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Recap day 3

Part 1: Software and algorithms
- Different ways to get the posterior
- What is going on (conceptually) under the hood?
- What should you, as user, be aware of?

Part 2: Predictive checks
- Posterior predictive checks: how can we check our model?
- Prior predictive checks



Today

Part 1: Prior sensitivity analysis
- Recap: What is a prior?
- When is a prior influential?
- How to perform a prior sensitivity analysis

Part 2: Shrinkage priors
- Basic idea behind penalization
- Different shrinkage priors = different behaviors
- Practical considerations
- Advanced applications



Part 1: Prior sensitivity analysis



Recap: The prior distribution

- A probability distribution
- Represents prior knowledge
- Based on previous studies, experts, data (EB), general knowledge or 

to serve a specific purpose (e.g., shrinkage priors)
- Varies in informativeness
- Needs to be specified for every parameter in the model



When is a prior influential?

- Highly problem-specific!



One prior, different scales data



When is a prior influential?

- Highly problem-specific!

- Higher-level variances (multilevel, SEM) can be 
especially sensitive

- Implied priors on functions of parameters can prove 
influential



Implied priors 
variance partition 
coefficient (VPC)

exponential priors. Furthermore, the implied priors on the 
VPC are not symmetrical. This is due to the fact that we assume 
a standard logistic distribution for the residuals at the within 
level. As a result, σ2

W; k, which arises in the denominator of 
Equation (6) is fixed as well.

Simulation studies
In order to investigate the performance of the robust priors for 
the random effects variances, we conduct two simulation stu-
dies. In the first study, we vary the population values for 
various parameters while keeping the number of groups 

Figure 2. Densities of the priors on the standard deviations.

Figure 3. Densities of the implied priors on the variance partition coefficient (VPC) of the restricted and free items.

6 VAN ERP AND BROWNE

exponential priors. Furthermore, the implied priors on the 
VPC are not symmetrical. This is due to the fact that we assume 
a standard logistic distribution for the residuals at the within 
level. As a result, σ2

W; k, which arises in the denominator of 
Equation (6) is fixed as well.

Simulation studies
In order to investigate the performance of the robust priors for 
the random effects variances, we conduct two simulation stu-
dies. In the first study, we vary the population values for 
various parameters while keeping the number of groups 

Figure 2. Densities of the priors on the standard deviations.

Figure 3. Densities of the implied priors on the variance partition coefficient (VPC) of the restricted and free items.

6 VAN ERP AND BROWNE

From: van Erp & Browne (2021)



When is a prior influential?

- Highly problem-specific!

- Higher-level variances (multilevel, SEM) can be 
especially sensitive

- Implied priors on functions of parameters can prove 
influential

Conclusion
- Understand your prior as well as possible before the analysis 

(visualizations, prior predictive checks)
- Conduct a prior sensitivity analysis afterwards to check your 

understanding



Prior sensitivity analysis

Basic idea 
Rerunning the analysis with different priors, although automatic procedures 
exist.

Ideal situation
Results of interest do not differ across priors. If results differ, this provides 
valuable information.

Difficulties 
- Models with many parameters
- Which priors to include



SEM example

Based on: van Erp, Mulder & Oberski (2018)

What is the indirect effect of 
industrialization in 1960 on 
political democracy in 1965?



Prior sensitivity analysis: Which parameters?

- Focus on parameters of interest
- Latent variable variances are often sensitive



SEM example

Based on: van Erp, Mulder & Oberski (2018)

Parameters of interest
- Indirect effect 𝛾!" 𝑏#$
- Direct effect 𝛾!%

Latent variable variances



Prior sensitivity analysis: Which priors?

- Distributional form depends on the parameter type
- Software can limit the possibilities
- When the original priors were informative: compare to default priors 

to see the influence of the informative priors and possibly to other 
levels of informativeness to be certain of your prior

- When the original priors were “non-informative” or default choices: 
compare to other default choices to ensure your priors are truly non-
informative! 



