
Accounting for SURF ResearchCloud related services
The services provided by SURF are used both directly by researchers as well as indirectly, via IT staff
functions in the organizations. Institutes need to be able to associate the costs of indirect usage of data
processing services provided by or via SURF with appropriate charge-back to internal cost centers of
the beneficial research projects. Ideally we automate this process where feasible so that accounting can
be performed efficiently.
This document investigates 1) how SURF accounts for the usage of its services and 2) how institutes
can build on SURF’s accounting reports to distribute costs appropriately across its costs centers. Our
use case involves SURF ResearchCloud as a service and Utrecht University as an academic
organization yet we expect that the processes, policies and issues will apply to other services and
academic organizations as well.

How SURF accounts for the usage of its services – concepts

(emphasized words refer to concepts used by SURF in accounting reports)

Service usage preparation:
A Contract is agreed between SURF and Utrecht University for provisioning of services up to an
agreed amount of money for the duration of a period of time. The Contract may also stem from
research grants and include a funder as a party. The Contract is detailed out in at least one Budget, an
allocated part of the funds of the Contract that has a list of SURF Products on which the Budget may be
spent and a selected unit of accounting, for instance compute hours.
A Budget can be subdivided into SubBudgets to earmark and allocate parts of the Budget for a
purpose.

Debit transactions for the use of products are registered on an Account. In turn, an Account draws from
a related (Sub)Budget which balances the debit transactions with available credit. The association
between an Account and its Budget may change over time, for instance when a new Budget is created
each annum. SubAccounts can optionally be defined underneath the main Account to represent
different activities that draw from the same budget.

When researchers use a SURF Service, they must upfront specify the Account (in the service),
sometimes referred to as a “project” (e.g. HPCCloud), that is used for any charges by the Products
that comprise the SURF Service. To prevent unpleasant surprises caused by excessive charges, the
Account exposure can be limited by authorizing individual users to spend up to a maximum amount of
units on a SURF Product. The limited amount is registered as a Wallet, which is linked to a similarly-
named SubAccount. Note that currently only SURF ResearchCloud supports this granular level of cost
control where users specify a Wallet instead of an Account.

The actual billing of resource usage:

Each accounting line specifies a charge to an account and states the priced item (Product), a rated unit
of measure for that item (ServiceUnit) and the actual number of units of that item that have been used
(ServiceUsage). See appendix A for an example accounting spreadsheet report.
Information-only lines are added by using a Product with a 0 cost rate per unit, for example to list a
human-readable amount of disk usage in terrabytes. The actual cost per unit used for an item is usually
implicit in the current accounting reports, yet can be derived in two steps as:

rate-in-credits = Usage / ServiceUsage
rate-in-euro = rate-in-credits * (Charge / Budget)

The use of SURF services is listed as one or more accounting lines per Period (calendar month).
Currently the Period covered is only associated with actual use. As a result, accounting reports may
show different figures for a particular month due to corrections on transactions. A planned version of
the accounting system will also associate transactions with billing periods. Corrections and other yet
unaccounted transactions that emerge after their month of consumption will then be billed to a later
month.

Utrecht University accounting and charge-back related policies

Transparency on research project related expenditures is required by many stakeholders. The
stakeholders may include external funding agencies such as NWO and other consortium partners
(public sector) as well as any companies (private sector) that co-fund a project.
For financial reporting reasons, it is crucial that any SURF service charges can be matched with the
relevant research project. The evidence that accompanies an invoice must allow the researcher and
other stakeholders to assess that the invoice is correct, timely and complete. In addition, external
funding agencies may require evidence that an amount of service has been consumed, for instance
compute-hours. In general, an invoice is correct if it can be matched unambiguously with prior agreed
arrangements. Orders should include at least a service description, the associated once and/or recurring
costs, due dates for payment and a reference to the project or cost center.

Note that in the case of indirect usage (service ordered via central IT function) the SURF invoice will
initially be processed by the central IT department. Subsequently the IT department may internally
charge-back the research project or decide to draw from a central cost center if charge-back is
inefficient or otherwise not appropriate.
Interestingly, as can be deduced from the above policy, in some situations the selection of a cost center
will be made after the costs are incurred.

How to link SURF accounting and Utrecht University accounting

To support financial reporting, the naming of SURF Budgets, Accounts and Wallets should be chosen
carefully so that they can be used to identify the related Utrecht University research project and cost
center.

SURF UU envisioned usage Projected UU concept
Budget This concept is well-suited to relate to sources of

funding along with planned annual amounts.
Limit order (budget linked to a
ITS contract with SURF)

Account This concept maps well to actual expenses related
to a research project or part thereof.

