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’ Learning goal:




Day 1 : Conceptual introduction

Day 2 : WAMBS-checklist (when to worry and how to avoid the misuse of
Bayesian Statistics)

Day 3 : Estimation methods including alternatives that can be more efficient
when dealing with computational or non-covergence issues (MCMC,
Gibbs, MH, HMC, NUTS, etc.)

Day 4 : Prior sensitivity analysis to investigate the influence the prior has on the
results; models with many parameters; shrinkage priors.

Day 5 : Informative priors; expert knowledge.
We end with general reflections.



Time Schedule Day 1-5:

0900-1200
1200-1300
1330-1500
1500-1600

: lecture

: lunch

: (supervised) computer lab
: QA



Software:

nature reviews methods primers Viewzll journals  search QM

Explore content ¥  Journal information ¥  Publish with us ~ Sign up for alerts £ RSS feed

nature * natur i ; imers * primers * article * table

Table 2 A non-exhaustive summary of commonly used and open Bayesian software
programs

From: Bayesian statistics and modelling

Software package Summary

General-purpose Bayesian inference software

An apel fi lling and inf in Python; incl oling and Hamiltonian Monte Carlo

An opel 2ral-pur ian inference engi sing Hamiltonian Monte Carlo; can be run from R, Pythe MATLAE and Stata

sailable for




Software:

Day 1&5:
- Online apps

Day 2,3,4:
- R (brms)



“... it is clear that it is not possible to think about
learning from experience and acting on it without

coming to terms with Bayes' theorem.™

Jerome Cornfield (in de Finetti, 1974a)




“...whereas the 20th century was dominated by
NHST [null hypothesis significance testing], the 21st

century is becoming Bayesian...™

Kruschke (2011, p.272) in a special ‘Bayesian’ issue

of Perspectives on Psychological Science



.. |...] seven decades of criticism against NHST is

finally having an effect.

Sohlberg & Andersson (2005, p.69)




... |...] seven decades of criticism against NHST is

finally having an effect.

"Besides correcting the most obvious flaws of NHST
in @ manner reminiscent of how meta-analysis does
it, Bayesian statistics can be seen as providing
answers to the questions researchers would be
asking, unless they had first been

taught a flawed method..."

Sohlberg & Andersson (2005, p.69)



"...Over the last few decades, it has become the
major approach in the field of statistics, and has
come to be accepted in many or most of

the physical, biological and human sciences..."

Lee (2011, p.1)



It all started...

In 1748 when Hume published an essay
about uncertainty




This essay inspired Thomas Bayes (1701-1761)
who was enrolled at the University of
Edinburgh to study logic and theology

He worked on the question
whether God exists

using Inverse Probability, but
he never published any work
on this topic



After T. Bayes passed, his relatives asked
Richard Price (1723-1791) to go through his
unfinished work and it was Price who
discovered the paper on inverse probability



N~ LII. An Fssay towards solving a Problem in the Doctrine
= Y :thwmr.rf Pa,: the late Rev. Mr. Bayes, communicated
RN by Mr. Pnu_ in a letter to John Canton, M. A. and

F.R. S

Dear Sir,

of our dece
and well d
nearly intereste
particular reason fo
cannot be improper
He had, yon knd
clety, and was much esteemed }-1. many as a very able mathems:
introduction which he has writ to this Essay, he says, that his des st in
thinking on the sub 'i"--:'=f nt it was, to find out a Im’rhmi by which wéfight judge
ing il ]l.l.[ an event has to happen, in given circumstances,
pposition that we ' nothing eoncerning it ]-11I that, under the same
i tances, it hs h appel :-nl a certain number of times, and failed a certain
other mumber of times. He adds, that he soon perceived that it would not be
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is the sincere wish of, S
yvour very humble servant,
Richard Price.

Mewington (Greesn.
MNow. 10, 1763,




Pierre Simon Laplace (1749-1827)

Independently discovered the same

theorem and actually published
the formula we now know as

Bayes’ rule...

(he also published the central limit theorem)



Bayes goes to war....

Used for artillery testing
during Napoleon war




Bayes goes to war....

Testing ammunition during WOI

Frequentist methods required too much
losses




Bayes goes to war....

