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Practicalities

o Housing keys picked up between 9-10
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Today

o Informative prior specification (original program)
o Simulation-based calibration (new)
o Hypothesis testing with Bayes factors (new)

o Afternoon: showcase your skills! 
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Prior advice

Strong advice:
1. Think about your priors! Whatever settings you choose, justify them.
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When the data provide good
information via the likelihood (b), the
posterior is sufficiently concentrated
(c), even with a flat prior (a). 
However, when the data is not
informative enough (e,h), a weakly-
informative prior (g) is needed to
help constrain the posterior (i)



Prior advice

Strong advice:
1. Think about your priors! Whatever settings you choose, justify them.
2. Don’t use uniform priors: they seem uninformative, but because they 

have fixed bounds, they can be very influential if they are 
(accidentally) too narrow. Normal priors with a large variance and/or 
bounds are often better choices.
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Prior advice

Strong advice:
1. Think about your priors! Whatever settings you choose, justify them.
2. Don’t use uniform priors: they seem uninformative, but because they 

have fixed bounds, they can be very influential if they are 
(accidentally) too narrow. Normal priors with a large variance and/or 
bounds are often better choices.

3. Conduct prior predictive checks to make sure that the combination 
of priors leads to reasonable predictions.
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Prior advice

Strong advice:
1. Think about your priors! Whatever settings you choose, justify them.
2. Don’t use uniform priors: they seem uninformative, but because they 

have fixed bounds, they can be very influential if they are 
(accidentally) too narrow. Normal priors with a large variance and/or 
bounds are often better choices.

3. Conduct prior predictive checks to make sure that the combination 
of priors leads to reasonable predictions.

4. Conduct sensitivity analyses with alternative priors to assess the 
robustness of your results.
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Prior advice

Weaker advice:
1. Don’t use inverse-gamma priors on the variance; this is an historical 

choice due to conjugacy, but not necessary in modern 
implementations in Stan/brms (and unintuitive). The Stan team 
recommends using half-normal or half-Cauchy priors instead.
– in brms, you don’t have to worry about negative variance priors, 

because it automatically restricts variance parameters to have a 
lower bound of zero.
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Prior advice

Weaker advice:
1. Don’t use inverse-gamma priors on the variance; this is an historical 

choice due to conjugacy, but not necessary in modern 
implementations in Stan/brms (and unintuitive). The Stan team 
recommends using half-normal or half-Cauchy priors instead.
– in brms, you don’t have to worry about negative variance priors, 

because it automatically restricts variance parameters to have a 
lower bound of zero.

2. Don’t use vague priors, such as N(0, 1000). These can lead to 
numerical problems in the estimation. Instead, use weakly 
informative priors that are centered around zero and have a 
reasonable range of values.
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Prior advice

3. Consider standardizing the data if the scale of the parameters is 
either very large (e.g., 2000 milliseconds → 2 seconds ) or very small. 
Values around 0 with a scale of 1 are often more stable in the 
algorithms.

Utrecht University s.hoogeveen@uu.nl 11



Prior advice

3. Consider standardizing the data if the scale of the parameters is 
either very large (e.g., 2000 milliseconds → 2 seconds ) or very small. 
Values around 0 with a scale of 1 are often more stable in the 
algorithms.

4. If you want to elicit priors from experts, use an established protocol, 
such as the MATCH protocol or the 5-step procedure (Veen et al., 
2017). You can also use the shiny-app: https://utrecht-
university.shinyapps.io/elicitation/
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Simulation-based calibration

A full workflow for robust Bayesian inference focuses on the following 
steps:
1. assessing adequacy of priors (prior predictive checks): do the priors 

lead to reasonable predictions?
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lead to reasonable predictions?
2. assessing computational faithfulness (through simulation-based 

calibration): can the model recover the parameters that were used to 
generate the data?
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Simulation-based calibration

A full workflow for robust Bayesian inference focuses on the following 
steps:
1. assessing adequacy of priors (prior predictive checks): do the priors 

lead to reasonable predictions?
2. assessing computational faithfulness (through simulation-based 

calibration): can the model recover the parameters that were used to 
generate the data?

3. assessing model sensitivity: can the model return unbiased estimates 
and effectively update prior beliefs (i.e., can the model learn from 
data)?
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Simulation-based calibration

A full workflow for robust Bayesian inference focuses on the following 
steps:
1. assessing adequacy of priors (prior predictive checks): do the priors 

lead to reasonable predictions?
2. assessing computational faithfulness (through simulation-based 

calibration): can the model recover the parameters that were used to 
generate the data?