SEM example

Based on: van Erp, Mulder & Oberski (2018)

Original priors/baseline
Mplus defaults 𝑁(0, 10!") & 𝜋 𝜎# ∝ 1

Comparison

- 𝜋 𝜎! ∝ 𝜎"# (𝐼𝐺 −0.5, 0 )
- 𝜋 𝜎! ∝ 𝜎"! (𝐼𝐺 0, 0 )
- 𝜋 𝜎! ∝ 𝐼𝐺 .1, .1
- 𝜋 𝜎! ∝ 𝐼𝐺 .01, .01
- 𝜋 𝜎! ∝ 𝐼𝐺 .001, .001
- Informative priors



Some default priors for variances

D
en

si
ty Prior

IG(0.1, 0.1)
IG(0.01, 0.01)
IG(0.001, 0.001)

Improper priors
1. Uniform on the variance:

𝜋 𝜎! ∝ 1 → 𝐼𝐺 −1, 0
2. Uniform on the SD:

𝜋 𝜎! ∝ 𝜎"# → 𝐼𝐺 −0.5, 0
3. Uniform on the log(var):

𝜋 𝜎! ∝ 𝜎"! → 𝐼𝐺 0, 0

Main issue: Can lead to improper 
posteriors
See also Gelman (2006) and van Erp & Browne (2021) 



Prior sensitivity analysis: Practical 
considerations
- Depending on the number of analyses, convergence cannot be 

checked as extensively
- Depending on the number of parameters, change priors on groups of 

parameters simultaneously
- Consider beforehand what a meaningful change in a parameter would 

be
- The goal is to ensure robust results, so be as critical as possible! 

Prior sensitivity is not necessarily bad, it’s a source of information.
- Never change your prior afterwards to get the ”best” results



Prior sensitivity 
analysis: Results

!

Sample size = 35 Sample size = 75
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From: van Erp, Mulder & Oberski (2018)



Prior sensitivity analysis: Results

From: van Erp, Mulder & Oberski (2018)

Conclusions From the Prior Sensitivity Analysis

Based on the scenarios described in Step 4 of the prior sensi-
tivity guide, we can thus conclude that for N ! 75, the estimates
of the parameters of interest (i.e., the direct and indirect effect) are
robust to the choice of the prior (the first scenario). However, the
credible interval for the direct effect included zero for the infor-
mative prior, whereas it did not include zero for the default priors.
Thus, when testing the direct effect, we find ourselves in the
second scenario. The same holds for N ! 35, in which both the
estimate and credible interval of the direct effect were sensitive to
the informative prior. Therefore, careful consideration of the in-
formative prior for the direct effect is necessary. The informative
prior for the direct effect was the normal prior N(0.5, 2), which
results in 95% prior probability on the interval ("3.43, 4.42; see
the online supplemental materials). Compared with the default
priors, which are more spread out, the informative prior shrinks the
estimate for the direct effect toward the prior mean, resulting in a
smaller estimate. If the informative prior has been specified with
care and accurately reflects the prior beliefs (we assume this was
the case), the results obtained with the informative prior can be
used for substantive conclusions, which implies no significant
direct effect. The default analysis, which suggests a significant
direct effect, can be reported as a reference analysis to show that
the information in the data implies a significant direct effect.

For both sample sizes, the nuisance parameters were sensitive to
the default priors as well. Thus, if the goal of the analysis is to
draw conclusions about the full model, the third scenario is appli-

cable. If no informative priors were specified, and if it is not
possible to collect more data, the researcher should consider and
report the (range of) results from all default priors. By combining
the posterior draws from all default priors and computing the
median and bounds of the 95% credible interval, we can obtain a
range for all parameters, which is reported in Table 10. Some of
the credible intervals based on all posterior draws are very wide.
This common behavior of a robust Bayesian analysis (e.g., Berger,
2006) can be explained by the fact that there is very little infor-
mation in the data to fit the relatively complex SEM model.