Alan Turing
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Bayes’ rule:

P(e | H) P(H)

P(e)

P(H | e) =

Picture taken from:
http://www.psychologyinaction.org/2012/10/22/bayes-rule-and-bomb-threats/



A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research
(2014). Van de Schoot, Kaplan, Denissen, Asendorpf, Neyer van Aken. Child Development
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Weak High precision

Non-informative
Informative

Wordcloud showing terms used to describe the level of informativeness of the priors in the empirical regression-based articles.
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van de Schoot, R., Winter, S. D., Ryan, O., Zondervan-Zwijnenburg, M., & Depaoli, S. (2017). A systematic review of Bayesian articles in psychology: The last
25 years. Psychological Methods, 22(2), 217-239. http://dx.doi.org/10.1037/met0000100



Choosing a prior

Step 1: Type of prior
normal, gamma, chi2, wishart, binominal, Jeffreys’prior, uniform, beta, Laplace prior,
AND MANY MANY MORE

Step 2: Specify the hyper parameters

RN RN R R R
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www.nature.com/articles/s43586-020-00001-2/



http://www.nature.com/articles/s43586-020-00001-2/
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Go to:

www.rensvandeschoot.com/FBI

& C' | @ Secure | https;//utrecht-university.shinyapps.io/baye

estimation/

Exercise 1

Qv @ *

FBI: First Bayesian Inference
Version 2.0, created by Lion Behrens, Sonja D. Winter and Rens van de Schoot

Show Disclaimer

Universiteit Utrecht

This Shiny-app was designed fo aid in leaching the basics of Bayesian estimation. The focus of the analysis presented here is on accurately estimating the mean of Q. using simulaled data. This implies that priers and dala should be generated within fhe theoretical boundaries of an imaginary 1Q test with @ minimum and maximum possible scores of 40-180. Specifying priars

andior generating data outside these limits might cause the app fo return with unwanted solutions. For more details see

Van de Schoot, R., Kaplan. D., Denissen, J., Asendorpf, J. B.. Neyer, F. J, & Aken, M. A_(2014). A genfle introduction to Bayesian analysis: applications to developmental ressarch. Child development, 85(3). 842-860

1. Choose a prior distribution

Choose the parameters of your prior distribution. Hit the button below to create your prior.
Frior Distributions

® Uniform

Truncated Marmal

Minimum

40

Maximum

180

Construct Prior

Plot

[ iebanov-Rachev-

2. Construct your data and likelihood

‘You can simulate data from a truncated normal distribufion with 40 and 150 as boundary values. From this data, a
likelihood functicn will be constructed

Parameters of your simulated data

Data Mean

100

Data Standard Deviation

This will lead to the following parameters of the likelihood function
Likelihood Mean = 100
Likelihood Variance = 10.23

Construct Dataset and Likelihood

3. Find your posterior

Hit the button to run the model to find the posterior mean of based on your upleaded data and chosen prior distribution.
Construct Postarior (defaulf)

Run with sigma unknown

If you change your data or prior, and you want to see its effect, just rerun the medel by clicking the button again.



http://www.rensvandeschoot.com./FBI

1. Choose a prior distribution

Choose the parameters of your prior distribution. Hit the button below to create your prior.

Pricr Distributions

i# hniform

i) Truncated Mormnal

Minimum

40

Maximum

150

Construct Prior

36



2. Construct your data and likelihood

You can gimulate data from a truncated normal distribufion with 40 and 180 as boundary values. From this data, a
likelihood function will be constructed.

Parameters of your simulated data

Data Mean

100

Data Standard Dewviation

15

Sample Size

20

This will lead to the following parameters of the likelihood function
Likelihood Mean = 100
Likelihood Variance = 11.25

Caonstruct Dataset and Likelihood

37



3. Find your posterior

Hit the button to run the model to find the posterior mean of based on your uploaded data and chosen prior distribution.

Construct Posterior (default)

Run with sigma unknown

If you change your data or prior, and you want to see its effect, just rerun the model by clicking the button again.

38



1.

Choose the paramefers of your prier disfribution. Hit the bution below to create your prior.

Choose a prior distribution

Prior Distributions
@ Uniform

() Truncated Mormal
Minimum

40

Maximum

180

Construct Prior

Plot

Density

2. Construct your data and likelihood 3. Find your posterior

‘fou can simulate data from a truncated normal distribution with 40 and 150 as boundary values. From this data, a Hit the butten to run the model to find the pesterior mean of based on your uploaded data and chesen prior distribution.
likelihood function will be constructed.

. Construct Posterior (default)
Parameters of your simulated data

Data Mean Rum with sigma unknown

100
If you change your data or prior, and you want to see its effect, just rerun the model by clicking the button again.

Data Standard Deviation

15

Sample Size

20
This will lead to the fellowing parameters of the likelihood function
Likelihood Mean = 100

Likelihood Variance = 11.25

Construct Dataset and Likelihood

Bayesian Inference

o

° ——  Prior

2 | Likelihood
° —— Posterior
El

[=]

2

(=]

3 |

(=]

a8

[=]

g |

(=]
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1. Choose a prior distribution

Choo=e the parameters of your prior distribution. Hit the buiton below to create your prior.

