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Bayes: when to worry

o Aka: how to understand what you’re actually doing
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Based on slides by Rens van de Schoot.



Dear dr. X,
We would kindly invite you to review this paper about [interesting topic Y] 
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Dear dr. X,
We would kindly invite you to review this paper about [interesting topic Y] 

Because of the small sample size (n=20) we used Bayesian estimation. Hox et 
al. (2012) showed that a multilevel model with only 20 clusters could be 
estimated with Bayesian statistics whereas maximum likelihood estimation 
could not. 

Hox, J., van de Schoot. R., & Matthijsse, S. (2012). How few countries will do? Comparative survey analysis from a 
Bayesian perspective. Survey Research Methods, 6, 87-93.
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Dear dr. X,
We would kindly invite you to review this paper about [interesting topic Y] 

Because of the small sample size (n=20) we used Bayesian estimation. Hox et 
al. (2012) showed that a multilevel model with only 20 clusters could be 
estimated with Bayesian statistics whereas maximum likelihood estimation 
could not. 

Since we are no experts in Bayesian estimation we relied on the default 
settings. 
The results are completely in line with our hypothesis: there is a significant 
difference between the two groups.  All is fine, please accept our paper for 
publication.

Hox, J., van de Schoot. R., & Matthijsse, S. (2012). How few countries will do? Comparative survey analysis from a 
Bayesian perspective. Survey Research Methods, 6, 87-93.
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Making decisions implementing Bayes

o Naively applying Bayesian methods can be dangerous for three main 
reasons:

Utrecht University s.hoogeveen@uu.nl 6



Making decisions implementing Bayes

o Naively applying Bayesian methods can be dangerous for three main 
reasons:

o First, the exact influence of the priors is often not well understood 
and priors might have a huge impact on the study results;
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Making decisions implementing Bayes

o Naively applying Bayesian methods can be dangerous for three main 
reasons:

o First, the exact influence of the priors is often not well understood 
and priors might have a huge impact on the study results;

o Second, akin to many elements of frequentist statistics, some 
Bayesian features can be easily misinterpreted;
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Making decisions implementing Bayes

o Naively applying Bayesian methods can be dangerous for three main 
reasons:

o First, the exact influence of the priors is often not well understood 
and priors might have a huge impact on the study results;

o Second, akin to many elements of frequentist statistics, some 
Bayesian features can be easily misinterpreted;

o Third, reporting on Bayesian statistics follows its own rules since 
there are elements included in the Bayesian framework that are 
fundamentally different from frequentist settings. 
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WAMBS checklist

o When to Worry and how to Avoid the Misuse of Bayesian Statistics

o 10 main points that should be thoroughly checked when applying 
Bayesian statistics 

Utrecht University s.hoogeveen@uu.nl 10

Depaoli & van de Schoot (2017). https://doi.org/10.1037/met0000065
van de Schoot et al. (2020) 

van de Schoot, et al. (2021). https://doi.org/10.1038/s43586-020-00001-2

https://doi.org/10.1037/met0000065
https://doi.org/10.1038/s43586-020-00001-2
https://doi.org/10.1038/s43586-020-00001-2
https://doi.org/10.1038/s43586-020-00001-2
https://doi.org/10.1038/s43586-020-00001-2
https://doi.org/10.1038/s43586-020-00001-2
https://doi.org/10.1038/s43586-020-00001-2
https://doi.org/10.1038/s43586-020-00001-2


Disclaimer

Bayesian inference is sometimes seen as:
1. A panacea (no more ‘the model failed to converge!’)
2. A minefield (subjective priors! divergent transitions! days of 

estimation time!)
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Disclaimer

Bayesian inference is sometimes seen as:
1. A panacea (no more ‘the model failed to converge!’)
2. A minefield (subjective priors! divergent transitions! days of 

estimation time!)

Unfortunately, it won’t solve all your statistical problems …
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Disclaimer

Bayesian inference is sometimes seen as:
1. A panacea (no more ‘the model failed to converge!’)
2. A minefield (subjective priors! divergent transitions! days of 

estimation time!)

