions.

4. Conduct sensitivity analyses with alternative priors to assess the
robustness of your results.
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Prior advice /.A\
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Weaker advice:

1. Don't use inverse-gamma priors on the variance; this is an historical
choice due to conjugacy, but not necessary in modern
implementations in Stan/brms (and unintuitive). The Stan team
recommends using half-normal or half-Cauchy priors instead.

— in brms, you don’t have to worry about negative variance priors,
because it automatically restricts variance parameters to have a

lower bound of zero.
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Prior advice

Weaker advice:

1.

Don’t use inverse-gamma priors on the variance; this is an historical
choice due to conjugacy, but not necessary in modern
implementations in Stan/brms (and unintuitive). The Stan team
recommends using half-normal or half-Cauchy priors instead.

— in brms, you don’t have to worry about negative variance priors,
because it automatically restricts variance parameters to have a
lower bound of zero.

Don’t use vague priors, such as N(O, 1000). These can lead to
numerical problems in the estimation. Instead, use weakly
informative priors that are centered around zero and have a
reasonable range of values.
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Prior advice A’k

3. Consider standardizing the data if the scale of the parameters is
either very large (e.g., 2000 milliseconds = 2 seconds ) or very small.

Values around O with a scale of 1 are often more stable in the
algorithms.
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Prior advice /4\

‘A.‘

3. Consider standardizing the data if the scale of the parameters is
either very large (e.g., 2000 milliseconds = 2 seconds ) or very small.
Values around O with a scale of 1 are often more stable in the
algorithms.

4. |f you want to elicit priors from experts, use an established protocol,
such as the MATCH protocol or the 5-step procedure (Veen et al.,
2017). You can also use the shiny-app: https://utrecht-
university.shinyapps.io/elicitation/

Veen etal. (2017). 10.3389/fpsyg.2017.02110
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Simulation-based calibration /.‘\
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A full workflow for robust Bayesian inference focuses on the following .
steps: |

1. assessing adequacy of priors (prior predictive checks): do the priors

lead to reasonable predictions?

Utrecht University

s.hoogeveen@uu.nl



Simulation-based calibration /.ﬁ\
"‘L\f

A full workflow for robust Bayesian inference focuses on the following .
steps: |

1. assessing adequacy of priors (prior predictive checks): do the priors
lead to reasonable predictions?
2. assessing computational faithfulness (through simulation-based

calibration): can the model recover the parameters that were used to
generate the data?
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Simulation-based calibration /.ﬁ\
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A full workflow for robust Bayesian inference focuses on the following .
steps: |

1. assessing adequacy of priors (prior predictive checks): do the priors
lead to reasonable predictions?

2. assessing computational faithfulness (through simulation-based

calibration): can the model recover the parameters that were used to
generate the data?

3. assessing model sensitivity: can the model return unbiased estimates

and effectively update prior beliefs (i.e., can the model learn from
data)?
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Simulation-based calibration AQ'&

A full workflow for robust Bayesian inference focuses on the following .
steps: |

1. assessing adequacy of priors (prior predictive checks): do the priors
lead to reasonable predictions?

2. assessing computational faithfulness (through simulation-based
calibration): can the model recover the parameters that were used to
generate the data?

3. assessing model sensitivity: can the model return unbiased estimates

and effectively update prior beliefs (i.e., can the model learn from
data)?

4. assessing adequacy of posteriors: posterior predictive checks: do the
posterior estimates reflect reasonable predictions?
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Pick an initial model (2.1)

Run on a subset of data quantities Give up
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Model validation Ag&

We've talked about ways to check:

o Sensibility of the priors (prior predictive checks)

o Reliability of the sampling procedure and posterior estimates (convergence
diagnostics)

o Sensibility of the model’s predictions and model fit (posterior predictive
checks)

Another aspect we may want to know is:
o How reliable and sensitive is the model + computational method?
- Can we trust the posterior inference; is it a good model?
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Model validation A’&i

A good Bayesian model should:

1. be able to return parameters that the data was simulated from:
o if we know the ground truth, because we generated data from known
settings, we can validate if the model is able to converge to these
‘true’ values.
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Model validation A’&i

