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Recap days 1-2

- Introduction: What is Bayesian analysis? What is a prior?

- How to obtain the posterior?

- Why use Bayes?

- WAMBS-checklist
- Incl. convergence and prior-predictive checks
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- Introduction: What is Bayesian analysis? What is a prior?

- How to obtain the posterior?

- Why use Bayes?

- WAMBS-checklist
- Incl. convergence and prior-predictive checks



Today

Part 1: Software and algorithms
- Different ways to get the posterior
- What is going on (conceptually) under the hood?
- What should you, as user, be aware of?

Part 2: Predictive checks
- Posterior predictive checks: how can we check our model?
- Prior predictive checks



Part 1: Software and algorithms
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Why use Bayes?

- To include prior information

- More intuitive interpretation

- Technical reasons (estimate more complex models, 
use smaller samples, model identification)

- Full posterior distribution instead of a point estimate



Advantages of the posterior distribution

If we want to estimate an indirect effect, we get automatic uncertainty 
estimates around functions of parameters.
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Posterior distribution for 
the indirect effect ab



A note on summarizing the posterior



Posterior point estimates



Posterior point estimates



Posterior credible intervals

Solid line = Equal tailed interval (ETI)
Dashed line = Highest density interval (HDI)



Posterior credible intervals

Solid line = Equal tailed interval (ETI)
Dashed line = Highest density interval (HDI)

Here, the 95% intervals are shown, but 
we could also compute the 90% 
intervals, or the 89% intervals... 
(https://easystats.github.io/bayestestR/
articles/credible_interval.html)

https://easystats.github.io/bayestestR/articles/credible_interval.html
https://easystats.github.io/bayestestR/articles/credible_interval.html


How to obtain the 
posterior distributions?

In addition:
• Program the conditional posteriors 

manually
• Closed software, e.g., SPSS, Mplus
• R-packages, e.g., brms, rstanarm, 

blavaan



Different programs, different algorithms

Exact algorithms
• Simulate from the actual 

posterior distribution (hopefully)
• Assess convergence to ensure a 

good representation of the 
posterior
• Can be slow
• E.g., Gibbs, HMC

Approximate algorithms
• Approximate the posterior 

distribution with a different, 
comparable distribution and 
optimize this distribution
• Assess convergence to ensure 

the approximation is close 
enough
• Fast and scalable
• E.g., variational inference, INLA



A cautionary note on approximate algorithms



Markov Chain Monte Carlo 
(MCMC) sampling
A class of algorithms to sample from the posterior 
distribution.

Markov Chain = each state depends only on the 
previous state
Monte Carlo = repeated sampling 

Some examples: Random Walk Metropolis-Hastings, 
Gibbs sampling, Hamiltonian Monte Carlo.
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The idea behind MCMC

Bayes’ rule: 𝑝 𝐻 𝑒 = !(#|%)!(%)
!(#)

Or:

𝑝 𝜃 𝑥 =
𝑝 𝑥 𝜃 𝑝(𝜃)

𝑝(𝑥)
With 𝑝 𝑥 = ∫𝑝 𝑥 𝜃 𝑝 𝜃 𝑑𝜃

Or (for the ANOVA model):

𝑝 𝜇', 𝜇(, 𝜇), 𝜇*, 𝜎( 𝑥 =
𝑝 𝑥 𝜇', 𝜇(, 𝜇), 𝜇*, 𝜎( 𝑝(𝜇', 𝜇(, 𝜇), 𝜇*, 𝜎()

𝑝(𝑥)
With 𝑝 𝑥 = ∫∫∫∫∫𝑝 𝑥 𝜇!, 𝜇", 𝜇#, 𝜇$, 𝜎" 𝑝 𝜇!, 𝜇", 𝜇#, 𝜇$, 𝜎" 𝑑𝜇!𝑑𝜇"𝑑𝜇#𝑑𝜇$𝑑𝜎"



Metropolis-Hastings (MH)

Random walk version is “simplest” MCMC algorithm.

We use some (arbitrary) proposal density to sample from and either 
accept or reject a new draw.

Gibbs sampling is actually a special case of MH with an acceptance 
probability of 1.
 - Advantage: no risk of rejecting many proposals
 - Disadvantage: requires derivation of conditional posteriors



Gibbs sampler (see day 1)

1. Assign starting values
2. Sample µ1 from conditional distribution

3. Sample µ2 from conditional distribution
4. Sample µ3 from conditional distribution
5. Sample µ4 from conditional distribution
6. Sample σ2 from conditional distribution 
7. Go to step 2 over and over again



Gibbs sampler: Conditional posteriors

Instead of sampling from the difficult 𝑝 𝜇', 𝜇(, 𝜇), 𝜇*, 𝜎( 𝑥 , we use 
the conditional posteriors:

𝑝 𝜇' 𝜇(, 𝜇), 𝜇*, 𝜎(, 𝑥
𝑝 𝜇( 𝜇', 𝜇), 𝜇*, 𝜎(, 𝑥
𝑝 𝜇) 𝜇', 𝜇(, 𝜇*, 𝜎(, 𝑥
𝑝 𝜇* 𝜇', 𝜇(, 𝜇), 𝜎(, 𝑥
𝑝 𝜎( 𝜇', 𝜇(, 𝜇), 𝜇*, 𝑥

These conditional posteriors can be derived when conjugate priors are 
used.