Prior Distributions
~1 Uniform

i® Truncated Mormal

Pricr Mean

100

Prior Variance

10

Lower bound

40

Higher kouwnd

150

Construct Prior

40



1. Choose a prior distribution 2. Construct your data and likelihood 3. Find your posterior

Choose the parameters of your prier distribution. Hit the bufton below to create your prior. fou can simulate data from a truncated normal distribution with 40 and 130 as boundary values. From this data, a Hit the butten to run the model fo find the poesterior mean of based on your upleaded data and chesen prier distribution.
likelihood function will be constructed.

EcrERSU UL oS Consfruct Posterior (defaulf)
) Unifarm Parameters of your simulated data
wm Tr ted M |
@ fnmosec Noms Data Mean Run with sigma unknown
Prior Mean 100
100 If you change your data or prior, and you want to see its effect, just rerun the model by clicking the button again.
Data Standard Deviation
Prior Variance 15
10
Sample Size
Lower bound 20
40

. This will lead to the fellowing parameters of the likelihood function
Higher bound
Likelihood Mean = 100
180
Likelihood Variance = 11.25

Construct Prior
Construct Dataset and Likelihood

Plot

Bayesian Inference

——  Prior
2 Likelihood
—— Posterior
(=]
Z2 s
5
[=]
8
(=]
g
= T

80 a0 100 110 120
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1. Choose a prior distribution 2. Construct your data and likelihood 3. Find your posterior

Choose the parameters of your pricr distribufien. Hit the button below to create your prior. *fou can simulate data from a truncated normal distribufion with 40 and 180 as boundary values. From fthis dafa, a Hit the button o run the model to find the posterior mean of based on your uploaded data and chosen prior distribution.
likelihood function will be constructed.

Prior Distributions Consfruct Posterior (default)

“ Unifarm Parameters of your simulated data
@® Truncated Normal
@ TmnosecNom: Data Mean Run with sigma unknown
Prior Mean 100
100 If you change your data or prior, and you want to see its effect, just rerun the model by clicking the button again.
Data Standard Deviation
Prior Variance 15
2
Sample Size
Lower bound 20
40

. This will lead to the following parameters of the likelihood function
Higher bound

Likelihood Mean = 100
150
Likelihood Variance = 11.25

Construct Prior
Construct Dataset and Likelihood

Plot

Bayesian Inference

& | .
& —— Prior
a | Likelihood
s | —— Posterior
& | 1
o= ]
=
o, 1
E = | :
24 1
|
g | 1
e 1
g !
= T T T T T
B0 an 100 110 120
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1. Choose a prior distribution 2. Construct your data and likelihood 3. Find your posterior

Choose the parameters of your prier distribufion. Hit the bution below to create your prior. You can simulate data from a truncated normal distribution with 40 and 180 as boundary values. From this data, a Hit the button to run the model to find the posterior mean of based on your uploaded data and chosen prior distribution.
likelihood function will be constructed.

Prior Distributions ) Construct Posterior (defaulf)
Parameters of your simulated data

_) Uniform

el Data Mean Run with sigma unknown
Prior Mean 100
If you change your data or prior, and you want to see its effect, just rerun the model by clicking the button afain.

- Data Standard Deviation
Prior Variance 15

o Sample Size
Lower bound 20

40

. This will lead to the fellowing parameters of the likelihood function
Higher bound
Likelihood Mean = 100
180
Likelihood Variance = 11.25

Construct Prior
Construct Dataset and Likelihood

Plot

Bayesian Inference

——  Prior
24 Likelihood
—— Posterior
E
g o |
&
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g
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70 E 20 100 110 120

43



1. Choose a prior distribution 2. Construct your data and likelihood 3. Find your posterior

Choose the parameters of your prier distribufion. Hit the bution below to create your prior. ou can simulate data from a truncated normal distribution with 40 and 180 as boundary values. From this data, a Hit the button to run the model to find the posterior mean of based on your uploaded data and chosen prior distribution.
likelihood function will be constructed.

Prior Distributions ) Construct Posterior (default)
) Uniform Parameters of your simulated data
® T ted Mormal
@ Tnosted Nomms Data Mean Run with sigma unknown
Prior Mean 100
- If you change your data or prior, and you want to see its effect, just rerun the model by clicking the button again.
Data Standard Deviation
Elaeag 15
10
Sample Size
Lower bound 20
40

. This will lead to the following parameters of the likelihood function
Higher bound
Likelihood Mean = 100
180
Likelihood Variance = 11.25

Construct Prior
Construct Dataset and Likelihood

Plot

Bayesian Inference

—— Prior
24 Likelihood
—— Posterior
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(=}
g
= T

T
50 &0 70 B0 o0 100 110 120

a4



3. Find your posterior

Hit the button to run the model to find the posterior mean of based on your uploaded data and chosen prior distribution.

Construct Posterior (default)

Run with sigma unknown

If you change your data or prior, and you want to see its effect, just rerun the model by clicking the button again.