3. assessing model sensitivity: can the model return unbiased estimates 
and effectively update prior beliefs (i.e., can the model learn from 
data)?

4. assessing adequacy of posteriors: posterior predictive checks: do the 
posterior estimates reflect reasonable predictions?
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Dear dr. X,
We would kindly invite you to review this paper about [interesting topic Y] 
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Model validation 

We’ve talked about ways to check:
o Sensibility of the priors (prior predictive checks)
o Reliability of the sampling procedure and posterior estimates (convergence 

diagnostics) 
o Sensibility of the model’s predictions and model fit (posterior predictive 

checks)

Another aspect we may want to know is: 
o How reliable and sensitive is the model + computational method? 

→ Can we trust the posterior inference; is it a good model? 
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Model validation 

A good Bayesian model should:

1. be able to return parameters that the data was simulated from:
o if we know the ground truth, because we generated data from known 

settings, we can validate if the model is able to converge to these 
‘true’ values. 
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2. give unbiased estimates:
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Model validation 

A good Bayesian model should:

1. be able to return parameters that the data was simulated from:
o if we know the ground truth, because we generated data from known 

settings, we can validate if the model is able to converge to these 
‘true’ values. 

2. give unbiased estimates:
o not systematically over- or underestimate parameters (given the 

priors)
3. effectively learn from data:

o posteriors should be more certain (i.e., more peaked) than priors

→ Check with simulation-based calibration (SBC)
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Simulation-based calibration 

• Idea: if a model is computationally faithful, it will be able to return 
unbiased estimates with appropriate uncertainty. 

• We can assess this through simulation, because then we know the 
ground truth (e.g., = )

• When the model is computational faithful, it should be able to recover 
the prior distribution accurately. 
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Simulation-based calibration 

Steps:
1. Take the prior 𝜋(𝜃) and randomly draw a parameter set ෨𝜃 from it: 

෨𝜃 ~ 𝜋(𝜃)

2. Use this parameter set ෨𝜃 to simulate hypothetical data ෤𝑦 from the 
model: ෤𝑦 ~ 𝜋(𝑦| ෨𝜃)

3. Fit the model to this hypothetical data and draw samples from the 
posterior distribution: ෨𝜃′ ~ 𝜋(𝜃| ෤𝑦)

4. Find the rank of the true parameter 𝜃 within the posterior samples ෨𝜃′
(that is, the count of posterior samples smaller than the generating 
parameter value). 

Repeat steps 1-4, say, 100 times

If the model is computationally faithful, every rank should occur equally 
often → we expect a uniform distribution of the ranks
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Simulation-based calibration
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o Downside of the histogram: depends on number of bins
o Alternative: empirical cumulative distribution function (ECDF) of the 

ranks, and more specifically, the difference between the perfectly 
uniform CDF and the empirical CDF of the ranks, including the 95% 
interval of expected deviations.



Simulation-based calibration 
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Plots can not only show if
something is wrong, but also
give an indication of how it
is wrong



Simulation-based calibration 
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Plots can not only show if
something is wrong, but also
give an indication of how it
is wrong

a,b,c) Model well-calibrated
d,e,f) Model too uncertain
g,h,i) Model too certain
j,k,l) Model underestimates 



Model sensitivity

For model sensitivity, we assess: 

1. Are the (mean) posterior estimates unbiased?
- How different is the mean posterior from the mean prior value (in 

each simulation)? 
- We don’t want a prior-likelihood mismatch (→ bias)
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Model sensitivity

For model sensitivity, we assess: 

1. Are the (mean) posterior estimates unbiased?
- How different is the mean posterior from the mean prior value (in 

each simulation)? 
- We don’t want a prior-likelihood mismatch (→ bias)

2. Does the model learn from data? (i.e., is there posterior contraction?)
- Is the posterior uncertainty substantially lower than the prior 

uncertainty? 
- In context of number of observations and model complexity
- Posterior contraction: 1 – (var(posterior) / var(prior))
- 0: no updating, 0.5: 50% more certain, 0.99: 99% more certain  
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Model sensitivity
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o Z-scores (y-axis) clustering around zero: model returns unbiased estimates. 
Posterior contraction (x-axis) around 0.7: satisfactory updating of model 
parameters.



Model sensitivity
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o Z-scores (y-axis) clustering around zero: model returns unbiased estimates. 
Posterior contraction (x-axis) around 0.7: satisfactory updating of model 
parameters.

o Correlation true (x-axis) and estimated (y-axis) parameter values is 0.87: good
recovery of the model parameters.



