A gentle introduction to Bayesian estimation

Day 5:

More priors, simulation-based calibration & Bayes factors

Practicalities

Housing keys picked up between 9-10

Today

- Informative prior specification (original program)
- Simulation-based calibration (new)
- Hypothesis testing with Bayes factors (new)
- Afternoon: showcase your skills!

Strong advice:

1. Think about your priors! Whatever settings you choose, justify them.

Strong advice:

1. Think about your priors! Whatever settings you choose, justify them.

When the data provide good information via the likelihood (b), the posterior is sufficiently concentrated (c), even with a flat prior (a). However, when the data is not informative enough (e,h), a weakly-informative prior (g) is needed to help constrain the posterior (i)

Strong advice:

- 1. Think about your priors! Whatever settings you choose, justify them.
- 2. Don't use uniform priors: they seem uninformative, but because they have fixed bounds, they can be very influential if they are (accidentally) too narrow. Normal priors with a large variance and/or bounds are often better choices.

Veen, D., & Klugkist, I. (2019). 10.1016/j.jkss.2019.07.004

Strong advice:

- 1. Think about your priors! Whatever settings you choose, justify them.
- 2. Don't use uniform priors: they seem uninformative, but because they have fixed bounds, they can be very influential if they are (accidentally) too narrow. Normal priors with a large variance and/or bounds are often better choices.
- 3. Conduct prior predictive checks to make sure that the combination of priors leads to reasonable predictions.

Strong advice:

- 1. Think about your priors! Whatever settings you choose, justify them.
- 2. Don't use uniform priors: they seem uninformative, but because they have fixed bounds, they can be very influential if they are (accidentally) too narrow. Normal priors with a large variance and/or bounds are often better choices.
- 3. Conduct prior predictive checks to make sure that the combination of priors leads to reasonable predictions.
- 4. Conduct sensitivity analyses with alternative priors to assess the robustness of your results.

Weaker advice:

- 1. Don't use inverse-gamma priors on the variance; this is an historical choice due to conjugacy, but not necessary in modern implementations in Stan/brms (and unintuitive). The Stan team recommends using half-normal or half-Cauchy priors instead.
 - in brms, you don't have to worry about negative variance priors, because it automatically restricts variance parameters to have a lower bound of zero.

Weaker advice:

- 1. Don't use inverse-gamma priors on the variance; this is an historical choice due to conjugacy, but not necessary in modern implementations in Stan/brms (and unintuitive). The Stan team recommends using half-normal or half-Cauchy priors instead.
 - in brms, you don't have to worry about negative variance priors, because it automatically restricts variance parameters to have a lower bound of zero.
- 2. Don't use vague priors, such as N(0, 1000). These can lead to numerical problems in the estimation. Instead, use weakly informative priors that are centered around zero and have a reasonable range of values.

3. Consider standardizing the data if the scale of the parameters is either very large (e.g., 2000 milliseconds → 2 seconds) or very small. Values around 0 with a scale of 1 are often more stable in the algorithms.

- 3. Consider standardizing the data if the scale of the parameters is either very large (e.g., 2000 milliseconds → 2 seconds) or very small. Values around 0 with a scale of 1 are often more stable in the algorithms.
- 4. If you want to elicit priors from experts, use an established protocol, such as the MATCH protocol or the 5-step procedure (Veen et al., 2017). You can also use the shiny-app: https://utrecht-university.shinyapps.io/elicitation/

Veen et al. (2017). 10.3389/fpsyg.2017.02110

A full workflow for robust Bayesian inference focuses on the following steps:

1. assessing adequacy of priors (**prior predictive checks**): do the priors lead to reasonable predictions?

A full workflow for robust Bayesian inference focuses on the following steps:

- 1. assessing adequacy of priors (**prior predictive checks**): do the priors lead to reasonable predictions?
- 2. assessing computational faithfulness (through **simulation-based calibration**): can the model recover the parameters that were used to generate the data?

A full workflow for robust Bayesian inference focuses on the following steps:

- 1. assessing adequacy of priors (**prior predictive checks**): do the priors lead to reasonable predictions?
- 2. assessing computational faithfulness (through **simulation-based calibration**): can the model recover the parameters that were used to generate the data?
- 3. assessing model sensitivity: can the model return **unbiased estimates** and effectively update prior beliefs (i.e., can the model learn from data)?