45
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When likelihood function is a continuous distribution

Likelihood

Normal
with known variance g2

Narmal
with known precision 1

Normal
with known mean

Normal
with known mean

Narmal
with known mean u

Mormalnete &

MNormal

: Universiteit Utrecht

Conjugate priors with fixed parameters

Model parameters

p (mean)

U (mean)

g2 (variance)

@2 (variance)

T (precision)

u and ¢?
Assuming
exchangeability

pandr
Assuming
exchangeability

Conjugate
prior
distribution

Normal

MNormal

Inverse gamma

Scaled inverse
chi-squared

Gamma

Normal-inverse
gamma

MNormal-gamma

[ edit]

Prior
hyperparameters
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Interpretation of hyperparameters

mean was estimated from observations with total precision (sum of all
individual precisions)l/o'g and with sample mean pg

mean was estimated from observations with total precision (sum of all
individual precisions)vp and with sample mean gy

variance was estimated from 2a observations with sample variance ﬁf'a
(i.e. with sum of squared deviations 28, where deviations are from known
mean pi)

variance was estimated from 1 observations with sample variance aﬁ

precision was estimated from 2a observations with sample variance ﬁ/a
(i.e. with sum of squared deviations 23, where deviations are from known
mean p)

mean was estimated from 1 observations with sample mean uq; variance
was estimated from 2ar observations with sample mean pg and sum of
squared deviations 28

mean was estimated from v cbservations with sample mean g, and
precision was estimated from 2o observations with sample mean g and
sum of squared deviations 23

https://en.wikipedia.org/wiki/Conjugate_prior

Posterior predictivel™®ts 4l
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How to obtain posterior?

A

(V)
N

Universitei

N

%

\l/

N

In complex models, the posterior is often intractable

(impossible to compute exactly)

Solution: approximate posterior by simulation

Simulate many draws from posterior distribution
Compute mode, median, mean, 95% interval et

cetera from the simulated draws

47
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ANOVA example

4 unknown parameters p; (j=1,...,4) and one common
but unknown o2.

Statistical model:

Y —_ I + IJ]_*D]_ + IJZ*DZ + |J3*D3 + E

with E ~ N(O, o2)
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ANOVA example

4 unknown parameters p; (j=1,...,4) and one common
but unknown o2.

Statistical model:

Y = Yy*Dy + uo*Dy + p3*D3 + py*Dy + E

with E ~ N(O, o2)



N
';é,\\ U% Univ
TN

Priors

Specify prior: Pr(uby, Mo, M3, Hg, O%)



Priors

Specify prior: Pr(uby, Mo, M3, Hg, O%)

Prior (M;) ~ Nor(ug, vary)
Prior (4;) ~ Nor(0,10000)
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U Hyperparameters:
u (mean), o? (variance)

Normal Distribution
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= Variance =4
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Priors

Specify prior: Pr(uby, Mo, M3, Hg, O%)

Prior (M;) ~ Nor(ug, vary)
Prior (4;) ~ Nor(0,10000)

Prior (o) ~ 1G(0.001, 0.001)
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N Hyperparameters:
o (shape), B (scale)

Inverse-Gamma Distribution

[ ]
o3 : .
o (] L]
] ]
R — |G(0.001,0.001)
o | e —  1G(0.01.0.01)
S0 ony - = IG(5,5)
f F-
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Posterior

Combine prior with likelihood provides
posterior:

Post ( M1, M2, M3, Ha, O° | data )

...this is a 5 dimensional distribution...
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The Gibbs sampler

Iterative evaluation via conditional
distributions:

Post ( Wy | My, M3, Ha, 0%, data ) ~ Prior (u;) X Data (u;)
Post ( W5 | My, M3, Hq, 0%, data ) ~ Prior (u,) X Data ()
Post ( M5 | M1, My, M4, 0%, data ) ~ Prior (l3) X Data (lis)
Post ( M4 | M1, My, M3, 0%, data ) ~ Prior (u,) X Data (l,)
Post ( 0% | My, My, M3, M4, data ) ~ Prior (0%) X Data (0?)
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The Gibbs sampler

1.Assign starting values
2.Sample u; from conditional distribution
3.Sample W, from conditional distribution

4.Sample p; from conditional distribution

5.Sample y, from conditional distribution

6.Sample 02 from conditional distribution

/.Go to step 2 over and over again
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U

M1*Dy + P*Dy + p3*Ds + py*Dy + E
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Step 1: assign starting values

Step 1: 3*D, + 5*D, + 8*D, + 3*D, + 10



W
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Step 2: Sample y, from
conditional distribution

Step 1: 3*D, + 5*D, + 8*D, + 3*D, + 10

\

Step 2: + u,*D5 + p3*Ds + YD,y + E
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Step 2: Sample y, from
conditional distribution

Step 1: 3*D, + 5*D, + 8*D, + 3*D, + 10

\

Step 2: *Dy + U,*D, + p3*D5 + g, *D, + E
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Step 2: Sample y, from
conditional distribution