A good Bayesian model should:

1. be able to return parameters that the data was simulated from:
o if we know the ground truth, because we generated data from known
settings, we can validate if the model is able to converge to these
‘true’ values.
2. give unbiased estimates:
o not systematically over- or underestimate parameters (given the
priors)
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Model validation Ag&

A good Bayesian model should:

1. be able to return parameters that the data was simulated from:
o if we know the ground truth, because we generated data from known
settings, we can validate if the model is able to converge to these
‘true’ values.
2. give unbiased estimates:
o not systematically over- or underestimate parameters (given the
priors)
3. effectively learn from data:
o posteriors should be more certain (i.e., more peaked) than priors

- Check with simulation-based calibration (SBC)
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Simulation-based calibration /.é\

‘A.‘

* |dea: if a model is computationally faithful, it will be able to return
unbiased estimates with appropriate uncertainty.

 We can assess this through simulation, because then we know the
ground truth (e.g., ®,=0.5)

 When the model is computational faithful, it should be able to recover
the prior distribution accurately.
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Simulation-based calibration £
A UANY

Steps:

1. Take the prior m(0) and randomly draw a parameter set 8 from it:
0 ~m(6)

2. Use this parameter set 6 to simulate hypothetical data § from the
model: ¥ ~ m(y|6)

3. Fit the model to this hypothetical data and draw samples from the
posterior distribution: 8’ ~ m(8|7)

4. Find the rank of the true parameter 0 within the posterior samples 6’
(that is, the count of posterior samples smaller than the generating
parameter value).

Repeat steps 1-4, say, 100 times

If the model is computationally faithful, every rank should occur equally
often =2 we expect a uniform distribution of the ranks
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Simulation-based calibration

[31 [31
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o Downside of the histogram: depends on number of bins

o Alternative: empirical cumulative distribution function (ECDF) of the
ranks, and more specifically, the difference between the perfectly
uniform CDF and the empirical CDF of the ranks, including the 95%

interval of expected deviations.

Utrecht University s.hoogeveen@uu.nl



Simulation-based calibration
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Plots can not only show if
something is wrong, but also
give an indication of how it
iswrong




Simulation-based calibration
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Plots can not only show if
something is wrong, but also
give an indication of how it
is wrong

a,b,c) Model well-calibrated
d,e,f) Model too uncertain
g,h,i) Model too certain
j,k,]) Model underestimates




Model sensitivity

For model sensitivity, we assess:

1. Are the (mean) posterior estimates unbiased?

- How different is the mean posterior from the mean prior value (in
each simulation)?

- We don'’t want a prior-likelihood mismatch (= bias)
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Model sensitivity

For model sensitivity, we assess:

1. Are the (mean) posterior estimates unbiased?

- How different is the mean posterior from the mean prior value (in
each simulation)?

- We don'’t want a prior-likelihood mismatch (= bias)
2. Does the model learn from data? (i.e., is there posterior contraction?)

- |Is the posterior uncertainty substantially lower than the prior
uncertainty?

- In context of number of observations and model complexity
- Posterior contraction: 1 - (var(posterior) / var(prior))
- 0: no updating, 0.5: 50% more certain, 0.99: 99% more certain
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Model sensitivity

B

Z Score
|

-1.0 -0.5 0.0 0.5 1.0

Posterior Contraction

o Z-scores (y-axis) clustering around zero: model returns unbiased estimates.
Posterior contraction (x-axis) around 0.7: satisfactory updating of model
parameters.