Research project id (within
UU this id is linked to a WBS
cost center for optional
charge-back purposes)

Wallet This concept links actual expenses to the person
who has ordered the service

Research-project id with
solisid or researcher name
added as suffix

UU’s Research IT department agrees a general purpose contract (with limit order) with SURF, which
represents a subscription to services. This results in a SURF budget.
The SURF budget is used to accommodate many UU research projects. UU provides each Research
project with a unique short-name which is subsequently used as SURF Account and as such made
known to SURF. Each UU research project member is provided with a Wallet linked to the Account
(this needs to be registered as such at SURF). As SURF reports service usage per wallet and per
account, expenditures can be traced back to both the research project serviced as well as the individual
responsible for ordering the service.

We have created a proof-of-concept application to investigate if the current SURF accounting
spreadsheet report can be machine-interpreted and used for charge-back purposes. Example output of
our application is included in Appendix B.
The proof-of-concept application interprets the SURF service usage reports (spreadsheets), enriches
these spreadsheets with cost center numbers per account, and produces a report that can be used to
drive internal charge-back activities.

SURF ResearchCloud

SURF ResearchCloud uses the notion of a “Collaboration” to refer to a set of people authorized to use a
service together. We can match the name of a collaboration with the short-name of a research project
so that authorizations and accounting are aligned.

Appendix A: Example (partial) of a SURF accounting report (spreadsheet)

Row 2 of the spreadsheet report represents a Budget. This budget (its name is in column A) is divided
into several SubBudgets (examples in row 3, 4 and 7). The subbudget of row 4 is partially consumed by
the use of two products, as shown in rows 5 and 6. The name of a product is stated in column N. The
related account is stated in column E.

 Appendix B: Proof-of-concept application output

Our Python application (source in Appendix C) imports a sample SURF accounting spreadsheet using
the Python Pandas module. It attempts to categorize each row to see if it pertains to a Budget or an
Account. Unrecognized formats result in rejection of the spreadsheet.
Subsequently it links an Account to a known cost center. Currently, for demonstration purpose, the list
of cost centers is held in a dictionary. Ideally this would be held in a database and filled using
information received from researchers.

Sample program output using the spreadsheet partially listed in Appendix A as input:
$ python3 read-account.py
COST CENTER (ACCOUNT) : USAGE IN CREDITS
WBS-43788 (Waysdorf-tweets) : 613
WBS-50311 (lisa-gpu-nikosk) : 358

Conclusion:
The SURF report can be read programmatic and used for charge-back purposes.
There is a minor limitation: The report does not explicitly link a SubBudget to a parent Budget other
than by name (a Budget appears to be the prefix of a SubBudget). This missing feature currently does
not limit our automated interpretation for charge-back purposes, yet it might impact other applications
such as budget-related analysis.

Appendix C: Proof-of-concept Python program

#!/usr/bin/python
Author: Ton Smeele
import csv
import sys
import getopt
import re
import textwrap
import os
import collections
import pandas as pd
import warnings

C_TYPE = 'Type' # this column will be added to the dataframe to describe type of row
T_UNCLASSIFIED = 'Unclassified'
T_BUDGET = 'Budget'
T_ACCOUNT= 'Account'
T_TOTAL = 'Total'
T_ALLOC = 'Allocation'
C_CODE = 'Code'
C_DESCRIPTION = 'Description'
C_VALIDFROM = 'Valid_from'
C_VALIDTO = 'Valid_to'
C_ACCOUNT = 'Account'
C_CHARGES = 'Charges'
C_UNIT = 'Unit'
C_AMOUNT = 'Amount'
C_BUDGET = 'Budget'
C_USAGE = 'Usage'
C_BALANCE = 'Balance'
C_PERCUSED = '%used'
C_STATUS = 'Status'
C_PRODUCT = 'Product'
C_SRVUNIT = 'SrvUnit'
C_SRVUSAGE = 'SrvUsage'
C_TREND = 'trend'

COLUMNS should list all the fixed columns of the source file (not columns that depict a year/month)
COLUMNS = [C_CODE, C_DESCRIPTION, C_VALIDFROM, C_VALIDTO, C_ACCOUNT,
C_CHARGES, C_UNIT,
 C_AMOUNT, C_BUDGET, C_USAGE, C_BALANCE, C_PERCUSED, C_STATUS,
C_PRODUCT, C_SRVUNIT,
 C_SRVUSAGE, C_TREND]

INPUTFILE = '2010101_01.20210906.xlsx'

ACCOUNT2WBS = {'lisa-gpu-nikosk' : 'WBS-50311', 'Waysdorf-tweets': 'WBS-43788' }

def import_Excel(inputFile):
 """Reads in an Excel-formatted spreadsheet as Pandas dataframes
 Links account records to a budget and vice versa via dicts
 returns: (dfBudget,dfAccount, dict account[budget], dict budget[account])
 NB: account[budget] values are lists as a budget might be used by more than one account
 """

