
16 June 2022

Johan Jeuring
A Compositional Interpreter for Expressions

Talen & Compilers

Last week

ASTs (datatypes) and corresponding folds …

… applied in several analyses

A compositional Interpreter
for expressions
Lecture notes: 5.4-5

Computing with parsers
Lecture notes: 6

Today

Learning goals

Learning goals:

- associate inherited and synthesised attributes with the
different alternatives of (possibly mutually recursive)
datatypes (or the different nonterminals of grammars)

- define algebraic semantics in terms of compositional (or
syntax driven) code that is defined using algebras of
computations which make use of inherited and synthesised
attributes

- explain deforestation in the context of computing with
parsers

A compositional Interpreter
for expressions

Simple expressions again

data E = Add E E
| Neg E
| Num Int

type Ealgebra r = (r → r → r -- add
,r → r -- neg
,Int → r) -- num

foldE :: EAlgebra r → E → r
foldE (add,neg,num) = f

where f (Add e1 e2) = add (f e1) (f e2)
f (Neg e) = neg (f e)
f (Num n) = num n

Evaluation

eval :: E → Int
eval (Add e1 e2) = eval e1 + eval e2
eval (Neg e) = negate (eval e)
eval (Num n) = n

evalAlgebra :: EAlgebra Int
evalAlgebra = ((+),negate,id)

eval = foldE evalAlgebra

Direct recursion:

Using folds:

Expressions with variables

Adding variables

data E = Add E E
| Neg E
| Num Int
| Var Id

type Id = String

We want to write expressions like -x+1 and x+y+y+z

Extending the algebra and fold

type Ealgebra r = (r → r → r -- add
,r → r -- neg
,Int → r -- num
,Id → r) -- var

foldE :: EAlgebra r → E → r
foldE (add,neg,num,var) = f

where f (Add e1 e2) = add (f e1) (f e2)
f (Neg e) = neg (f e)
f (Num n) = num n
f (Var x) = var x

Evaluation revisited

eval :: E → Int
eval (Add e1 e2) = eval e1 + eval e2
eval (Neg e) = negate (eval e)
eval (Num n) = n
eval (Var x) = ???

What is the value of –x+1?

And how about x+y+y+z?

x,y,z are free variables

Evaluating expressions with free variables

Env → Int

where Env is an environment mapping free variables to integers

The value of an expression with free variables is a function

Representing environments

Using lists

Insert constant time, lookup linear

Using finite maps (balanced trees):

Insert/lookup O(log n)

type Env = [(Id,Int)]

import Data.Map
type Env = Map Id Int

Finite Map interface

import Data.Map as M -- short name to disambiguate

type Map k v -- abstract

M.empty :: Map k v -- not the parser combinator
insert :: Ord k ⇒ k → v → Map k v → Map k v
(!) :: Ord k ⇒ Map k v → k → v

Evaluation revisited II

eval :: E → Env → Int
eval (Add e1 e2) env = eval e1 env + eval e2 env
eval (Neg e) env = negate (eval e env)
eval (Num n) env = n
eval (Var x) env = env!x

evalAlgebra :: EAlgebra (Env → Int)
evalAlgebra = (\r1 r2 → \env → r1 env + r2 env

,\r → \env → negate (r env)
,\n → \env → n
,\x → \env → env!x)

Where should the environment go?

evalAlgebra :: EAlgebra (Env → Int)
evalAlgebra = (\r1 r2 → \env → r1 env + r2 env

,\r → \env → negate (r env)
,\n → \env → n
,\x → \env → env!x)

evalAlgebra :: Env → EAlgebra Int
evalAlgebra env =

(\r1 r2 → r1 + r2
,\r → negate r
,\n → n
,\x → env!x)

Expressions with definitions

Adding definitions

data E = Add E E
| Neg E
| Num Int
| Var Id
| Def Id E E -- let x = e1 in e2

Extending the algebra and fold

type Ealgebra r = (r → r → r -- add
,r → r -- neg
,Int → r -- num
,Id → r -- var
,Id → r → r) -- def

foldE :: EAlgebra r → E → r
foldE (add,neg,num,var,def) = f

where f (Add e1 e2) = add (f e1) (f e2)
f (Neg e) = neg (f e)
f (Num n) = num n
f (Var x) = var x
f (Def x e1 e2) = def x (f e1) (f e2)

Evaluation revisited again

let x=1 in x

What is the value of:

let x=y in x+x
let x=1 in let x=2 in x
let x=1 in let x=x+1 in x

Design decisions:
• We still need an environment, although we can define closed

terms using definitions
• Inner definitions shadow outer definitions
• No recursive definitions: variable not available in rhs of definition

Evaluation revisited again II

eval :: E → Env → Int
... -- as before
eval (Def x e1 e2) env =

eval e2 (insert x (eval e1 env) env)

evalAlgebra :: EAlgebra (Env → Int)
evalAlgebra =

(... -- as before
,\x r1 r2 → \env → r2 (insert x (r1 env) env))

Q

Mutually recursive datatypes
declarations and expressions

Mutually recursive datatypes

In many real-life situations, datatypes are mutually recursive.

data E = Add E E
| Neg E
| Num Int
| Var Id
| Def Id E E -- let x = e1 in e2

Mutually recursive datatypes

In many real-life situations, datatypes are mutually recursive.