Step 1: 3*D, + 5*D, + 8*D, + 3*D, + 10

\

Step 2: *Dy + U,*D, + p3*D5 + p,*Dy + E



W
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Step 3: Sample J, from
conditional distribution

Step 1: 3*D, + 5*D, + 8*D, + 3*D, + 10

\

Step 2: *Dy + U,*D, + p3*D5 + p,*Dy + E

Step 3: p{*Dy + 1,*D, + p3*Ds + Py *D, + E



W
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Step 3: Sample J, from
conditional distribution

Step 1: 3*D, + 5*D, + 8*D, + 3*D, + 10

\

Step 2: *Dy + U,*D, + p3*D5 + p,*Dy + E

Step 3: p*Dy + ,*D, + p3*Ds + P, *D, + E
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Do this for all parameters

Step 1: 3*D; + 5*D, + 8*D; + 3*D, + 10
Step 2: *Dy + U,*D, + p3*D5 + p,*D,y + E
Step 3: p*Dy + ,*D, + p3*Ds + P, *D, + E
Step 4: p*Dy; + u,*D, + s*D5 + P, *D, + E
Step 5: p;*Dy + p,*D, + p3*D5 + 1, *D, + E

Step 6: p,*Dy + Y*D; + ps*D3 + py*Dy +
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This is iteration 1

Step 1: 3*D, + 5*D, + 8*D, + 3*D, + 10

Step 2: *Dy + U,*D, + p3*D5 + p,*D,y + E

0p
—
(D
O
W

Hi*Dy + po*Dy + p3*Ds + py*Dy + E

Iteration 1

Step 4: p*Dy; + u,*D, + s*D5 + P, *D, + E
Step 5: p;*Dy + p,*D, + p3*D5 + 1, *D, + E

Step 6: p;*Dy + Py*Dy + p3™D3 + py*Dy +
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Replace starting values with
new estimates

Step 1: 3*D, + 5*D, + 8*D, + 3*D, + 10

\

Step 2: *Dy + U,*D, + p3*D5 + p,*D,y + E

Step 3: p*Dy + ,*D, + p3*Ds + P, *D, + E
Step 4: p*Dy; + u,*D, + s*D5 + P, *D, + E
Step 5: p;*Dy + p,*D, + p3*D5 + 1, *D, + E

Step 6: p;*Dy + Py*Dy + p3™D3 + py*Dy +
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Step 7: Go to step 2 and start
with iteration 2

Step 1: 3*D, + 5*D, + 8*D, + 3*D, + 10

\

Step 2: *Dy + U,*D, + p3*D5 + p,*D,y + E

Hi*Dy + po*Dy + p3*Ds + py*Dy + E

Iteration 2
0p)
—t
M
O
&9

Step 4: p*Dy; + u,*D, + s*D5 + P, *D, + E
Step 5: p;*Dy + p,*D, + p3*D5 + 1, *D, + E

Step 6: p;*Dy + Py*Dy + p3™D3 + py*Dy +
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Repeat k times

Step 1: 3*D, + 5*D, + 8*D, + 3*D, + 10

Step 2: *Dy + U,*D, + p3*D5 + gy, *Dy 4- E

Hi*Dy + po*Dy + p3*Ds + py*Dy + E

[teration k
0p)
~
M
O
W

Step 4: p*Dy; + u,*D, + s*D5 + P, *D,y + E

Step 6: p;*Dy + Py*Dy + p3™D3 + py*Dy +
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Step 1: assign starting values

Iteration My > M3 My 02

1 3.00 | 5.00 8.00 3.00 10



W

Step 2: Sample y, from
conditional distribution

\

Iteration My > M3 My 02
1 3.00 5.00 8.00 3.00 10

2 3.75



W

Step 3: Sample J, from
conditional distribution

\

Iteration My > M3 My 02
1 3.00 5.00 8.00 3.00 10

2 3.75 | 4.25



Step 6: Sample 02 from
conditional distribution

Iteration My > M3 My 02
1 3.00 5.00 8.00 3.00 10
2 3.75 4.25 7.00 4.30 8



Step 7: Go to step 2 over and

Iteration

over again

M1 M M3 Ha op
3.00 5.00 8.00 3.00 10
3.75 4.25 7.00 4.30 8
3.65



Step 7: Go to step 2 over and

Iteration

15

199
200

M1
3.00

3.75

3.65

4.45

4.59

4.36

M>
5.00

4.25

4.11

3.19

3.75

3.45

M3

8.00
7.00
6.78

5.08

5.21

4.65

Ha
3.00

4.30

5.55

6.55

6.36
6.99

over again

1.1

1.2

1.3
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Trace plot, starting value
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Trace plot, stationary
distribution
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Trace plot, burn-in
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Kernel density plot

hean = 0.92204
Median = 0.69833
Maode =0.95731

5+ 95% Lower Cl = D61
95% Upper Cl =130

Count

105
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9.5
g4
854
8_

7

Mean = 0.92204 Estimate
231 Median = 0.89833

21 —Mode =0.95731
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Density Function
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Approximation of the
posterior distribution
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The more iterations, the more information in the histogram and the
better the results approximate the posterior distribution
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1. Choose a prior distribution

Choose the parameters of your prior distribution. Hit the button below to creale your prior.