A full workflow for robust Bayesian inference focuses on the following steps:

- 1. assessing adequacy of priors (**prior predictive checks**): do the priors lead to reasonable predictions?
- 2. assessing computational faithfulness (through **simulation-based calibration**): can the model recover the parameters that were used to generate the data?
- 3. assessing model sensitivity: can the model return **unbiased estimates and effectively update prior beliefs** (i.e., can the model learn from data)?
- 4. assessing adequacy of posteriors: **posterior predictive checks**: do the posterior estimates reflect reasonable predictions?

We've talked about ways to check:

- Sensibility of the priors (prior predictive checks)
- Reliability of the sampling procedure and posterior estimates (convergence diagnostics)
- Sensibility of the model's predictions and model fit (posterior predictive checks)

Another aspect we may want to know is:

- How reliable and sensitive is the model + computational method?
 - → Can we trust the posterior inference; is it a good model?

A good Bayesian model should:

- 1. be able to return parameters that the data was simulated from:
 - o if we know the ground truth, because we generated data from known settings, we can validate if the model is able to converge to these 'true' values.

A good Bayesian model should:

- 1. be able to return parameters that the data was simulated from:
 - o if we know the ground truth, because we generated data from known settings, we can validate if the model is able to converge to these 'true' values.
- 2. give unbiased estimates:
 - not systematically over- or underestimate parameters (given the priors)

A good Bayesian model should:

- 1. be able to return parameters that the data was simulated from:
 - o if we know the ground truth, because we generated data from known settings, we can validate if the model is able to converge to these 'true' values.
- 2. give unbiased estimates:
 - not systematically over- or underestimate parameters (given the priors)
- 3. effectively learn from data:
 - o posteriors should be more certain (i.e., more peaked) than priors
- → Check with simulation-based calibration (SBC)

- Idea: if a model is computationally faithful, it will be able to return unbiased estimates with appropriate uncertainty.
- We can assess this through simulation, because then we know the ground truth (e.g., $\mathbb{R}_1 = 0.5$)
- When the model is computational faithful, it should be able to recover the prior distribution accurately.

Steps:

- 1. Take the prior $\pi(\theta)$ and randomly draw a parameter set $\tilde{\theta}$ from it: $\tilde{\theta} \sim \pi(\theta)$
- 2. Use this parameter set $\tilde{\theta}$ to simulate hypothetical data \tilde{y} from the model: $\tilde{y} \sim \pi(y|\tilde{\theta})$
- 3. Fit the model to this hypothetical data and draw samples from the posterior distribution: $\tilde{\theta}' \sim \pi(\theta|\tilde{y})$
- 4. Find the **rank** of the true parameter θ within the posterior samples $\tilde{\theta}'$ (that is, the count of posterior samples smaller than the generating parameter value).

Repeat steps 1-4, say, 100 times

If the model is computationally faithful, every rank should occur equally often \rightarrow we expect a uniform distribution of the ranks

- Downside of the histogram: depends on number of bins
- Alternative: empirical cumulative distribution function (ECDF) of the ranks, and more specifically, the difference between the perfectly uniform CDF and the empirical CDF of the ranks, including the 95% interval of expected deviations.

Plots can not only show *if* something is wrong, but also give an indication of *how* it is wrong

Plots can not only show if something is wrong, but also give an indication of how it is wrong

a,b,c) Model well-calibrated d,e,f) Model too uncertain g,h,i) Model too certain j,k,l) Model underestimates

For model sensitivity, we assess:

- 1. Are the (mean) posterior estimates unbiased?
 - How different is the mean posterior from the mean prior value (in each simulation)?
 - We don't want a prior-likelihood mismatch (→ bias)

For model sensitivity, we assess:

- 1. Are the (mean) posterior estimates unbiased?
 - How different is the mean posterior from the mean prior value (in each simulation)?
 - We don't want a prior-likelihood mismatch (→ bias)
- 2. Does the model learn from data? (i.e., is there posterior contraction?)
 - Is the posterior uncertainty substantially lower than the prior uncertainty?
 - In context of number of observations and model complexity
 - Posterior contraction: 1 (var(posterior) / var(prior))
 - 0: no updating, 0.5: 50% more certain, 0.99: 99% more certain

Z-scores (y-axis) clustering around zero: model returns unbiased estimates.
 Posterior contraction (x-axis) around 0.7: satisfactory updating of model parameters.

