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Last week

ASTs (datatypes) and corresponding folds …

… applied in several analyses



A compositional Interpreter 
for expressions
Lecture notes: 5.4-5

Computing with parsers
Lecture notes: 6

Today



Learning goals

Learning goals:

- associate inherited and synthesised attributes with the 
different alternatives of (possibly mutually recursive) 
datatypes (or the different nonterminals of grammars)

- define algebraic semantics in terms of compositional (or 
syntax driven) code that is defined using algebras of 
computations which make use of inherited and synthesised
attributes

- explain deforestation in the context of computing with 
parsers



A compositional Interpreter 
for expressions



Simple expressions again

data E = Add E E
| Neg E
| Num Int

type Ealgebra r = (r → r → r -- add
,r → r     -- neg
,Int → r)  -- num

foldE :: EAlgebra r → E → r
foldE (add,neg,num) = f

where f (Add e1 e2) = add (f e1) (f e2)
f (Neg e)     = neg (f e)
f (Num n)     = num n



Evaluation

eval :: E            → Int
eval    (Add e1 e2)  =  eval e1 + eval e2
eval    (Neg e)      =  negate (eval e)
eval    (Num n)      =  n

evalAlgebra :: EAlgebra Int
evalAlgebra =  ((+),negate,id)

eval        =  foldE evalAlgebra

Direct recursion:

Using folds:



Expressions with variables



Adding variables

data E = Add E E
| Neg E
| Num Int
| Var Id

type Id = String

We want to write expressions  like -x+1 and x+y+y+z



Extending the algebra and fold

type Ealgebra r = (r → r → r -- add
,r → r     -- neg
,Int → r   -- num
,Id → r)   -- var

foldE :: EAlgebra r → E → r
foldE (add,neg,num,var) = f

where f (Add e1 e2) = add (f e1) (f e2)
f (Neg e)     = neg (f e)
f (Num n)     = num n
f (Var x)     = var x



Evaluation revisited

eval :: E            → Int
eval    (Add e1 e2)  =  eval e1 + eval e2
eval    (Neg e)      =  negate (eval e)
eval    (Num n)      =  n
eval    (Var x)      =  ???

What is the value of –x+1?

And how about x+y+y+z?

x,y,z are free variables



Evaluating expressions with free variables

Env → Int

where Env is an environment mapping free variables to integers

The value of an expression with free variables is a function



Representing environments

Using lists

Insert constant time, lookup linear

Using finite maps (balanced trees):

Insert/lookup O(log n)

type Env = [(Id,Int)]

import Data.Map
type Env = Map Id Int



Finite Map interface

import Data.Map as M -- short name to disambiguate

type Map k v -- abstract

M.empty ::  Map k v -- not the parser combinator
insert   ::  Ord k ⇒ k → v → Map k v → Map k v
(!)      ::  Ord k ⇒ Map k v → k → v



Evaluation revisited II

eval :: E         → Env → Int
eval    (Add e1 e2) env  =  eval e1 env + eval e2 env
eval    (Neg e)     env  =  negate (eval e env)
eval    (Num n)     env  =  n
eval    (Var x)     env  =  env!x

evalAlgebra :: EAlgebra (Env → Int)
evalAlgebra =  (\r1 r2 → \env → r1 env + r2 env

,\r     → \env → negate (r env)
,\n     → \env → n
,\x     → \env → env!x)



Where should the environment go?

evalAlgebra :: EAlgebra (Env → Int)
evalAlgebra =  (\r1 r2 → \env → r1 env + r2 env

,\r     → \env → negate (r env)
,\n     → \env → n
,\x     → \env → env!x)

evalAlgebra :: Env → EAlgebra Int
evalAlgebra env =  

(\r1 r2 → r1 + r2
,\r     → negate r
,\n     → n
,\x     → env!x)



Expressions with definitions



Adding definitions

data E = Add E E
| Neg E
| Num Int
| Var Id
| Def Id E E -- let x = e1 in e2 



Extending the algebra and fold

type Ealgebra r = (r → r → r   -- add
,r → r       -- neg
,Int → r     -- num
,Id → r      -- var
,Id → r → r) -- def

foldE :: EAlgebra r → E → r
foldE (add,neg,num,var,def) = f

where f (Add e1 e2)   = add (f e1) (f e2)
f (Neg e)       = neg (f e)
f (Num n)       = num n
f (Var x)       = var x
f (Def x e1 e2) = def x (f e1) (f e2)



Evaluation revisited again

let x=1 in x 

What is the value of:

let x=y in x+x
let x=1 in let x=2 in x 
let x=1 in let x=x+1 in x 

Design decisions:
• We still need an environment, although we can define closed 

terms using definitions
• Inner definitions shadow outer definitions
• No recursive definitions: variable not available in rhs of definition



Evaluation revisited again II

eval :: E → Env → Int
... -- as before
eval (Def x e1 e2) env = 

eval e2 (insert x (eval e1 env) env)

evalAlgebra :: EAlgebra (Env → Int)
evalAlgebra =  

(... -- as before 
,\x r1 r2 → \env → r2 (insert x (r1 env) env)) 



Q



Mutually recursive datatypes
declarations and expressions



Mutually recursive datatypes

In many real-life situations, datatypes are mutually recursive.