 # hack: read_excel warns about an unsupported extension, suppress this warning
 warnings.filterwarnings('ignore', category=UserWarning, module='openpyxl')
 source = pd.read_excel(inputFile)
 # verify that spreadsheet left-most columns comply with known column list
 for col in range(len(COLUMNS)):
 if source.columns.array[col] != COLUMNS[col]:
 raise AssertionError('At column ' + str(col) + ': expected "' + COLUMNS[col] +
 '", got "' + source.columns.array[col] + '"')
 # classify rows
 # budget: column budget has a value, valid_from has a value
 # account: column account has a value, column budget has no value
 # grand-total: column unit is empty
 # budget allocation: columns budget, account have no value, column valid_from has a value
 sourceRows = source.index.array
 dfBudget = source[(source[C_BUDGET].notna() & source[C_VALIDFROM].notna())]
 budgetRows = dfBudget.index.array
 dfAccount = source[(source[C_BUDGET].isna() & source[C_ACCOUNT].notna())]
 accountRows = dfAccount.index.array
 grandtotalRows = source[(source[C_UNIT].isna())].index.array
 if len(grandtotalRows) != 1:
 raise AssertionError('Expected one grand-total row, got ' + str(len(totalRows)))
 allocRows = source[(source[C_BUDGET].isna() & source[C_ACCOUNT].isna() &
source[C_VALIDFROM].notna())].index.array
 # tag each row with type, check that our categorization is complete
 source[C_TYPE] = T_UNCLASSIFIED
 cat = {}
 for i in budgetRows:
 source.loc[i,C_TYPE] = T_BUDGET
 for i in accountRows:
 if source.loc[i,C_TYPE] != T_UNCLASSIFIED:
 raise AssertionError('Unable to categorize source data into budgets and accounts')
 source.loc[i,C_TYPE] = T_ACCOUNT
 for i in grandtotalRows:
 if source.loc[i,C_TYPE] != T_UNCLASSIFIED:
 raise AssertionError('Unable to categorize grand total in source data')
 source.loc[i,C_TYPE] = T_TOTAL
 for i in allocRows:
 if source.loc[i,C_TYPE] != T_UNCLASSIFIED:

 raise AssertionError('Unable to categorize budget allocations in source data')
 source.loc[i,C_TYPE] = T_ALLOC
 if len(source[(source[C_TYPE] == T_UNCLASSIFIED)]) > 0:
 raise AssertionError('Could not categorize some input data rows: ' + str(otherRows))
 return source

def get_lookups(data):
 """ creates lookup dicts to find accounts with budgets and vice versa

 returns budget2account = dict with budget as key and list of accounts as value
 account2budget = dict with account as key and budget as value
 """

 budget2accounts = {} # value is array because there can be >1 account with a budget
 account2budget = {}
 budgetRows = data[(data[C_TYPE] == T_BUDGET)]
 for i in budgetRows.index.array:
 df = data.iloc[i]
 budget = df[C_CODE]
 isNaN = df.isna()
 if not isNaN[C_ACCOUNT]:
 account= df[C_ACCOUNT]
 else:
 account = ''
 if budget in budget2accounts:
 if not account in budget2accounts[budget]:
 budget2accounts[budget].append(account)
 else:
 budget2accounts[budget] = [account]
 account2budget[account] = budget
 return (budget2accounts, account2budget)

def usage_per_account(data, account2budget):
 """ returns a dict with per account the used units
 """

 usage = {}
 for account in sorted(account2budget):
 budget = account2budget[account]
 dfusage = data[(data[C_TYPE] == T_BUDGET) & (data[C_CODE] == budget)]
 used = dfusage[C_USAGE].squeeze()
 usage[account] = used
 return usage

def show_usage_per_account(data, account2budget):
 """ creates a print-friendly table of use units per account, linked to wbs

 """

 out = 'COST CENTER(ACCOUNT) : USAGE IN CREDITS\n'
 usage = usage_per_account(data, account2budget)
 for account in sorted(usage):
 if account in ACCOUNT2WBS:
 wbs = ACCOUNT2WBS[account]
 out = out + wbs + '(' + account + ') : ' + str(round(usage[account])) + '\n'
 return out

def main(inputFile):
 try:
 data = import_Excel(inputFILE)
 except AssertionError as e:
 print('Input file format error: ' + str(e))
 (budget2accounts, account2budget) = get_lookups(data)

 print(show_usage_per_account(data, account2budget))

main program
if __name__ == "__main__":
 main(INPUTFILE)