Hamiltonian Monte Carlo (HMC)

- Another special case of Metropolis-Hastings
- Stan uses the No-U-Turn-Sampler (NUTS), an extension to HMC

Remember the proposal for a next step in MH? HMC uses information 
from the target distribution (the posterior) to inform the proposal. 
- Advantage: lower autocorrelation (but can take longer per iteration)
- Disadvantage: requires the derivatives (discrete parameters not 

possible)



Interactive demo

Interactive gallery of various MCMC algorithms:

http://chi-feng.github.io/mcmc-demo/

http://chi-feng.github.io/mcmc-demo/


So, what should I know?

- Traditionally, software relied on Gibbs sampling (e.g., JAGS, Mplus)
- Stan and R-packages using Stan rely on Hamiltonian Monte Carlo 

(HMC)
- Both are special cases of Metropolis-Hastings
- Generally, HMC exhibits less autocorrelation, so less iterations 

needed
- HMC offers more convergence diagnostics, but cannot sample 

discrete parameters.



Simple models will generally run

Potential solutions more complex, non-converging models:
- Change sampler settings
- Change the prior
- Change the model

Convergence in Stan



Convergence in Stan

1. Traceplots should look like fat caterpillars

2. Rhat should be close to 1

3. Effective sample size should be large enough (e.g., 
400 with 4 chains)

4. No low BFMI warning
5. No divergent transitions

”Max. treedepth” exceeded is an efficiency concern.



Convergence in Stan

1. Traceplots should look like fat caterpillars

2. Rhat should be close to 1

3. Effective sample size should be large enough (e.g., 
400 with 4 chains)

4. No low BFMI warning
5. No divergent transitions

Potential solution 1-4: increase number of iterations



Divergent transitions in Stan
Lo

g(
po

st
er

io
r)

Lo
g(

po
st

er
io

r)

Small step size Large step size

Based on: https://www.martinmodrak.cz/2018/02/19/taming-divergences-in-stan-models/



Convergence in Stan

- Important, but difficult topic

- See the Markdown for a brms example 
(https://utrechtuniversity.github.io/BayesianEstimation/content/wednesday/convergence_checks
.html) 

- See: https://mc-stan.org/misc/warnings.html for a general overview

https://utrechtuniversity.github.io/BayesianEstimation/content/wednesday/convergence_checks.html
https://utrechtuniversity.github.io/BayesianEstimation/content/wednesday/convergence_checks.html
https://mc-stan.org/misc/warnings.html


Part 2: Predictive checks



Why check your model?

All models are simplifications -> Do we capture the characteristics we 
care about?

Important consideration: What is the purpose of our model?

Note: “Model” includes the prior, likelihood, included explanatory 
variables, hierarchical considerations, etc..



Posterior predictive checks

Data generated from the model should resemble the observed data.

Specifically: generate data from the joint posterior predictive 
distribution and compare.
 Suppose we have measured the IQ of 20 people. We assume 𝑥 ~ 𝑁 𝜇, 𝜎  
and specify a prior for 𝜇 and 𝜎. We sample 𝜇 and 𝜎 from the posterior distribution 
and then generate replicated data sets based on these values.



Posterior predictive checks

Suppose we have 100 replicated data sets from the posterior predictive 
distribution. How do we compare them to the observed data?

- Graphical comparisons



Graphical posterior predictive checks



Posterior predictive checks

Suppose we have 100 replicated data sets from the posterior predictive 
distribution. How do we compare them to the observed data?

- Graphical comparisons
- Numerical comparisons

General: convenient to define a test statistic or discrepancy measure



Test statistics

- Capture the aspects of the data we want to check
- Problem specific
- Some software offers general test statistics, e.g., likelihood ratio test 

statistic for SEM
- Examples: mean, standard deviation, distributional asymmetry, 

autocorrelation, etc.. (see BDA Ch6 for examples).



Posterior predictive p-values (ppp)

- We can directly compare the test statistic of the observed and 
replicated data sets, or compute a posterior predictive p-value.

- Provides a general summary of the lack of fit
- Interpretation: we want a ppp around 0.50, extreme values indicate a 

lack of fit

Important caveats
- We are not trying to reject or accept a model, so not concerned with 

type 1 error rates
- Ppp’s are not necessarily uniformly distributed



An example: Predicting 
math performance
See the Markdown file 
(https://utrechtuniversity.github.io/BayesianEstimation/co
ntent/wednesday/convergence_checks.html) 

We will use linear regression to predict the math grade of 
395 Portugese students in secondary school.

Outcome: Math grade at third period (0-20)

Predictors: sex, weekly time spent studying, additional 
math class, whether the student wants to take higher 
education.

https://utrechtuniversity.github.io/BayesianEstimation/content/wednesday/convergence_checks.html
https://utrechtuniversity.github.io/BayesianEstimation/content/wednesday/convergence_checks.html


Basic posterior predictive checks



Basic posterior predictive checks



Custom posterior predictive checks



Custom posterior predictive checks



Improving the model: hurdle Poisson



Improving the model: hurdle Poisson



Recap

- Posterior predictive checks can provide useful visual and numerical 
diagnostics of model fit

- Standard posterior predictive checks are available
- Custom posterior predictive checks might be more suitable
- Consider carefully which aspects your model should represent well



Prior predictive checks

The same idea can be used to see if our priors make sense.

Generate data from the prior predictive distribution.

If priors lead to generated data that makes no sense, you might want to 
revisit them.



Recap

Part 1: Software and algorithms
- Different ways to get the posterior
- What is going on (conceptually) under the hood?
- What should you, as user, be aware of?

Part 2: Predictive checks
- Posterior predictive checks: how can we check our model?
- Prior predictive checks



Questions?