Utrecht University s.hoogeveen@uu.nl




Model sensitivity
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o Z-scores (y-axis) clustering around zero: model returns unbiased estimates.
Posterior contraction (x-axis) around 0.7: satisfactory updating of model
parameters.

o Correlation true (x-axis) and estimated (y-axis) parameter values is 0.87: good
recovery of the model parameters.
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Simulation-based calibration

o In conclusion: by simulating data from the prior distribution +
likelihood, we can evaluate how well-calibrated our model is.

o We want:

— Uniform ranks / ECDFs = global posterior distribution similar to
prior distribution

— Z-scores of difference between mean posterior estimates and
mean prior estimates close to zero 2 no bias in estimates

— Posterior contraction close to 1 = posterior uncertainty (per
simulation) much smaller than prior uncertainty; model can learn
from data
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Simulation-based calibration /.é\

‘A‘.

o If things go wrong, we know it has to do either with the specification |
of the model, the sampling algorithm or the connection between
them.

o Potential problems:
o Mismatch between data-generating model and (statistical) model

o Problem in the algorithm (e.g., convergence, suboptimal non-
MCMC methods)

o Incorrect implementation (e.g., error in Stancode; unlikely with
brms)

o Hard to debug, but at least you know there is a problem!
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Hypothesis testing

o Hypothesis testing with Bayes:
o Does the credible interval of the posterior include zero?
o Savage-Dickey density ratio test
o Bayes factor model comparison with bridgesampling
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Hypothesis testing

o Hypothesis testing with Bayes:
o Does the credible interval of the posterior include zero?
o Savage-Dickey density ratio test
o Bayes factor model comparison with bridgesampling

o The latter two involve the Bayes factor (BF) as the measure of
evidence in the data for one hypothesis/model versus another.

o BF,, = probability of the data given hypothesis 1 versus the
probability of the data given hypothesis 2
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Bayes factor A’L‘

o Remember Bayes’ rule:

p(@) x ply | 0)

plo|y) =
p(y)
o This can be rewritten as:
ply|8)
pl@ly) = p#) x
N’ S~ ply)
Posterior for #: Prior for 8: Nt
new beliefs old beliefs Relative predictive

adequacy for @

o Meaning: the posterior for theta given the data = prior for theta x the
likelihood (probability of the data given theta) / prior probability of
the data
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Bayes factor ,/.‘.éif

ply |8
pely) = p# x
N, S~ p( Yy )
Posterior for 6: Prior for 8: Nt
new beliefs old beliefs Relative predictive

adequacy for @

o We can also use this formula to compare two hypotheses/models

p(Hi|data) _ p(H1)  p(data|Hy)

p(Ho | data) p(Ho) p(data | Ho)
Posterior uncertainty =~ Prior uncertainty Predictive

about hypotheses about hypotheses updating factor

o The predictive updating factor
= the ratio of marginal likelihoods
= probability of the data under H, vs H,
= the level of evidence in the data for H; vs H,
= the Bayes factor
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Extrasensory perception

o Example: Bem’s (in)famous experiment (based on Heck et al. (2023))

o h =40 persons guess which of two cards hides an erotic picture
(or the number 7)

o Bem’s ESP hypothesis: “precognitive detection of erotic stimuli.”

o Data: x = 26, that is, 26 out of 40 people selected the erotic card

Heck et al. (2023). https://doi.org/10.1037/met0000454
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Extrasensory perception

o Example: Bem’s (in)famous experiment (based on Heck et al. (2023)) \

o h =40 persons guess which of two cards hides an erotic picture
(or the number 7)

o Bem’s ESP hypothesis: “precognitive detection of erotic stimuli.”
o Data: x = 26, that is, 26 out of 40 people selected the erotic card

o Different competing models:
o M; : x ~ Binomial(n = 40, 6 = .50) > ESP does not exist,
random guessing
o M,: x ~ Binomial(n = 40, 6 # .50) - ESP does exist

o Frequentist: 8 = 26/40 = .65 with a confidence interval of [.48,
.79],p =.081

Heck et al. (2023). https://doi.org/10.1037/met0000454
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Extrasensory perception

* |nthe Bayesian setting: we need priors for 6
— My: belief: 8 = .50 - prior: spike at 6 = .50
— M,: belief 8 # .50 - prior?
« M,.: subjective 2 6 ~ Uniform(0.5, 0.6) (ESP is weak but real)
« M,,: default 2 6 ~ Uniform(0, 1) (ignorant; let the data speak)
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Extrasensory perception