Unfortunately, it won’t solve all your statistical problems …
… but it can be a powerful and flexible tool that forces you to critically 
evaluate your data, your modeling assumptions and your results
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WAMBS checklist

o 10 main points that should be checked when applying Bayesian 
analysis: 

a) Issues to check before running the analysis (prior knowledge)
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WAMBS checklist

o 10 main points that should be checked when applying Bayesian 
analysis: 

a) Issues to check before running the analysis (prior knowledge)
b) Issues to check after running the analysis, but before interpreting the 

results (sampling diagnostics)
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WAMBS checklist

o 10 main points that should be checked when applying Bayesian 
analysis: 

a) Issues to check before running the analysis (prior knowledge)
b) Issues to check after running the analysis, but before interpreting the 

results (sampling diagnostics)
c) Assessing the robustness of the results (sensitivity analyses)
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WAMBS checklist

o 10 main points that should be checked when applying Bayesian 
analysis: 

a) Issues to check before running the analysis (prior knowledge)
b) Issues to check after running the analysis, but before interpreting the 

results (sampling diagnostics)
c) Assessing the robustness of the results (sensitivity analyses)
d) Reporting the results (transparency and reproducibility) 
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(Bayesian) research cycle
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Stage 1: before the analysis

Where do your priors come from?
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Priors

When specifying priors, it is important to recognize that prior 
distributions fall into three main classes related to the amount of 
(un)certainty they contribute to the model about a given parameter: 

1. non-informative priors (diffuse, flat)
2. weakly-informative priors 
3. informative priors
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Priors

When specifying priors, it is important to recognize that prior 
distributions fall into three main classes related to the amount of 
(un)certainty they contribute to the model about a given parameter: 

1. non-informative priors (diffuse, flat)
2. weakly-informative priors 
3. informative priors

All have pros and cons, e.g.:
• Diffuse priors work fine for estimation, but not for testing with Bayes 

factors 
• Informative priors convey domain knowledge but can have strong 

impact on the posterior 
• Diffuse and weakly-informative priors can lead to implausible prior 

predictions (especially on transformed scales). 
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1. Understanding priors

o The prior can only be fully understood in the context of the likelihood
o That is to say, it’s all relative 
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1. Understanding priors

o The prior can only be fully understood in the context of the likelihood
o That is to say, it’s all relative 

o A normal(0,1) prior can be highly informative in a linear regression 
model that models response time data in seconds

o The same prior can be weakly informative as the intercept in a 
binomial (logit) model 
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1. Understanding priors

o The prior can only be fully understood in the context of the likelihood
o That is to say, it’s all relative 

o A normal(0,1) prior can be highly informative in a linear regression 
model that models response time data in seconds

o The same prior can be weakly informative as the intercept in a 
binomial (logit) model 

o Also be aware of the combination of priors on the fixed and random 
parts of the model: a diffuse prior on the fixed part + a diffuse prior 
on the between-group variability can lead to strange prior predictions
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Guidelines

Determine what strategy is most appropriate in the given project:

o Could prior information be found in the literature (e.g., empirical 
studies, reviews, meta-analyses)? 

o Are there experts on the subject that can be consulted? 
o What general knowledge is available about the model parameters? 

Gather this information strategically and keep a log of the decisions (for 
transparency and your future self :))
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Guidelines

o Visualize priors (prior distribution + prior predictions) 
o Provide information on:

1. justification for specific prior setting (also when using defaults!)
2. exact specification of all priors 

o Conduct sensitivity analyses to assess the impact on the posterior 
estimates (see point 7 and 8)

o If differences arise (which is not problematic in itself), explain and
interpret them
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Running example

o Cross-cultural study (10000 subjects from 24 countries) on afterlife 
beliefs and mind-body dualism:

o Hypothesis: high-level mental states (e.g., love) are more likely to be 
judged as continuing after biological death than bodily states (e.g., 
hunger)

o Subjects read a story about a grandmother who dies and are asked to 
indicate to what extent she is still has certain states

o Each subject provided 6 ‘yes’ or ‘no’ responses about continuation 
across 2 conditions (mental: love, knowledge, desire; bodily: hunger, 
working brains, hearing)
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Running example

o Cross-cultural study (10000 subjects from 24 countries) on afterlife 
beliefs and mind-body dualism:

o Hypothesis: high-level mental states (e.g., love) are more likely to be 
judged as continuing after biological death than bodily states (e.g., 
hunger)

o Subjects read a story about a grandmother who dies and are asked to 
indicate to what extent she is still has certain states

o Each subject provided 6 ‘yes’ or ‘no’ responses about continuation 
across 2 conditions (mental: love, knowledge, desire; bodily: hunger, 
working brains, hearing)

o Here: subset of 60 subjects per country (N=1440)
o We used a multilevel aggregated binomial model: 

brm(formula = response | trials(3) ~ 1 + state_cond + relig + (1 + 

state_cond + relig | country), family = binomial, …)
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Running example
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1. Understanding priors

o Priors are set on the logit-transfomed scale
o We have priors on:

1. intercept (i.e., overall probability of saying ‘continues’)
2. experimental effect (i.e., difference in probability of saying 

‘continues’ between mental and physical states)
3. between-country variation (in intercepts and effects)
4. correlation structure of random effects 
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1. Understanding priors 

o What do we know? 
– Previous studies: mean state effect (difference mental states 

continuation vs bodily states continuation): ~16%
– Previous studies: standard deviation across sites/countries: ~15%

o What do we want?
– We inspect prior predictions for different prior settings. We aim 

for distributions that are weakly informative and make sensible 
predictions (on the response scale)
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o What do we conclude? 
– Predictions from both the brms default settings (purple) and our 

preregistered prior settings (orange) are unrealistic; both predict 
that all responses with be either complete cessation or continuity.

– Selection in green: allowing all rates, with slightly less mass at the 
extremes. 

Prior predictions 
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Prior predictions 

o What do we conclude? 
– The brms default priors on the effects are much too wide, 

predicting an unlikely difference of 100% between conditions. The 
preregistered priors predict a modest effect, but due to the wide 
prior on the variation between countries, this results in a very 
strong prediction of no effect.

– Selection: modest effect with most mass between 0 and 50% 
difference
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Prior predictions

• Directly from brms, on the response scale: 
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Stage 2: after analysis, before interpretation

o Are the analysis outputs sufficiently reliable to be interpreted? 

2. Assessing convergence
3. Assessing convergence with more samples
4. Assessing posterior distributions
5. Assessing effective sample size
6. Assessing posterior predictive checks 
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2. Assessing convergence 

Determining whether the MCMC chains have converged can be based 
on: 

a) Visual inspection of ‘traceplots’
b) ෡R (‘rhat’) diagnostic (aka potential scale reduction factor, PSRF or 

Gelman and Rubin diagnostic)
c) Geweke diagnostic (see tutorials)
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Geweke, J. (1992). 



2. Assessing convergence 
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2. Assessing convergence 

o ෡R is based the variance between chains relative to the variance 
within chains: 

෡R = 1: ideal
෡R > 1.01: ‘worth inspecting’
෡R > 1.1: ‘problematic’
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2. Assessing convergence 

o ෡R is based the variance between chains relative to the variance 
within chains: 
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2. Assessing convergence 

o ෡R is based the variance between chains relative to the variance 
within chains: 
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2. Assessing convergence 

Niter = 500, Nwarmup = 250 
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2. Assessing convergence 

Niter = 500, Nwarmup = 250 
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2. Assessing convergence 
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2. Assessing convergence 

o Conclusion: not extremely bad, but also not great. Especially the 
between-country variability in the state category effect (sd_cat) is 
somewhat problematic. 

o We aren’t satisfied yet, and want to increase the number of iterations. 
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3. Assessing convergence with more iterations
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3. Assessing convergence with more iterations
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3. Assessing convergence with more iterations

o We can also calculate relative bias: the difference in the estimated 
parameters between the initial model (M1) and the second model with 
more iterations (M2)

bias = 100 ∗
model with double iterations −initial converged model

initial converged model
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3. Assessing convergence with more iterations

o We can also calculate relative bias: the difference in the estimated 
parameters between the initial model (M1) and the second model with 
more iterations (M2)

bias = 100 ∗
model with double iterations −initial converged model

initial converged model

o Bias should be small; rule of thumb:
o if relative deviation is < |5|%, do not worry;
o if relative deviation > |5|%, rerun with 4x nr of iterations.
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3. Assessing convergence with more iterations

o We can also calculate relative bias: the difference in the estimated 
parameters between the initial model (M1) and the second model with 
more iterations (M2)

bias = 100 ∗
model with double iterations −initial converged model

initial converged model

o Bias should be small; rule of thumb:
o if relative deviation is < |5|%, do not worry;
o if relative deviation > |5|%, rerun with 4x nr of iterations.