Construct Prier

2. Construct your data and likelihood

“You can simulate data from a truncated normal distribution with 40 and 130 as boundary values. From this daia, a
likelihood function will be consiructed.

3. Find your posterior

Hit the butten fo run the model to find the posierior mean of based on your uploaded dala and chosen prior distribution.

Parameters of your simulated data

Data Mean

[ 100

Construct Posterior (defaul)

Data Standard Deviation

you want fo see ifs effect, just rerun the model by clicking the button again.

[15

Sample Size

[0

This will lead to the following parameters of the likelihood function
Likelihood Mean = 100
Likelihood Variance = 11.25

Construct Dataset and Likelihood

—— Prior
~—— Likelihood
= Puosterior
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Convergence

Sampler must run t iterations ‘burn in’

before we reach target distribution f(Z)

« How many iterations are needed to converge on
the target distribution?

Diagnostics

 Examine graph of burn in

* Try different starting values
« Run several chains in parallel
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Convergence
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Convergence
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G vnivorsote verecn Trace plot for the variance of the Slobe
Default prior setting 1G(-1,0)
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Default Prior settings

Inverse-Gamma Distribution
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Default Prior settings

Inverse-Gamma Distribution
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Improper prior

» Probability distribution does not sum or integrate to one
« Shape and scale parameter need to be larger than zero
Improper prior:

p(6,)~ 1G(—1,0)
p(6,)~1G(0,0)

Proper prior:

p(8,)~1G(.001,.001)
p(8)~1G(.5,.5)



G vnivorsote verecn Trace plot for the variance of the Slobe
Prior settinc IG(0,0)

50000
48000+
46000+
44000+
42000+
40000+
38000+
36000+
34000+
32000+
30000+
28000+
26000+
24000+
22000+
20000+
180004
160004
14000+

] S,
o Sl

8000+
6000+

4000+
2000+
0
(]

O o O opeesecisssEscsceolshscshsshchshshohshshohshashshshshshshshoheshshsheshshesls e shs el eiS
O OO0 0000000000000 0000000000000 0000000000000 000000000o00g
N O OO NS OO0 OO0 OO0 OoONT OO0 0N O00 NS O00 NS OO0 NSO 00NN O o0

o v T - NN NN OO OO0 S T Y YTnNmnD nmn O oo oo~M~MRR~R~D0ODDooD o ® o oo; ;o
—



‘ ‘ N \ U0
it AL 1 LAEE H“ M M| i ‘J \ X ' | T : ‘|J '\| l” \'N‘ H M . ‘ |H| ‘
gl "‘,l.nnl-q::..l..f';,jf‘l,;w-ﬂ*l:‘w.n-:ﬁ.!""*'-m. il ’lw' L W L |“  | ;. o *""*"'W ”'" i ""‘”"“‘H\IIW‘"IH I 'IWM\ il

m\', M‘i‘ HH | (il H I




ht
it Utrec
siteit
S W iver
’—“'i\\\‘ 1! % Un
FUN

s?
Baye
Why



A

Sl Criversest vreche Why do researchers use Bayes

o First: Because they like the Bayesian paradigm!



A

Gl Lot e Why do researchers use Bayes

o First: Because they like the Bayesian paradigm!

o Key difference between Bayesian statistical
inference and conventional, frequentist
estimation concerns the nature of the unknown
parameters in the model



Sl Criversest vreche Why do researchers use Bayes

o In frequentist framework it is assumed
that in the population there is only one true
population parameter, for example, one true
regression coefficient.



L YE— Why do researchers use Bayes

o In the Bayesian framework, there are two
main ways of viewing the population parameter:

o First, in the Bayesian view of subjective
probability, all unknown parameters can be
treated as unknown and fixed (Gelman &
Robert, 2013). Bayesians can then model
these unknown parameters as being random
through a prior probability distribution (or
prior) that captures the user’s uncertainty of
the fixed value of the parameter.



L YE— Why do researchers use Bayes

o In the Bayesian framework, there are two
main ways of viewing the population parameter:

o The second way of viewing parameters in the
Bayesian framework is to recognize that the
parameter of interest behaves in a stochastic
fashion (i.e., it is not a fixed value but rather
iIs random with an unknown probability
distribution). In turn, the population
parameter can be represented by a
probability distribution with an unknown
mean and variance since the parameter value
Is viewed as random under this definition, and
this distribution is specified in part through
the prior (Gill, 2008).
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o Interpretation confidence interval / credibility
interval
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What does 95% confidence interval actually mean?