* |nthe Bayesian setting: we need priors for 6
— My: belief: 8 = .50 - prior: spike at 6 = .50
— M,: belief 8 # .50 - prior?
« M,.: subjective 2 6 ~ Uniform(0.5, 0.6) (ESP is weak but real)
« M,,: default 2 6 ~ Uniform(0, 1) (ignorant; let the data speak)

Model M, (null hypothesis) Model M., (subjective prior) Model M,,, (default prior)
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Extrasensory perception

o Now we can assess predictions from each model (before having seen the data)

o This prior predictive distribution provides the probability of observing a specific
number of successes (x =0, x =1, ..., x = 40) conditional on a model and prior.
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Extrasensory perception

o Now we can assess predictions from each model (before having seen the data)

o This prior predictive distribution provides the probability of observing a specific
1,...,x=40) conditional on a model and prior.

number of successes (x = 0, x
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ESP Bayes factors

o From the prior predictive distribution, we can directly obtain the
marginal likelihood of the observed data given each model.

o The marginal likelihood P(x = 26 | M): probability of observing x = 26
“correct” guesses out of n = 40 trials given a specific model M with

some prior distribution.
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ESP Bayes factors

@)

From the prior predictive distribution, we can directly obtain the
marginal likelihood of the observed data given each model.

The marginal likelihood P(x = 26 | M): probability of observing x = 26
“correct” guesses out of n = 40 trials given a specific model M with
some prior distribution.

The Bayes factor compares how well two models predict the
observed data; it is the ratio of the marginal likelihoods of the data for
two models:

P(H} = 26 | M1)
P(:I? = 26 I Mza)’
Interpretation:

o BF > 1: More support for M,
o BF < 1: More support for M,,

BFI,QG — NOteI Ban,l = 1/BF1’2a
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ESP Bayes factors

Here we get:

o BF,,, =2.83 - data of 26/40 “correct” is about 3 times more likely |
under the ESP exists but is weak model (M,,) than under the ESP does
not exist model (M,)

o BFy,4 =1.16 - about equal support in the data for no ESP (M,) and
no expectation (M,,)

Utrecht University s.hoogeveen@uu.nl



ESP Bayes factors

Here we get:

o BF,,, =2.83 - data of 26/40 “correct” is about 3 times more likely |
under the ESP exists but is weak model (M,,) than under the ESP does
not exist model (M,)

o BFy,4 =1.16 - about equal support in the data for no ESP (M,) and
no expectation (M,,)

— Notice the effect of ‘vague’ prior: vague predictions may hurt the
chances of finding evidence for an effect.

— In general, the Bayes factor penalizes complex models (e.g.,
models with many parameters or vague priors) if the increase in
complexity does not pay off in terms of a better fit 2> optimal
trade-off between model fit and complexity (cf. Occam’s razor)
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ESP Bayes factors

But we're forgetting one part of the equation:

P(M; | z = 26,n = 40) P(M,)
= BFj12, X
P(Maa | z=26,n=40) 22 = P(Ma)

&

-~ Bayes factor
Posterior model odds Prior model odds

o Bayes factor quantifies how to update our beliefs in light of the data,
but is independent from the prior beliefs.

o Depending our prior beliefs about the two models, the posterior model
probabilities may be different!
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ESP Bayes factors

But we're forgetting one part of the equation:

P(M; | z = 26,n = 40) P(M,)
= BFj12, X
P(Maa | z=26,n=40) 22 = P(Ma)

-~ d Bayes factor
Posterior model odds Prior model odds

o Bayes factor quantifies how to update our beliefs in light of the data,
but is independent from the prior beliefs.

o Depending our prior beliefs about the two models, the posterior model
probabilities may be different!