o Note that relative bias can only be interpreted in the context of the 
model parameters and substantive knowledge
o E.g., with a regression coefficient of 0.0001, a 10% deviation 

might not be relevant. With an intercept of 50, a 10% devation 
might be quite meaningful
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3. Assessing convergence with more iterations
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4. Assessing posterior distributions

o The precision, or smoothness, of the histogram should be checked 
visually for each model parameter; we do not want gaps or other 
abnormalities.

o Note that visual inspection relates strongly to the effective sample 
size that the brms output also gives (see point 5)
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4. Assessing posterior distributions

o The precision, or smoothness, of the histogram should be checked 
visually for each model parameter; we do not want gaps or other 
abnormalities.

o Note that visual inspection relates strongly to the effective sample 
size that the brms output also gives (see point 5)

o We’re not interpreting the posterior estimates yet, just evaluating the 
shape of the distribution!
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4. Assessing posterior distributions
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5. Assessing ESS and autocorrelation

o The effective sample size (ESS) is a measure of the number of 
independent samples in a Markov Chain Monte Carlo (MCMC) chain 
and reflects the efficiency of the algorithm. 
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5. Assessing ESS and autocorrelation

o The effective sample size (ESS) is a measure of the number of 
independent samples in a Markov Chain Monte Carlo (MCMC) chain 
and reflects the efficiency of the algorithm. 

o It accounts for the autocorrelation in the chain, which can reduce the 
effective number of samples. 
o A higher ESS indicates that the MCMC chain is more efficient and 

provides more reliable estimates.
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5. Assessing ESS and autocorrelation

o The effective sample size (ESS) is a measure of the number of 
independent samples in a Markov Chain Monte Carlo (MCMC) chain 
and reflects the efficiency of the algorithm. 

o It accounts for the autocorrelation in the chain, which can reduce the 
effective number of samples. 
o A higher ESS indicates that the MCMC chain is more efficient and 

provides more reliable estimates.

o brms / Stan gives a warning if the number of ESS is too small.

Utrecht University s.hoogeveen@uu.nl 56



5. Assessing ESS and autocorrelation

o MCMC iterations are typically dependent on each other
o E.g., if iteration t of a Markov chain produces an estimate of .34 

for a regression coefficient, then iteration t+1 will produce an 
estimate correlated with the previous one. 
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5. Assessing ESS and autocorrelation

o MCMC iterations are typically dependent on each other
o E.g., if iteration t of a Markov chain produces an estimate of .34 

for a regression coefficient, then iteration t+1 will produce an 
estimate correlated with the previous one. 

o Amount of autocorrelation depends on sampling algorithm (Stan vs
JAGS), model complexity, parameter type
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5. Assessing ESS and autocorrelation

o MCMC iterations are typically dependent on each other
o E.g., if iteration t of a Markov chain produces an estimate of .34 

for a regression coefficient, then iteration t+1 will produce an 
estimate correlated with the previous one. 

o Amount of autocorrelation depends on sampling algorithm (Stan vs
JAGS), model complexity, parameter type

o Historically, thinning has been used to reduce autocorrelation in 
MCMC chains, but this is no longer recommended. Instead, it is better 
to increase the number of iterations and warmup samples to ensure 
that the chains are well-mixed and that the effective sample size is 
sufficient.

Utrecht University s.hoogeveen@uu.nl 59



5. Assessing ESS and autocorrelation
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5. Assessing ESS and autocorrelation
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5. Assessing ESS and autocorrelation
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6. Posterior predictive checks

o For the marginal posterior distributions of the parameters we want to 
make sure that they:
1. Are smooth
2. Make substantive sense (e.g., positive effect of mental vs bodily states 

on continuity)
3. Are not too wide; the posterior SD and CI should not be larger than the 

scale of the original parameter 
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6. Posterior predictive checks

o For the marginal posterior distributions of the parameters we want to 
make sure that they:
1. Are smooth
2. Make substantive sense (e.g., positive effect of mental vs bodily states 

on continuity)
3. Are not too wide; the posterior SD and CI should not be larger than the 

scale of the original parameter 
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6. Posterior predictive checks

o In addition, we want to look at the posterior predictions (on the
response scale)
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6. Posterior predictive checks

o Posterior predictions do not look great; most likely the aggregated binomial 
model is not the best fit for these data. 
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6. Posterior predictive checks

o Posterior predictions do not look great; most likely the aggregated binomial 
model is not the best fit for these data. 