Additionally, we can examine the differences between the de-
fault priors graphically, for example, by plotting the standardized
posterior medians for each parameter, as is done in Figure 7 for the
structural intercept #60. From Figure 7, we can see that for N ! 35,
the estimated medians vary from "1.4 to "2 and the researcher
should further examine these differences between the priors. For
example, in this case, the smallest estimates are obtained using the
EB priors, whereas the improper and vague proper priors generally
result in estimates close to "2 and the vague normal prior lies in
between. Of the default priors, the EB priors are most informative,
as they include information regarding the ML estimates. The
improper and vague proper priors are least informative, as they
have the largest posterior variance, and the vague normal prior lies
in between. Thus, for more informative default priors, the estimate
for #60 becomes smaller. If informative priors were specified and
the third scenario is applicable, the researcher should carefully
consider each of the informative priors and, if in doubt concerning

Table 8
Standardized and Unstandardized Point Estimates and 95% Confidence and Credible Intervals for the Direct Effect $65 in the Prior
Sensitivity Analysis

Prior Standardized estimate Unstandardized estimate Lower bound 95% CI Upper bound 95% CI Width 95% CI

Sample size ! 35

Mplus default .299 1.137 .132 2.193 2.061
%(&2) ' &–1 .284 1.052 .090 2.087 1.997
IG(.001, .001) .270 .990 .074 2.041 1.967
IG(.01, .01) .278 1.019 .059 2.029 1.970
IG(.1, .1) .283 1.052 .088 2.053 1.965
Vague normal .293 1.085 .114 2.086 1.972
EB1 .270 .975 .160 1.741 1.581
EB2 .274 .997 .137 1.812 1.675
Informative .090 .225 ".427 .791 1.218

Sample size ! 75

Mplus default .183 .574 .098 1.092 .994
%(&2) ' &–1 .177 .554 .082 1.046 .964
IG(.001, .001) .174 .552 .089 1.023 .934
IG(.01, .01) .175 .549 .078 1.031 .953
IG(.1, .1) .177 .555 .084 1.052 .968
Vague normal .182 .569 .096 1.080 .984
EB1 .153 .475 .055 .873 .818
EB2 .158 .488 .064 .910 .846
Informative .109 .288 ".126 .678 .804
ML .182 .572 .114 1.030 .916

Note. Location parameters have the normal N(0, 1010) prior, except for the vague normal, EB, and informative priors. Standardized estimates deviating
more than .1 from the estimate obtained under the Mplus default prior settings are shown in bold. Mplus default ! %(&2) ' 1 combined with the normal
N(0, 1010) prior; %(&2) ' &–1 ! noninformative improper priors variance parameters; IG(.001, .001), IG(.01, .01), IG(.1, .1) ! vague proper priors variance
parameters; Vague normal ! %(&2) ' 1 prior for variance parameters combined with the normal N(0, 1000) prior for measurement intercepts and the normal
N(0, 100) prior for the other location parameters; EB1 ! Empirical Bayes prior location and variance parameters; EB2 ! EB prior location parameters
combined with %(&2) ' &–1 prior variance parameters; ML ! maximum likelihood estimation; CI ! confidence/credible interval.
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Prior sensitivity analysis: Results

1. Not sensitive
Robust

2. Default priors do not vary, but informative priors do
Prior knowledge has an influence -> is your prior an accurate 
representation of your beliefs?

3. Results vary across all priors, incl. defaults
Small sample -> collect more data or report the range of results

Make sure you are transparent and report all steps and results from 
your sensitivity analysis!



Part 2: Shrinkage priors



Example: Predicting the 
number of murders

- Suppose we wish to predict the 
number of murders in US 
communities.

- We have 125 predictors.
- We need at least 125 communities to 

fit the model.
- Even with 126 we would be likely 

overfitting.

General
We want a big enough n to p ratio. 
What if this is not the case?