106
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Why do researchers use Bayes

What does 95% confidence interval NOT mean?

c We have a 95% probability that the true
population value 6 is within the limits of
our confidence interval

107
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Gl Lot e Why do researchers use Bayes

What does 95% confidence interval NOT mean?

o We have a 95% probability that the true
population value 6 is within the limits of
our confidence interval

108



Gl Lot e Why do researchers use Bayes

What does 95% confidence interval NOT mean?

o We have a 95% probability that the true
population valte 6 is within the limits of
our confidence interval

o We only have an aggregate assurance that
in the long run 95% of our confidence
intervals contain the true population value

109



Ty

Sl Criversest vreche Why do researchers use Bayes

What does a 95% central credibility interval mean?

o We have a 95% probability that the population value
0 is within the limits of our confidence interval

110
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« Technical reasons:

« complex models simply cannot be estimated
using conventional statistics

« to improve convergence issues

« aid in model identification

« produce more accurate parameter estimates.
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* incorporate (un)certainty about a parameter
and update this knowledge through the prior
distribution.
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Uninformative prior Likelihood function
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van de Schoot, R., Kaplan, D., Denissen, J., Asendorpf , J.B., Neyer, F.J. & van Aken,
M.A.G. (2014). A Gentle Introduction to Bayesian Analysis: Applications to
Research in Child Development. Child Development, 85 (3), 842-860.
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R Why do researchers use Bayes

- Bayes is not based on large samples
(i.e., the central limit theorem)
and hence large samples are not
required to obtain accurate results.
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How large should the sample size be at the highest

level in multilevel analyses

27772

115
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With ML-estimation:

-> Boomsma (1983): 200 OK, at least 100
-> Hox, Maas Brinkhuis (2010): at least 100 groups

116
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With ML-estimation:

-> Boomsma (1983): 200 OK, at least 100
-> Hox, Maas Brinkhuis (2010): at least 100 groups

With Bayesian estimation:

-> Hox et al (2012): 20-25 OK!

Hox, J., van de Schoot. R., & Matthijsse, S. (2012). How few countries will do?
Comparative survey analysis from a Bayesian perspective. Survey Research
Methods, 6, 87-93.

117
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e Even more reasons:

o Non-normal data

o Computational power
o Missing data handling
o Flexibiltiy
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What Took Them So Long? Explaining PhD Delays among
Doctoral Candidates

Rens van de Schoot’?*, Mara A. Yerkes®?, Jolien M. Mouw®, Hans Sonneveld®’

1 Department of Methods and Statistics, Utrecht University, Utrecht, The Netherlands, 2 Optentia Research Focus Area, North-West University, Vanderbijlpark, South Africa,
3 Institute for Social Science Research, University of d, Brisbane, Australia, 4 Erasmus University Rotterdam, Rotterdam, The Netherlands, 5 Education and Child
Studies, Faculty of Social and Behavioural Sciences, Leiden University, Leiden, The Netherlands, 6 Netherlands Centre for Graduate and Research Schools, Utrecht, The
Netherlands, 7 Tilburg Law School, Tilburg University, Tilburg, The Netherlands

Abstract

A delay in PhD completion, while likely undesirable for PhD candidates, can also be detrimental to universities if and when
PhD delay leads to attrition/termination. Termination of the PhD trajectory can lead to individual stress, a loss of valuable
time and resources invested in the candidate and can also mean a loss of competitive advantage. Using data from two
studies of doctoral candidates in the Netherlands, we take a closer look at PhD duration and delay in doctoral completion.
Specifically, we address the question: Is it possible to predict which PhD candidates will experience delays in the completion
of their doctorate degree? If so, it might be possible to take steps to shorten or even prevent delay, thereby helping to
enhance university competitiveness. Moreover, we discuss practical do’s and don’ts for universities and graduate schools to
minimize delays.

Citation: van de Schoot R, Yerkes MA, Mouw JM, Sonneveld H (2013) What Took Them So Long? Explaining PhD Delays among Doctoral Candidates. PLoS
ONE 8(7): e68839. doi:10.1371/journal pone.0068839

- 333 PhD recipients in The Netherlands
- how long it had taken them to finish their PhD thesis
=> 59.8 months
- difference between planned and actual project time in months
=>M =9.97, min /max = —31/91, SD = 14.43
- assume we are interested in the question whether age (M=31.68,
min/max=26/69) of the PhD recipients is related to delay in their project.

- assume we expect this relation to be non-linear.
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Plausible Parameter Space!