- Z-scores (y-axis) clustering around zero: model returns unbiased estimates.
 Posterior contraction (x-axis) around 0.7: satisfactory updating of model parameters.
- Correlation true (x-axis) and estimated (y-axis) parameter values is 0.87: good recovery of the model parameters.

 In conclusion: by simulating data from the prior distribution + likelihood, we can evaluate how well-calibrated our model is.

O We want:

- Uniform ranks / ECDFs → global posterior distribution similar to prior distribution
- Z-scores of difference between mean posterior estimates and mean prior estimates close to zero → no bias in estimates
- Posterior contraction close to 1 → posterior uncertainty (per simulation) much smaller than prior uncertainty; model can learn from data

- If things go wrong, we know it has to do either with the specification of the model, the sampling algorithm or the connection between them.
- Potential problems:
 - Mismatch between data-generating model and (statistical) model
 - Problem in the algorithm (e.g., convergence, suboptimal non-MCMC methods)
 - Incorrect implementation (e.g., error in Stancode; unlikely with brms)
- Hard to debug, but at least you know there is a problem!

Hypothesis testing

- Hypothesis testing with Bayes:
 - O Does the credible interval of the posterior include zero?
 - Savage-Dickey density ratio test
 - o Bayes factor model comparison with bridgesampling

Hypothesis testing

- Hypothesis testing with Bayes:
 - Does the credible interval of the posterior include zero?
 - Savage-Dickey density ratio test
 - Bayes factor model comparison with bridgesampling
- The latter two involve the Bayes factor (BF) as the measure of evidence in the data for one hypothesis/model versus another.
- \circ BF₁₂ = probability of the data given hypothesis 1 versus the probability of the data given hypothesis 2

Bayes factor

Remember Bayes' rule:

$$p(\theta \mid y) = \frac{p(\theta) \times p(y \mid \theta)}{p(y)}$$
.

This can be rewritten as:

$$\underbrace{p(\theta \mid y)}_{\text{Posterior for }\theta: \text{ prior for }\theta: \text{ old beliefs}} \times \underbrace{\underbrace{\frac{p(y \mid \theta)}{p(y)}}_{\text{Relative predictive adequacy for }\theta}.$$

 Meaning: the posterior for theta given the data = prior for theta x the likelihood (probability of the data given theta) / prior probability of the data

Bayes factor

$$\underbrace{p(\theta \mid y)}_{\text{Posterior for }\theta: \text{ Prior for }\theta: \atop \text{new beliefs}} = \underbrace{p(\theta)}_{\text{Prior for }\theta: \atop \text{old beliefs}} \times \underbrace{\underbrace{\frac{p(y \mid \theta)}{p(y)}}_{\text{Relative predictive adequacy for }\theta}}_{\text{Relative predictive adequacy for }\theta$$

We can also use this formula to compare two hypotheses/models

$$\frac{p(\mathcal{H}_1 \mid \text{data})}{p(\mathcal{H}_0 \mid \text{data})} = \underbrace{\frac{p(\mathcal{H}_1)}{p(\mathcal{H}_0)}}_{\text{Prior uncertainty about hypotheses}} \times \underbrace{\frac{p(\text{data} \mid \mathcal{H}_1)}{p(\text{data} \mid \mathcal{H}_0)}}_{\text{Predictive updating factor}}.$$

- The predictive updating factor
 - = the ratio of marginal likelihoods
 - = probability of the data under H_1 vs H_0
 - = the level of evidence in the data for H_1 vs H_0
 - = the Bayes factor

- Example: Bem's (in)famous experiment (based on Heck et al. (2023))
 - o n = 40 persons guess which of two cards hides an erotic picture (or the number 7)
 - Bem's ESP hypothesis: "precognitive detection of erotic stimuli."
 - \circ Data: x = 26, that is, 26 out of 40 people selected the erotic card