Photo by Kenny Eliason on Unsplash

https://unsplash.com/@neonbrand?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/JXg7Yq5b1wE?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Regularized/penalized regression

- Add a penalty term to OLS, e.g., lasso, ridge or elastic net

- This will shrink small coefficients to zero

- Some penalties also perform variable selection

- Bias is introduced to avoid overfitting.



Illustration: lasso penalty



Bayesian regularization

From: van Erp (2023)

Instead of using a penalty function, we use 
the prior distribution!



Bayesian regularization

- Instead of using a penalty, we use the prior
- Specify the prior such that small effects are pulled to zero
- Ideally, substantial effects remain large
- Many different shrinkage priors try this
- Some shrinkage priors correspond to classical penalty functions



Advantages Bayesian regularization

- Regularization comes naturally in the Bayesian framework
 We need to specify a prior anyway

- Simultaneous estimation penalty parameter or the amount of 
shrinkage
 Full Bayes approach

- Flexibility in terms of shrinkage priors
 Including counterparts classical penalties



Many 
different 
shrinkage 
priors exist

0.00

0.25

0.50

0.75

−3 0 3 6

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3

Ridge Lasso Elastic net
From: van Erp (2020)



Many 
different 
shrinkage 
priors exist
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Leading to 
different 
shrinkage 
behaviors

From: van Erp, Oberski & Mulder (2019)

40 S. van Erp, D.L. Oberski and J. Mulder / Journal of Mathematical Psychology 89 (2019) 31–50

Fig. 5. Difference between the estimated and true effect for the shrinkage priors in a simple normal model with the penalty parameter � fixed to 1.

Fig. 6. Difference between the estimated and true effect for the shrinkage priors in a simple normalmodel with a half-Cauchy hyperprior specified for the penalty parameter
�.

some shrinkage still occurs even when the true mean equals 50.
The mixture priors result in the largest differences between true
and estimated small effects, indicating the most shrinkage, and
the local Student’s t prior shows the smallest difference for small
effects. As the effect grows, the regularized horseshoe prior results

in estimates farthest from the true effects, indicating the most
shrinkage for large effects.

These illustrations indicate that when the penalty parame-
ter is fixed, only the local Student’s t, hyperlasso, and (regular-
ized) horseshoe priors allow for shrinkage of small effects while
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Leading to 
different 
shrinkage 
behaviors

From: van Erp, Oberski & Mulder (2019)



Penalty 
parameter can 
be fixed or 
estimated

From: van Erp (2023)



Practical considerations

Penalty parameter? Which shrinkage prior?

Variable selection?



Determination penalty parameter

- Cross-validation (classical framework)
- Fixed value
- Empirical Bayes
- Full-Bayes

Software dependent, but full Bayes is generally most robust. 



Choice shrinkage prior

Restricted by software
brms is quite flexible, including ridge, lasso, regularized horseshoe

Simpler priors easier to understand, complex priors might perform 
better

Generally: most priors perform similarly when p < n. For more complex 
models, more advanced priors might be more suitable

Visualizations and prior sensitivity analyses can provide insight



How to select parameters

Classical lasso automatically sets parameters to zero

Bayesian point estimates are never exactly zero

Potential variable selection criteria:
1. Cut-off value (e.g., 0.1)
2. Credible interval
3. Projection predictive variable selection



Beyond regression models

(Bayesian) regularization can be used in any model where we can 
assume a priori that some parameters equal zero: 

E.g., to select moderators in meta-analysis (van Lissa, van Erp, & 
Clapper, 2023)

Or in structural equation modeling (van Erp, 2023)



F1

y1 y18
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y19 y24

F3

y25 y36

Bayesian regularized SEM

From: van Erp (2023)



Recap

Part 1: Prior sensitivity analysis
- Recap: What is a prior?
- When is a prior influential?
- How to perform a prior sensitivity analysis

Part 2: Shrinkage priors
- Basic idea behind penalization
- Different shrinkage priors = different behaviors
- Practical considerations
- Advanced applications



Questions?