Introduction

Step 1. Set up Parameter Space |nﬂuence Of Prlors

Version 0.3.2, created by Laurent Smeets and Rens van de Schoot

Step 2: Set prior regression coefficients
Show Disclaimer

Step 3: Quantify uncertainty
This Shiny App is designed to help users define their priors in a li ression with two regression coefficients. Using the same example as

Step 4: Your Priors re tutorials on this website, users are asked to specify t ausible paramfa'_erspa-:? and their e?pelc:ed prior meer?s and

round these means. The Ph.D.-delay example has been used an easy-to-go introduction to Bayesian inference. In this example
the linear and quadratic effect of age on Ph.D.-delay are estimated. Users learn about the interaction between a linear and a quadratic effect
in the same model, about how to think about plausible parameter spaces, and about specification of normally distributed priors for
regression coefficients.
-& . . Vhat hem So Long?
%.{Tb Utrecht University

www.rensvandeschoot.com/pps-App




Plausible Parameter Space!
Introduction
Step 2: Set prior regression coefficients
Step 3: Quantify uncertainty

Step 4: Your Priors

%\% Utrecht University

Step 1. Set up Parameter Space

Think of what you believe to be a plausible parameter space (just a fancy term for reasonable values of your variable). In this example,
you are interested in the (non-linear) relationship between age and delay in PhD completion. Start with defining what you believe to be a
reasonable range for age. Think about what you believe to be the youngest age someone can acquire a PhD (delay included) and what
the oldest age might be. Then, define the delay (in months) you believe to be reasonable. A negative delay is possible (someone finishes
a PhD ahead of schedule). Think about how many months someone can finish ahead of schedule and what you believe to be the
maximum time that someone can be delayed. Adjust the sliders, Range Age and Range Delay, in the left column to set your plausible
parameter space. You can see that in the two plots in the right-hand column the parameter space is adjusted when you move the sliders.

Set up Parameter Space Plots

Use the sliders to set up min and max of both age and delay (in months).
Think about what you believe to be plausible values.

Plots

Range Age Parameter Space

Range Delay

Plausible Parameter Space

Delay (in months)

Age (in years)

www.rensvandeschoot.com/pps-App




Plot

Prior Regression Coefficients

Plausible Values Parameter Space

Dielay (in months)

A0 &0
Age (in years)

‘arameter s
) arameter
intercept )
intercept + lingar effect — intercept
intercept + linear effect + quadratic effec intercept + linear effect
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Standard Deviations Prior Regression Coefficients

Use the sliders to set the values for the prior variances (expressed in sd) of the regression coefficients. Plausible Values

Standard Deviation Sinsercept

Delay (in months)

40
Age (in years)

Parameter

intercept
intercept + linear effect
intercept + linear effect + quadratic effect

JoinVariances

If you are satisfied with your priors, please have a look at them in the next tab.

Show total parameter space plot

Your priors
Different software requires different specification of the hyperparameters. Look at the specification that is relevant for you.

Parametrized as N(mean, variance)

The hyperparameters of the priors you have selected correspond to:
* Intercept (Bintercept) ~ N(-75, 71)
» regression coefficient age |':_ngt,) ~N(2.1, 26)
s regression coefficient squared (8,4.2) ~ N(-0.01, 0.263)

Parametrized as N(mean, sd)

The hyperparameters of the priors you have selected correspond to:
o Intercept (Bintercept) ~ N(-75, 8.4)
e regression coefficient age (Sge) ~ N(2.1,5.1)
« regression coefficient squared (B,ge2) ~ N(-0.01, 0.51)

Parametrized as N(mean, precision), precision is 1/variance.
The hyperparameters of the priors you have selected correspond to:
* Intercept (Bintercept) ~ N(-75, 0.014)
« regression coefficient age |':_ngt,) ~N(2.1,0.038)

» regression coefficient age squared(f3,,.2) ~ N(-0.01, 3.8)
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Your priors
Different software requires different specification of the hyperparameters. Look at the specification that is relevant for you.

Parametrized as N(mean, variance)

The hyperparameters of the priors you have selected correspond to:
o Intercept (Bintercept) ~ N(-75, 71)
» regression coefficient age (Bage) ~ N(2.1,26)
» regression coefficient squared (84ge2) ~ N(-0.01, 0.263)

Parametrized as N(mean, sd)

The hyperparameters of the priors you have selected correspond to:
» Intercept (Bintercept) ~ N(-75, 8.4)
» regression coefficient age (Bage) ~ N(2.1,5.1)

» regression coefficient squared (B,4.2) ~ N(-0.01, 0.51)

Parametrized as N(mean, precision), precision is 1/variance.
The hyperparameters of the priors you have selected correspond to:
* Intercept (Bintercept) ~ N(-75, 0.014)
» regression coefficient age (Bqge) ~ N(2.1,0.038)

» regression coefficient age squared(f3,,.2) ~ N(-0.01, 3.8)
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