o Note however, that you sometimes need to make a trade-off between model 
complexity and model fit; simpler models are typically easier to estimate and 
interpret, but might show more misfit to the exact data pattern. 
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6. Posterior predictive checks

o Posterior predictions do not look great; most likely the aggregated binomial 
model is not the best fit for these data. 

o Note however, that you sometimes need to make a trade-off between model 
complexity and model fit; simpler models are typically easier to estimate and 
interpret, but might show more misfit to the exact data pattern. 

o As a researcher you need to decide what fit is good enough, and ideally 
conduct sensitivity analyses on other likelihood functions
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Stage 3: Robustness

o Are the model estimates robust against alternative plausible 
specifications? 

7. Prior sensitivity checks: variance terms
8. Prior sensitivity checks: informativeness of effect parameters
9. Sensitivity checks on model specification (likelihood)
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7. Prior sensitivity: variance 

• In step 1 (understanding priors) we considered different families of 
priors on the between-country variance terms. For illustration, we add 
a few highly informative ones as well
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7. Prior sensitivity: variance 

• In step 1 (understanding priors) we considered different families of 
priors on the between-country variance terms. For illustration, we add 
a few highly informative ones as well
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7. Prior sensitivity: variance 
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7. Prior sensitivity: variance 
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8. More prior sensitivity: effects

o We can also vary the priors on the effects 

o This is not so much about different families, but different levels of 
informativeness (i.e., certainty), e.g.: 
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8. More prior sensitivity: effects

o We can also vary the priors on the effects 

o This is not so much about different families, but different levels of 
informativeness (i.e., location and certainty), e.g.: 
o Diffuse: N(0, 1000)

o brms default (approx.), non-sensible predictions
o Weakly-informative: N(0, 1)

o Reasonable, but not restrictive
o Informative: N(0.98, 0.43) 

o Derived from the literature 
o Informative: N(0.15, 0.15) 

o Mistakenly derived from literature (15%, 15% ≠ N(0.15, 0.15))
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8. More prior sensitivity: effects
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9. Sensitivity checks on the model

o We saw that posterior predictive check indicated somewhat 
acceptable but not great model fit
– Fails to capture zero-inflation and/or extremity responses (0/3 

and 3/3)
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9. More sensitivity checks

o Additional sensitivity checks:

– Systematically halving and doubling the width of the hyperpriors, 
e.g., N(0,2) and N(0.0.5)

– Investigating different likelihood functions (sensitivity check on 
the model)
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9. Sensitivity checks on the model

o We saw that posterior predictive check indicated somewhat 
acceptable but not great model fit
– Fails to capture zero-inflation and/or extremity responses (0/3 

and 3/3)

o Alternative models: 
– Zero-inflated binomial
brm(formula = response | trials(3) ~ 1 + state_cond + relig + 

(1 + state_cond + relig | country), 

zi ~ 1 + state_cond + rel, 

family = zero_inflated_binomial(“logit”), ...)

– Ordinal model 
brm(formula = response_cat ~ 1 + state_cond + relig + (1 + 

state_cond + relig | country), 

family = cumulative(“logit”), ...)
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9. Sensitivity checks on the model
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9. Sensitivity checks on the model
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Slightly off on 2/3, 
good fit for pattern
of conditions

Perfect fit overall 
responses, slightly
off on differences
between conditions



9. Sensitivity checks on the model 
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o Overall, very similar pattern across models (and raw data): clear effect 
of mental vs bodily states on continuity judgments 



Stage 4: Reporting findings

o For comprehensibility: 
o Interpret results in the Bayesian framework, with reference to the 

full posterior distribution and uncertainty

o For transparency and reproducibility:
o Report all details on packages, model specification, sampling 

method, priors etc.
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10. Reporting findings

o In the Bayesian framework, we have not only point estimates, but full 
posterior distributions of all parameters, capturing the uncertainty in 
the true value

o We can summarize with posterior mean or median + credible interval
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10. Reporting findings

o In the Bayesian framework, we have not only point estimates, but full 
posterior distributions of all parameters, capturing the uncertainty in 
the true value

o We can summarize with posterior mean or median + credible interval

o This CI is different from a frequentist confidence interval:
o 95% confidence interval: across many repetitions of the study 