o Basically: our initial beliefs should not influence the evidence in the
data, but they can influence our posterior beliefs.
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ESP Bayes factors

o Often, the default of equal prior model probabilities is used:
o P(M;) =P(M,,) =%
o These translate into:
o PM; | x=26,n=40)=.26
o PM,, | x=26,n=40)=1-.26=.74
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ESP Bayes factors

o Often, the default of equal prior model probabilities is used:
o P(M;) =P(M,,) =%
o These translate into:
o PM; | x=26,n=40)=.26
o PM,, | x=26,n=40)=1-.26=.74
o But as with priors, we can also use subjective prior model probabilities,
such as:
o P(M,)=.90
o P(M,,) =.10 - reflecting a priori scepticism for the existence of
extrasensory perception (of erotic stimuli)

o This means that we need a lot of evidence in the data to shift our
belief to the conviction that ESP exists.
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Posterior ESP beliefs

o With P(M,) =.90 and P(M,,) = .10, we get:
o PM;|x=26,n=40)=.74
o P(M,, | x=26,n=40)=.26

o So: the data are about 3 times more likely under the weak-but-
existent-ESP model versus the no-ESP model

o However, the Bayesian framework allows us to include beliefs about
the model’s a priori plausibility
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Posterior ESP beliefs

o With P(M,) =.90 and P(M,,) = .10, we get:
o PM;|x=26,n=40)=.74
o P(M,, | x=26,n=40)=.26

o So: the data are about 3 times more likely under the weak-but-
existent-ESP model versus the no-ESP model

o However, the Bayesian framework allows us to include beliefs about
the model’s a priori plausibility

o This means that given (a) our initial scepticism and (b) the not-
overwhelming evidence, we may update our beliefs in ESP from 1:9
odds to 1:3 odds, but still remain (rationally) unconvinced.
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Bayes factors in complex models

o So Bayes factors are great, but how do we get them in more complex
models? |
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Bayes factors in complex models

o So Bayes factors are great, but how do we get them in more complex
models? |

o Two options:

— Savage-Dickey density ratio: posterior density at the point of
interest divided by the prior density at that point.

« Benefit: easy to compute, requires no additional computation
« Downside: only for single parameters
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Bayes factors in complex models

o So Bayes factors are great, but how do we get them in more complex
models? |

o Two options:

— Savage-Dickey density ratio: posterior density at the point of
interest divided by the prior density at that point.

« Benefit: easy to compute, requires no additional computation
« Downside: only for single parameters

— Model comparison: ratio of marginal likelihoods of two models,
using bridgesampling. Favors well-fitting models, but penalizes
complexity (cf. Occam’s razor)

« Benefit: very flexible, also for multiple parameters (e.g.,
random effects)

« Downside: requires many iterations (more than estimation)
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Bayes factors in complex models

o |Important practical considerations:
— No improper / flat priors

— Save all parameters when fitting the model (in brms: save pars
save pars(all = TRUE)) to keep the log-marginal-likelihood
needed for bridgesampling

— Use many iterations (~10 times more than for estimation)
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Example: afterlife beliefs model

Consider: Hy: continuity judgments after biological death are more likely
for mental states than bodily states '

o Typically, if you want to test against a null-hypothesis, you would use
a weakly informative prior centered around zero. Here we use a
N(O,1) prior for the condition effect.
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Savage-Dickey density ratio

Consider: Hy: continuity judgments after biological death are more likely
for mental states than bodily states '

Hypothesis Tests for class b:
Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob Star

1 (cat) > @ 1.53 6.12 1.33 1.73 Inf 1 *

Hypothesis test: condition effect > 0

1
-1.0 -0.5 0.0 0.5 1.0

2.0 1.5
Condition effect (mind - body)
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Savage-Dickey density ratio /‘g..&

Consider: Hy: continuity judgments after biological death are more likely
for mental states than bodily states |

Hypothesis Tests for class b:
Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob Star
1 (cat) =@ 1.53 6.12 1.33 1.73 Inf 1 *

Hypothesis test: condition effect > 0

We get a Bayes factor (Evid.Ratio) of
infinity = all posterior draws are
larger than zero, indicating that the
data provide strong evidence in favor
of H;.

Rather than infinity, we should read
this as BF,,>20000, as we have
20000 posterior samples, all of which
are larger than zero.

1
2.0 1.5 -1.0 05 0.0 0.5 1.0 1.5 2.0
Condition effect (mind - body)
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Savage-Dickey density ratio

Consider: H,: overall continuity is around 20% on average

Hypothesis test: Overall continuity = 20% (Intercept = -1.39)

2.0

The data show evidence
against the hypothesis that the
intercept is at 20% (i.e., -1.39
on the logit scale):

BF,,= 0.054; BF,= 18.456,
indicating that the data provide
moderate to strong evidence
against this hypothesis.