data E = Add E E
| Neg E
| Num Int
| Var Id
| Def D E -- let x = e1 in e2

data D = Dcl Id E

An algebra for a family of datatypes

Add :: E → E → E
Neg :: E → E
Num :: Int → E
Var :: Id → E
Def :: D → E → E
Dcl :: Id → E → D

type EDAlgebra e d =
(e → e → e
,e → e
,Int → e
,Id → e
,d → e → e
,Id → e → d)

A fold for a family of datatypes

foldE :: EDAlgebra e d → Expr → e
foldE (add,neg,num,var,def,dcl) = fe
where fe (Add e1 e2) = add (fe e1) (fe e2)

fe (Neg e) = neg (fe e)
fe (Num n) = num n
fe (Var x) = var x
fe (Def d e) = def (fd d) (fe e)
fd (Dcl x e) = dcl x (fe e)

Adapting evaluation (direct recursion)

evalE :: E → Env → Int
evalE (Add e1 e2) env = evalE e1 env + evalE e2 env
evalE (Num e) env = negate (evalE e env)
evalE (Num n) env = n
evalE (Var x) env = env!x
evalE (Def d e) env = evalE e (evalD d env)

evalD :: D → Env → Env
evalD (Dcl x e) env = insert x (evalE e env) env

Adapting evaluation (as a fold)

evalAlgebra :: EDAlgebra (Env → Int) (Env → Env)
evalAlgebra=

(\e1 e2 → \env → e1 env + e2 env
 ,\e → \env → negate (e env)
 ,\n → \env → n
 ,\x → \env → env!x
 ,\d e → \env → e (d env)
 ,\x e → \env → insert x (e env) env)

Lists of declarations

Multiple declarations

We often want to introduce multiple definitions:

data E = Add E E
| Neg E
| Num Int
| Var Id
| Def D E

data D = Dcl Id E

[]

(Or create a separate datatype Ds for lists of declarations)

Adapting the algebra and fold

type EDAlgebra e d =
(…
,[d] → e → e
,…)

foldE :: EDAlgebra e d → Expr → e
foldE (add,neg,num,var,def,dcl) = fe
where …

fe (Def ds e) = def (map fd d) (fe e)
fd (Dcl x e) = dcl x (fe e)

Adapting evaluation

evalAlgebra :: EDAlgebra (Env → Int) (Env → Env)
evalAlgebra=

(\e1 e2 → \env → e1 env + e2 env
 ,\e → \env → negate (e env)
 ,\n → \env → n
 ,\x → \env → env!x
 ,\ds e → \env → e (process ds env)
 ,\x e → \env → insert x (e env) env)

process :: [Env → Env] → Env → Env
process ds env = foldl (flip ($)) env ds

Use before def

Def before use, use before def

Earlier we mentioned for

No recursive definitions: variable not available in rhs of definition

Suppose we want to allow
let { x = y + 1

; y = 2
; z = x + y + 3 }

in z

let x=1 in let x=x+1 in x

Current and final environment

The result type for declarations now becomes

The first environment is the current environment, which we will
extend

Env → Env → Env

The second environment is the final environment, which we use
to evaluate the expression in

Adapting evaluation

evalAlgebra :: EDAlgebra (Env → Int) (Env → Env)
evalAlgebra=

(…
 ,\ds e → \env → let fenv = process ds env fenv

in e fenv
 ,\x e → \env → \fenv → insert x (e fenv) env)

process :: [Env → Env → Env] → Env → Env → Env
process ds env fenv =

foldl (\cenv d → d cenv fenv) env ds

Summary

- We can define algebras and folds also for families of mutually
recursive types, also if lists (or other types) surround the recursive
positions
- Often, the result types of algebras are themselves functions
- Function arguments represent information that is distributed
over the abstract syntax tree
- Function results represent information that is computed from
the abstract syntax tree (and the distributed values)

Computing with parsers

Example: Matched parentheses

Abstract syntax:

S → (S)S | ε

Examples: (())(()), (), (()()), …

data Parens = Match Parens Parens
| Empty

Nesting parentheses

parens :: Parser Char Parentheses
parens = Match <$ open <*> parens <* close <*> parens

<|> succeed Empty

nesting :: Parser Char Int
nesting = (\b d → max (1+b) d) <$

open <*> nesting <* close <*> nesting
<|> succeed 0

nesting’ :: Parser Char Int
nesting’ = depthParentheses <$> parens

(De)forestation

Transform nesting’ into nesting

Class instead of abstract syntax

class Parens a where
match :: a → a → a
empty :: a

parens :: Parens a => Parser Char a
parens = match <$ open <*> parens <* close <*> parens

<|> succeed empty

Class instances

instance Parens Parentheses where
match = Match
empty = Empty

instance Parens Int where
match b d = max (1+b) d
empty = 0

Just one instance per type

Passing an algebra to the parser

parens :: ParenthesesAlgebra a -> Parser Char a
parens (match,empty) = par where

par = match <$ open <*> par <* close <*> par
<|> succeed empty

nesting, breadth :: Parser Char Int
nesting = parens (\b d → max (1+b) d,0)
breadth = parens (\b d → d+1,0)

Summary

The compositional approach to developing compilers can be used
in a deforested computation