Simulation-based calibration
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o In conclusion: by simulating data from the prior distribution + 
likelihood, we can evaluate how well-calibrated our model is. 

o We want: 
– Uniform ranks / ECDFs → global posterior distribution similar to 

prior distribution
– Z-scores of difference between mean posterior estimates and 

mean prior estimates close to zero → no bias in estimates
– Posterior contraction close to 1 → posterior uncertainty (per 

simulation) much smaller than prior uncertainty; model can learn 
from data



Simulation-based calibration
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o If things go wrong, we know it has to do either with the specification 
of the model, the sampling algorithm or the connection between 
them. 

o Potential problems:
o Mismatch between data-generating model and (statistical) model
o Problem in the algorithm (e.g., convergence, suboptimal non-

MCMC methods)
o Incorrect implementation (e.g., error in Stancode; unlikely with 

brms)
o Hard to debug, but at least you know there is a problem!  



Hypothesis testing

o Hypothesis testing with Bayes:
o Does the credible interval of the posterior include zero?
o Savage-Dickey density ratio test 
o Bayes factor model comparison with bridgesampling
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Hypothesis testing

o Hypothesis testing with Bayes:
o Does the credible interval of the posterior include zero?
o Savage-Dickey density ratio test 
o Bayes factor model comparison with bridgesampling

o The latter two involve the Bayes factor (BF) as the measure of 
evidence in the data for one hypothesis/model versus another. 

o BF12 = probability of the data given hypothesis 1 versus the 
probability of the data given hypothesis 2
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Bayes factor

o Remember Bayes’ rule:

o This can be rewritten as:

o Meaning: the posterior for theta given the data = prior for theta x the 
likelihood (probability of the data given theta) / prior probability of 
the data  
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Bayes factor

o We can also use this formula to compare two hypotheses/models  

o The predictive updating factor 
= the ratio of marginal likelihoods
= probability of the data under H1 vs H0

= the level of evidence in the data for H1 vs H0

= the Bayes factor 
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Extrasensory perception 

o Example: Bem’s (in)famous experiment (based on Heck et al. (2023)) 

o n = 40 persons guess which of two cards hides an erotic picture 
(or the number 7)

o Bem’s ESP hypothesis: “precognitive detection of erotic stimuli.” 
o Data: x = 26, that is, 26 out of 40 people selected the erotic card 
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Heck et al. (2023). https://doi.org/10.1037/met0000454



Extrasensory perception 

o Example: Bem’s (in)famous experiment (based on Heck et al. (2023)) 

o n = 40 persons guess which of two cards hides an erotic picture 
(or the number 7)

o Bem’s ESP hypothesis: “precognitive detection of erotic stimuli.” 
o Data: x = 26, that is, 26 out of 40 people selected the erotic card 

o Different competing models: 
o M1 : x ∼ Binomial(n = 40, θ = .50)→ ESP does not exist, 

random guessing
o M2: x ∼ Binomial(n = 40, θ ≠ .50) → ESP does exist

o Frequentist: መ𝜃 = 26/40 = .65 with a confidence interval of [.48, 
.79], p = .081
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Extrasensory perception 

• In the Bayesian setting: we need priors for θ
– M1: belief: θ = .50 → prior: spike at θ = .50
– M2:  belief θ ≠ .50→ prior?

• M2a: subjective → θ ∼ Uniform(0.5, 0.6) (ESP is weak but real)
• M2b: default → θ ∼ Uniform(0, 1) (ignorant; let the data speak)
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Extrasensory perception 

• In the Bayesian setting: we need priors for θ
– M1: belief: θ = .50 → prior: spike at θ = .50
– M2:  belief θ ≠ .50→ prior?

• M2a: subjective → θ ∼ Uniform(0.5, 0.6) (ESP is weak but real)
• M2b: default → θ ∼ Uniform(0, 1) (ignorant; let the data speak)
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Extrasensory perception 

o Now we can assess predictions from each model (before having seen the data)
o This prior predictive distribution provides the probability of observing a specific 

number of successes (x = 0, x = 1, . . . , x = 40) conditional on a model and prior.
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Extrasensory perception 

o Now we can assess predictions from each model (before having seen the data)
o This prior predictive distribution provides the probability of observing a specific 

number of successes (x = 0, x = 1, . . . , x = 40) conditional on a model and prior.
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ESP Bayes factors

o From the prior predictive distribution, we can directly obtain the 
marginal likelihood of the observed data given each model. 