1.5

0.5

0.0

1
-3.39 2.89 -2.39 -1.89 -1.39 -0.89 -0.39 0.11 0.61
Intercept
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Model comparison A’kﬂ

o Now we want to evaluate the evidence in the data for the inclusion of |
a random effect of condition (H;); that is, is the difference between
the body and mind condition different across countries?

o To do this, we can compare the model with a random effect of
condition (M,) to a model without a random effect of condition (M,).
We can then compute the Bayes factor to quantify the evidence in
the data for M; compared to M,.

Utrecht University s.hoogeveen@uu.nl



Model comparison

o Now we want to evaluate the evidence in the data for the inclusion of |
a random effect of condition (H;); that is, is the difference between
the body and mind condition different across countries?

Model 1 (random effect of condition)

Belgium Brazil China Germany India
25
20
15 /
1.0 /
—~ 0.5 /
aeh
»
®
= Ireland Italy Morocco Netherlands Singapore
a 25
»
o
2.0
1.5
1.0 / / /
0.5 /
Body MinBody MinBody MinBody MinBody Mind
Condition
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Model comparison A’kﬂ

o Now we want to evaluate the evidence in the data for the inclusion of |
a random effect of condition (H;); that is, is the difference between
the body and mind condition different across countries?

o Here we get BF,,=0.249, or BF,,=4.02, which indicates that the data
provide moderate evidence in favor of M, (no random effect)
compared to M, (random effect).
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Model comparison A’i-

o Now we want to evaluate the evidence in the data for the inclusion of |
a random effect of condition (H;); that is, is the difference between
the body and mind condition different across countries?

o Here we get BF,,=0.249, or BF,,=4.02, which indicates that the data
provide moderate evidence in favor of M, (no random effect)
compared to M, (random effect).

o We can also calculate the corresponding posterior model probabilities,
that is, the probability of M, given the data or P(M,|data), and the
probability of M, given the data, or P(M,|data).

o Assuming equal prior model probabilities, the posterior probability
of M, is 0.199, while the posterior probability of M, is 0.801, which
aligns with the moderate evidence for M, from the Bayes factor.
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Useful references

Simulation based calibration: :
o Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C., Carpenter, B,, Yao, Y.,

©)

Kennedy, L., Gabry, J., Birkner, P.-C., & Modrak, M. (2020). Bayesian
Workflow (No. arXiv:2011.01808). arXiv.
https://doi.org/10.48550/arXiv.2011.01808

Talts, S., Betancourt, M., Simpson, D., Vehtari, A., & Gelman, A. (2018).
Validating Bayesian Inference Algorithms with Simulation-Based Calibration (No.
arXiv:1804.06788). arXiv. https://doi.org/10.48550/arXiv.1804.06788

Schad, D. J., Betancourt, M., & Vasishth, S. (2021). Toward a principled
Bayesian workflow in cognitive science. Psychological Methods, 26(1), 103-
126. https://doi.org/10.1037/met0000275
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Useful references

Hypothesis testing with Bayes factors:

o Heck, D. W., Boehm, U., Bing-Messing, F., Burkner, P.-C., Derks, K., Dlenes
Z., Fu, Q. Gu, X,, Karimova, D., Kiers, H. A. L., Klugkist, I., Kuiper, R. M., Lee,
M. D., Leenders, R., Leplaa, H. J,, Linde, M, Ly, A., Meijerink-Bosman, M.,
Moerbeek, M., ... Hoijtink, H. (2023). A review of applications of the Bayes

factor in psychological research. Psychological Methods, 28(3), 558-579.
https://doi.org/10.1037/met0000454

o Hoijtink, H., Mulder, J., van Lissa, C., & Gu, X. (2019). A tutorial on testing
hypotheses using the Bayes factor. Psychological Methods, 24(5), 539-556.
https://doi.org/10.1037/met0000201
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