Heck et al. (2023). https://doi.org/10.1037/met0000454

- Example: Bem's (in)famous experiment (based on Heck et al. (2023))
 - o n = 40 persons guess which of two cards hides an erotic picture (or the number 7)
 - Bem's ESP hypothesis: "precognitive detection of erotic stimuli."
 - \circ Data: x = 26, that is, 26 out of 40 people selected the erotic card
 - Different competing models:
 - M_1 : x ~ Binomial(n = 40, θ = .50) → ESP does not exist, random guessing
 - M_2 : x ~ Binomial(n = 40, $\theta \neq .50$) \rightarrow ESP does exist
 - Frequentist: $\hat{\theta} = 26/40 = .65$ with a confidence interval of [.48, .79], p = .081

Heck et al. (2023). https://doi.org/10.1037/met0000454

- In the Bayesian setting: we need priors for θ
 - M₁: belief: θ = .50 → prior: spike at θ = .50
 - M₂: belief θ ≠ .50 \rightarrow prior?
 - M_{2a} : subjective $\rightarrow \theta \sim \text{Uniform}(0.5, 0.6)$ (ESP is weak but real)
 - M_{2b} : default $\rightarrow \theta \sim Uniform(0, 1)$ (ignorant; let the data speak)

- In the Bayesian setting: we need priors for θ
 - M₁: belief: θ = .50 → prior: spike at θ = .50
 - M₂: belief θ ≠ .50 \rightarrow prior?
 - M_{2a} : subjective $\rightarrow \theta \sim \text{Uniform}(0.5, 0.6)$ (ESP is weak but real)
 - M_{2b} : default $\rightarrow \theta \sim Uniform(0, 1)$ (ignorant; let the data speak)

- Now we can assess predictions from each model (before having seen the data)
- This prior predictive distribution provides the probability of observing a specific number of successes (x = 0, x = 1, ..., x = 40) conditional on a model and prior.

- \circ Now we can assess predictions from each model (before having seen the data)
- This prior predictive distribution provides the probability of observing a specific number of successes (x = 0, x = 1, ..., x = 40) conditional on a model and prior.

- From the prior predictive distribution, we can directly obtain the marginal likelihood of the observed data given each model.
- The marginal likelihood $P(x = 26 \mid M)$: probability of observing x = 26 "correct" guesses out of n = 40 trials given a specific model M with some prior distribution.

- From the prior predictive distribution, we can directly obtain the marginal likelihood of the observed data given each model.
- The marginal likelihood $P(x = 26 \mid M)$: probability of observing x = 26 "correct" guesses out of n = 40 trials given a specific model M with some prior distribution.
- The Bayes factor compares how well two models predict the observed data; it is the ratio of the marginal likelihoods of the data for two models:

$$\mathrm{BF}_{1,2a} = rac{P(x=26 \mid \mathcal{M}_1)}{P(x=26 \mid \mathcal{M}_{2a})},$$
 Note: $\mathrm{BF}_{2a,1} = 1/\mathrm{BF}_{1,2a}$

- O Interpretation:
 - BF > 1: More support for M₁
 - \circ BF < 1: More support for M_{2a}

Here we get:

- BF_{2a,1} = 2.83 \rightarrow data of 26/40 "correct" is about 3 times more likely under the ESP exists but is weak model (M_{2a}) than under the ESP does not exist model (M₁)
- BF_{2b,1} = 1.16 \rightarrow about equal support in the data for no ESP (M₁) and no expectation (M_{2b})

Here we get:

- BF_{2a,1} = 2.83 \rightarrow data of 26/40 "correct" is about 3 times more likely under the ESP exists but is weak model (M_{2a}) than under the ESP does not exist model (M₁)
- BF_{2b,1} = 1.16 \rightarrow about equal support in the data for no ESP (M₁) and no expectation (M_{2b})
 - Notice the effect of 'vague' prior: vague predictions may hurt the chances of finding evidence for an effect.
 - In general, the Bayes factor penalizes complex models (e.g., models with many parameters or vague priors) if the increase in complexity does not pay off in terms of a better fit → optimal trade-off between model fit and complexity (cf. Occam's razor)

But we're forgetting one part of the equation:

$$\underbrace{\frac{P(\mathcal{M}_1 \mid x = 26, n = 40)}{P(\mathcal{M}_{2a} \mid x = 26, n = 40)}}_{\text{Posterior model odds}} = \underbrace{\text{BF}_{1,2a}}_{\text{Bayes factor}} \times \underbrace{\frac{P(\mathcal{M}_1)}{P(\mathcal{M}_{2a})}}_{\text{Prior model odds}}.$$

- Bayes factor quantifies how to update our beliefs in light of the data, but is independent from the prior beliefs.
- Depending our prior beliefs about the two models, the posterior model probabilities may be different!