o The marginal likelihood P(x = 26 | M): probability of observing x = 26 
“correct” guesses out of n = 40 trials given a specific model M with 
some prior distribution. 
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ESP Bayes factors

o From the prior predictive distribution, we can directly obtain the 
marginal likelihood of the observed data given each model. 

o The marginal likelihood P(x = 26 | M): probability of observing x = 26 
“correct” guesses out of n = 40 trials given a specific model M with 
some prior distribution. 

o The Bayes factor compares how well two models predict the 
observed data; it is the ratio of the marginal likelihoods of the data for 
two models: 

o Interpretation:
o BF > 1: More support for M1

o BF < 1: More support for M2a
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Note: BF2a,1 = 1/BF1,2a



ESP Bayes factors

Here we get: 
o BF2a,1 = 2.83 → data of 26/40 “correct” is about 3 times more likely 

under the ESP exists but is weak model (M2a) than under the ESP does 
not exist model (M1)

o BF2b,1 = 1.16 → about equal support in the data for no ESP (M1) and 
no expectation (M2b)

Utrecht University s.hoogeveen@uu.nl 47



ESP Bayes factors

Here we get: 
o BF2a,1 = 2.83 → data of 26/40 “correct” is about 3 times more likely 

under the ESP exists but is weak model (M2a) than under the ESP does 
not exist model (M1)

o BF2b,1 = 1.16 → about equal support in the data for no ESP (M1) and 
no expectation (M2b)

– Notice the effect of ‘vague’ prior: vague predictions may hurt the 
chances of finding evidence for an effect. 

– In general, the Bayes factor penalizes complex models (e.g., 
models with many parameters or vague priors) if the increase in 
complexity does not pay off in terms of a better fit → optimal 
trade-off between model fit and complexity (cf. Occam’s razor)
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ESP Bayes factors
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But we’re forgetting one part of the equation: 

o Bayes factor quantifies how to update our beliefs in light of the data, 
but is independent from the prior beliefs. 

o Depending our prior beliefs about the two models, the posterior model 
probabilities may be different! 



ESP Bayes factors
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But we’re forgetting one part of the equation: 

o Bayes factor quantifies how to update our beliefs in light of the data, 
but is independent from the prior beliefs. 

o Depending our prior beliefs about the two models, the posterior model 
probabilities may be different! 

o Basically: our initial beliefs should not influence the evidence in the
data, but they can influence our posterior beliefs. 



ESP Bayes factors 

o Often, the default of equal prior model probabilities is used: 
o P(M1) = P(M2a) = ½
o These translate into: 

o P(M1 | x = 26, n = 40) = .26 
o P(M2a | x = 26, n = 40) = 1 − .26 = .74
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ESP Bayes factors 

o Often, the default of equal prior model probabilities is used: 
o P(M1) = P(M2a) = ½
o These translate into: 

o P(M1 | x = 26, n = 40) = .26 
o P(M2a | x = 26, n = 40) = 1 − .26 = .74

o But as with priors, we can also use subjective prior model probabilities, 
such as:
o P(M1) = .90
o P(M2a) = .10 → reflecting a priori scepticism for the existence of 

extrasensory perception (of erotic stimuli)
o This means that we need a lot of evidence in the data to shift our 

belief to the conviction that ESP exists. 
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Posterior ESP beliefs 

o With P(M1) = .90 and P(M2a) = .10, we get:
o P(M1 | x = 26, n = 40) = .74
o P(M2a | x = 26, n = 40) = .26

o So: the data are about 3 times more likely under the weak-but-
existent-ESP model versus the no-ESP model

o However, the Bayesian framework allows us to include beliefs about 
the model’s a priori plausibility
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Posterior ESP beliefs 

o With P(M1) = .90 and P(M2a) = .10, we get:
o P(M1 | x = 26, n = 40) = .74
o P(M2a | x = 26, n = 40) = .26

o So: the data are about 3 times more likely under the weak-but-
existent-ESP model versus the no-ESP model

o However, the Bayesian framework allows us to include beliefs about 
the model’s a priori plausibility

o This means that given (a) our initial scepticism and (b) the not-
overwhelming evidence, we may update our beliefs in ESP from 1:9 
odds to 1:3 odds, but still remain (rationally) unconvinced. 
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Bayes factors in complex models

o So Bayes factors are great, but how do we get them in more complex 
models?
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Bayes factors in complex models

o So Bayes factors are great, but how do we get them in more complex 
models?

o Two options:
– Savage-Dickey density ratio:  posterior density at the point of 

interest divided by the prior density at that point. 
• Benefit: easy to compute, requires no additional computation
• Downside: only for single parameters
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Bayes factors in complex models

o So Bayes factors are great, but how do we get them in more complex 
models?