(under the same circumstances), 95% of the confidence intervals 
will contain the true value

o 95% credible interval: based on the current data, there is a 95% 
probability that the true value is within the interval. 
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10. Reporting findings 

Aspects to report:
1) Estimates + credible intervals (+ figure!)
2) Software and packages used (with version)
3) Discussion of sampling settings (number of chains, number of 

interaction, warmup, seeds etc.)
4) Discussion of sampling diagnostics (e.g., ෠𝑅, effective sample size)
5) Discussion of priors (justify choices, and report sensitivity analyses)
6) Perhaps: model fit or model comparison metrics (e.g., loo, Bayes 

factors)
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10. Reporting findings

1) Estimates: 
o The estimate for the fixed intercept (overall continuity) is -0.95 95% 

CI [-1.19; -0.7], this translates into 0.279 [0.112, 0.557] on the 
probability scale, meaning that on average, people judge 28% [11%, 
56%] of states to continue after physical death. Estimates range from 
14% in Spain to 52% in Singapore.
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10. Reporting findings

1) Estimates: 
o The estimate for the fixed intercept (overall continuity) is -0.95 95% 

CI [-1.19; -0.7], this translates into 0.279 [0.112, 0.557] on the 
probability scale, meaning that on average, people judge 28% [11%, 
56%] of states to continue after physical death. Estimates range from 
14% in Spain to 52% in Singapore.

o The estimate for the fixed effect of state category is 1.83  [1.68; 
1.97], which means 35.4% [16.2%, 49.5%] percentage points higher 
continuity for the mental state category compared to the bodily state 
category. Estimates range from 21.5% in the Netherlands to 46.9% in 
Japan.

Utrecht University s.hoogeveen@uu.nl 88



10. Reporting findings

Utrecht University s.hoogeveen@uu.nl 89



10. Reporting findings

2) software + 3) sampling settings 
o We used the brms package (Bürkner, 2017) to fit Bayesian multilevel 

models in R, which relies on the Stan language (Carpenter et al., 
2017) with weakly informative priors. The model was run with 4 
chains, each with 5000 iterations and a warmup of 2500 iterations 
(total post-warmup N=10000). We used the cmdstanr backend for 
efficient sampling. 
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Bürkner, 2017

Carpenter et al.,

2017

2) software + 3) sampling settings 
o We used the brms package (Bürkner, 2017) to fit Bayesian multilevel 

models in R, which relies on the Stan language (Carpenter et al., 
2017) with weakly informative priors. The model was run with 4 
chains, each with 5000 iterations and a warmup of 2500 iterations 
(total post-warmup N=10000). We used the cmdstanr backend for 
efficient sampling. 

4) sampling diagnostics 
o The model diagnostics indicated good convergence (largest 

෠𝑅 = 1.0017 for the random intercept in Germany) and sufficient 
effective sample sizes for all parameters (median ෡𝑁𝑒𝑓𝑓= 4258). The 
smallest ෡𝑁𝑒𝑓𝑓 = 1903 for the overall intercept, indicating that there is 
some autocorrelation in the chains.
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5) Discussion of priors and sensitivity analyses
o We used an aggregated binominal model with a ‘logit’ link function 

and weakly informative priors derived from comparable previous 
studies on the transformed intercept (N(0,1)), on the state effect 
(N(0,1)), on the standard deviation of the random effects across 
countries (N+(0,1)), and an LKJ(2) prior on the correlation between 
random effects. 
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5) Discussion of priors and sensitivity analyses
o We used an aggregated binominal model with a ‘logit’ link function 

and weakly informative priors derived from comparable previous 
studies on the transformed intercept (N(0,1)), on the state effect 
(N(0,1)), on the standard deviation of the random effects across 
countries (N+(0,1)), and an LKJ(2) prior on the correlation between 
random effects. 

o Sensitivity checks on the priors and model specification indicated that 
the conclusions are robust to different reasonable prior settings (e.g., 
inverse gamma, exponential or diffuse Student t priors on the 
between-country variance; diffuse N(0,1000) prior on the regression 
coefficients) and model specifications (e.g., a zero-inflated binomial 
model and an ordinal model). Details of these sensitivity checks are 
provided in the appendix.
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