But we're forgetting one part of the equation:

$$\underbrace{\frac{P(\mathcal{M}_1 \mid x = 26, n = 40)}{P(\mathcal{M}_{2a} \mid x = 26, n = 40)}}_{\text{Posterior model odds}} = \underbrace{\text{BF}_{1,2a}}_{\text{Bayes factor}} \times \underbrace{\frac{P(\mathcal{M}_1)}{P(\mathcal{M}_{2a})}}_{\text{Prior model odds}}.$$

- Bayes factor quantifies how to update our beliefs in light of the data, but is independent from the prior beliefs.
- Depending our prior beliefs about the two models, the posterior model probabilities may be different!
- Basically: our initial beliefs should not influence the evidence in the data, but they can influence our posterior beliefs.

- Often, the default of equal prior model probabilities is used:
 - $OP(M_1) = P(M_{2a}) = \frac{1}{2}$
 - These translate into:

$$\circ$$
 $P(M_1 | x = 26, n = 40) = .26$

$$\circ$$
 $P(M_{2a} \mid x = 26, n = 40) = 1 - .26 = .74$

- Often, the default of equal prior model probabilities is used:
 - $OP(M_1) = P(M_{2a}) = \frac{1}{2}$
 - o These translate into:

$$\circ$$
 $P(M_1 | x = 26, n = 40) = .26$

$$\circ$$
 $P(M_{2a} \mid x = 26, n = 40) = 1 - .26 = .74$

- But as with priors, we can also use subjective prior model probabilities, such as:
 - $OP(M_1) = .90$
 - $P(M_{2a}) = .10 \rightarrow$ reflecting a priori scepticism for the existence of extrasensory perception (of erotic stimuli)
- This means that we need a lot of evidence in the data to shift our belief to the conviction that ESP exists.

Posterior ESP beliefs

- With $P(M_1) = .90$ and $P(M_{2a}) = .10$, we get:
 - $OP(M_1 \mid x = 26, n = 40) = .74$
 - $OP(M_{2a} \mid x = 26, n = 40) = .26$
- So: the data are about 3 times more likely under the weak-butexistent-ESP model versus the no-ESP model
- However, the Bayesian framework allows us to include beliefs about the model's a priori plausibility

Posterior ESP beliefs

- With $P(M_1) = .90$ and $P(M_{2a}) = .10$, we get:
 - $OP(M_1 \mid x = 26, n = 40) = .74$
 - $OP(M_{2a} \mid x = 26, n = 40) = .26$
- So: the data are about 3 times more likely under the weak-butexistent-ESP model versus the no-ESP model
- However, the Bayesian framework allows us to include beliefs about the model's a priori plausibility
- This means that given (a) our initial scepticism and (b) the notoverwhelming evidence, we may update our beliefs in ESP from 1:9 odds to 1:3 odds, but still remain (rationally) unconvinced.

So Bayes factors are great, but how do we get them in more complex models?

- So Bayes factors are great, but how do we get them in more complex models?
- o Two options:
 - Savage-Dickey density ratio: posterior density at the point of interest divided by the prior density at that point.
 - Benefit: easy to compute, requires no additional computation
 - Downside: only for single parameters

- So Bayes factors are great, but how do we get them in more complex models?
- o Two options:
 - Savage-Dickey density ratio: posterior density at the point of interest divided by the prior density at that point.
 - Benefit: easy to compute, requires no additional computation
 - Downside: only for single parameters
 - Model comparison: ratio of marginal likelihoods of two models, using bridgesampling. Favors well-fitting models, but penalizes complexity (cf. Occam's razor)
 - Benefit: very flexible, also for multiple parameters (e.g., random effects)
 - Downside: requires many iterations (more than estimation)

- Important practical considerations:
 - No improper / flat priors
 - Save all parameters when fitting the model (in brms: save_pars = save_pars(all = TRUE)) to keep the log-marginal-likelihood needed for bridgesampling
 - Use many iterations (~10 times more than for estimation)

Example: afterlife beliefs model

Consider: H₁: continuity judgments after biological death are more likely for mental states than bodily states

 Typically, if you want to test against a null-hypothesis, you would use a weakly informative prior centered around zero. Here we use a N(0,1) prior for the condition effect.