o Two options:
– Savage-Dickey density ratio:  posterior density at the point of 

interest divided by the prior density at that point. 
• Benefit: easy to compute, requires no additional computation
• Downside: only for single parameters

– Model comparison: ratio of marginal likelihoods of two models, 
using bridgesampling. Favors well-fitting models, but penalizes 
complexity (cf. Occam’s razor)
• Benefit: very flexible, also for multiple parameters (e.g., 

random effects)
• Downside: requires many iterations (more than estimation)
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Bayes factors in complex models

o Important practical considerations:
– No improper / flat priors
– Save all parameters when fitting the model (in brms: save_pars = 

save_pars(all = TRUE)) to keep the log-marginal-likelihood 
needed for bridgesampling

– Use many iterations (~10 times more than for estimation)
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Example: afterlife beliefs model 

Consider: H1: continuity judgments after biological death are more likely 
for mental states than bodily states
o Typically, if you want to test against a null-hypothesis, you would use 

a weakly informative prior centered around zero. Here we use a 
N(0,1) prior for the condition effect.
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Savage-Dickey density ratio 

Consider: H1: continuity judgments after biological death are more likely 
for mental states than bodily states
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Savage-Dickey density ratio 

Consider: H1: continuity judgments after biological death are more likely 
for mental states than bodily states
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We get a Bayes factor (Evid.Ratio) of 
infinity → all posterior draws are 
larger than zero, indicating that the 
data provide strong evidence in favor
of H1. 
Rather than infinity, we should read 
this as BF10>20000, as we have 
20000 posterior samples, all of which 
are larger than zero.



Savage-Dickey density ratio 

Consider: H2: overall continuity is around 20% on average
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The data show evidence 
against the hypothesis that the 
intercept is at 20% (i.e., -1.39 
on the logit scale):
BF01= 0.054; BF10= 18.456, 
indicating that the data provide 
moderate to strong evidence 
against this hypothesis. 



Model comparison 

o Now we want to evaluate the evidence in the data for the inclusion of 
a random effect of condition (H3); that is, is the difference between 
the body and mind condition different across countries? 

o To do this, we can compare the model with a random effect of 
condition (M1) to a model without a random effect of condition (M2). 
We can then compute the Bayes factor to quantify the evidence in 
the data for M1 compared to M2.
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Model comparison 

o Now we want to evaluate the evidence in the data for the inclusion of 
a random effect of condition (H3); that is, is the difference between 
the body and mind condition different across countries? 
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Model comparison 

o Now we want to evaluate the evidence in the data for the inclusion of 
a random effect of condition (H3); that is, is the difference between 
the body and mind condition different across countries? 

o Here we get BF12=0.249, or BF21=4.02, which indicates that the data 
provide moderate evidence in favor of M2 (no random effect) 
compared to M1 (random effect). 
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Model comparison 

o Now we want to evaluate the evidence in the data for the inclusion of 
a random effect of condition (H3); that is, is the difference between 
the body and mind condition different across countries? 

o Here we get BF12=0.249, or BF21=4.02, which indicates that the data 
provide moderate evidence in favor of M2 (no random effect) 
compared to M1 (random effect). 

o We can also calculate the corresponding posterior model probabilities, 
that is, the probability of M1 given the data or P(M1|data), and the 
probability of M2 given the data, or P(M2|data).

o Assuming equal prior model probabilities, the posterior probability 
of M1 is 0.199, while the posterior probability of M2 is 0.801, which 
aligns with the moderate evidence for M2 from the Bayes factor.
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Useful references

Simulation based calibration:
o Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C., Carpenter, B., Yao, Y., 

Kennedy, L., Gabry, J., Bürkner, P.-C., & Modrák, M. (2020). Bayesian 
Workflow (No. arXiv:2011.01808). arXiv. 
https://doi.org/10.48550/arXiv.2011.01808

o Talts, S., Betancourt, M., Simpson, D., Vehtari, A., & Gelman, A. (2018). 
Validating Bayesian Inference Algorithms with Simulation-Based Calibration (No. 
arXiv:1804.06788). arXiv. https://doi.org/10.48550/arXiv.1804.06788

o Schad, D. J., Betancourt, M., & Vasishth, S. (2021). Toward a principled 
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Useful references

Hypothesis testing with Bayes factors: 
o Heck, D. W., Boehm, U., Böing-Messing, F., Bürkner, P.-C., Derks, K., Dienes, 
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