Savage-Dickey density ratio

Consider: H₁: continuity judgments after biological death are more likely for mental states than bodily states

```
Hypothesis Tests for class b:
   Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob Star
1 (cat) > 0 1.53 0.12 1.33 1.73 Inf 1 *
---
```


Savage-Dickey density ratio

Consider: H₁: continuity judgments after biological death are more likely for mental states than bodily states

We get a Bayes factor (*Evid.Ratio*) of infinity \rightarrow all posterior draws are larger than zero, indicating that the data provide strong evidence in favor of H_1 .

Rather than infinity, we should read this as $BF_{10}>20000$, as we have 20000 posterior samples, all of which are larger than zero.

Savage-Dickey density ratio

Consider: H₂: overall continuity is around 20% on average

The data show evidence against the hypothesis that the intercept is at 20% (i.e., -1.39 on the logit scale):

 BF_{01} = 0.054; BF_{10} = 18.456, indicating that the data provide moderate to strong evidence against this hypothesis.

- Now we want to evaluate the evidence in the data for the inclusion of a random effect of condition (H₃); that is, is the difference between the body and mind condition different across countries?
- \circ To do this, we can compare the model with a random effect of condition (M₁) to a model without a random effect of condition (M₂). We can then compute the Bayes factor to quantify the evidence in the data for M₁ compared to M₂.

 Now we want to evaluate the evidence in the data for the inclusion of a random effect of condition (H₃); that is, is the difference between the body and mind condition different across countries?

- Now we want to evaluate the evidence in the data for the inclusion of a random effect of condition (H₃); that is, is the difference between the body and mind condition different across countries?
- O Here we get BF_{12} =0.249, or BF_{21} =4.02, which indicates that the data provide moderate evidence in favor of M_2 (no random effect) compared to M_1 (random effect).

- Now we want to evaluate the evidence in the data for the inclusion of a random effect of condition (H₃); that is, is the difference between the body and mind condition different across countries?
- O Here we get BF_{12} =0.249, or BF_{21} =4.02, which indicates that the data provide moderate evidence in favor of M_2 (no random effect) compared to M_1 (random effect).
- We can also calculate the corresponding posterior model probabilities, that is, the probability of M_1 given the data or $P(M_1|data)$, and the probability of M_2 given the data, or $P(M_2|data)$.
- O Assuming equal prior model probabilities, the posterior probability of M_1 is 0.199, while the posterior probability of M_2 is 0.801, which aligns with the moderate evidence for M_2 from the Bayes factor.

Useful references

Simulation based calibration:

- Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C., Carpenter, B., Yao, Y., Kennedy, L., Gabry, J., Bürkner, P.-C., & Modrák, M. (2020). Bayesian Workflow (No. arXiv:2011.01808). arXiv. https://doi.org/10.48550/arXiv.2011.01808
- Talts, S., Betancourt, M., Simpson, D., Vehtari, A., & Gelman, A. (2018).
 Validating Bayesian Inference Algorithms with Simulation-Based Calibration (No. arXiv:1804.06788). arXiv. https://doi.org/10.48550/arXiv.1804.06788
- Schad, D. J., Betancourt, M., & Vasishth, S. (2021). Toward a principled Bayesian workflow in cognitive science. *Psychological Methods*, 26(1), 103–126. https://doi.org/10.1037/met0000275

Useful references

Hypothesis testing with Bayes factors:

- Heck, D. W., Boehm, U., Böing-Messing, F., Bürkner, P.-C., Derks, K., Dienes, Z., Fu, Q., Gu, X., Karimova, D., Kiers, H. A. L., Klugkist, I., Kuiper, R. M., Lee, M. D., Leenders, R., Leplaa, H. J., Linde, M., Ly, A., Meijerink-Bosman, M., Moerbeek, M., ... Hoijtink, H. (2023). A review of applications of the Bayes factor in psychological research. *Psychological Methods*, 28(3), 558–579. https://doi.org/10.1037/met0000454
- Hoijtink, H., Mulder, J., van Lissa, C., & Gu, X. (2019). A tutorial on testing hypotheses using the Bayes factor. *Psychological Methods*, 24(5), 539–556. https://doi.org/10.1037/met0000201

Evaluation