data E = Add E E
| Neg E
| Num Int
| Var Id
| Def Id E E -- let x = e1 in e2 



Mutually recursive datatypes

In many real-life situations, datatypes are mutually recursive.

data E = Add E E
| Neg E
| Num Int
| Var Id
| Def D    E -- let x = e1 in e2

data D = Dcl Id E 



An algebra for a family of datatypes

Add  ::  E → E → E
Neg  ::  E → E
Num  ::  Int → E
Var  ::  Id → E
Def  ::  D → E → E
Dcl ::  Id → E → D 

type EDAlgebra e d =
(e → e → e
,e → e
,Int → e
,Id → e
,d → e → e
,Id → e → d) 



A fold for a family of datatypes

foldE :: EDAlgebra e d → Expr → e
foldE (add,neg,num,var,def,dcl) = fe
where fe (Add e1 e2) = add (fe e1) (fe e2)

fe (Neg e)   = neg (fe e)
fe (Num n)   = num n
fe (Var x)   = var x
fe (Def d e) = def (fd d) (fe e)
fd (Dcl x e) = dcl x (fe e)



Adapting evaluation (direct recursion)

evalE :: E →         Env → Int
evalE (Add e1 e2) env = evalE e1 env + evalE e2 env
evalE (Num e)     env = negate (evalE e env)
evalE (Num n)     env = n
evalE (Var x)     env = env!x
evalE (Def d e)   env = evalE e (evalD d env)

evalD :: D →      Env → Env
evalD (Dcl x e) env = insert x (evalE e env) env



Adapting evaluation (as a fold)

evalAlgebra :: EDAlgebra (Env → Int) (Env → Env)
evalAlgebra=

(\e1 e2 → \env → e1 env + e2 env
  ,\e →     \env → negate (e env)
  ,\n →     \env → n
  ,\x →     \env → env!x
  ,\d e →   \env → e (d env)
  ,\x e →   \env → insert x (e env) env)



Lists of declarations



Multiple declarations

We often want to introduce multiple definitions:

data E = Add E E
| Neg E
| Num Int
| Var Id
| Def  D E

data D = Dcl Id E 

[ ] 

(Or create a separate datatype Ds for lists of declarations)



Adapting the algebra and fold

type EDAlgebra e d =
(…
,[d] → e → e
,…) 

foldE :: EDAlgebra e d → Expr → e
foldE (add,neg,num,var,def,dcl) = fe
where …

fe (Def ds e) = def (map fd d) (fe e)
fd (Dcl x e) = dcl x (fe e)



Adapting evaluation

evalAlgebra :: EDAlgebra (Env → Int) (Env → Env)
evalAlgebra=

(\e1 e2 → \env → e1 env + e2 env
  ,\e →     \env → negate (e env)
  ,\n →     \env → n
  ,\x →     \env → env!x
  ,\ds e →  \env → e (process ds env)
  ,\x e →   \env → insert x (e env) env)

process :: [Env → Env] → Env → Env
process ds env = foldl (flip ($)) env ds



Use before def



Def before use, use before def

Earlier we mentioned for

No recursive definitions: variable not available in rhs of definition

Suppose we want to allow
let { x = y + 1

; y = 2
; z = x + y + 3 }

in z

let x=1 in let x=x+1 in x 



Current and final environment

The result type for declarations now becomes

The first environment is the current environment, which we will 
extend

Env → Env → Env

The second environment is the final environment, which we use 
to evaluate the expression in



Adapting evaluation

evalAlgebra :: EDAlgebra (Env → Int) (Env → Env)
evalAlgebra=

(…
  ,\ds e →  \env → let fenv = process ds env fenv

in e fenv
  ,\x e →   \env → \fenv → insert x (e fenv) env)

process :: [Env → Env → Env] → Env → Env → Env
process ds env fenv = 

foldl (\cenv d → d cenv fenv) env ds



Summary

- We can define algebras and folds also for families of mutually 
recursive types, also if lists (or other types) surround the recursive 
positions
- Often, the result types of algebras are themselves functions
- Function arguments represent information that is distributed 
over the abstract syntax tree
- Function results represent information that is computed from 
the abstract syntax tree (and the distributed values)



Computing with parsers



Example: Matched parentheses

Abstract syntax:

S → (S)S | ε

Examples: (())(()), (), (()()), …

data Parens = Match Parens Parens
| Empty



Nesting parentheses

parens :: Parser Char Parentheses
parens =  Match <$ open <*> parens <* close <*> parens

<|> succeed Empty

nesting :: Parser Char Int
nesting =  (\b d → max (1+b) d) <$

open <*> nesting <* close <*> nesting
<|> succeed 0

nesting’  :: Parser Char Int
nesting’  =  depthParentheses <$> parens



(De)forestation

Transform nesting’ into nesting



Class instead of abstract syntax

class Parens a where
match :: a → a → a 
empty :: a

parens :: Parens a => Parser Char a
parens =  match <$ open <*> parens <* close <*> parens

<|> succeed empty



Class instances

instance Parens Parentheses where
match = Match 
empty = Empty

instance Parens Int where
match b d = max (1+b) d
empty = 0

Just one instance per type



Passing an algebra to the parser

parens :: ParenthesesAlgebra a -> Parser Char a
parens (match,empty) = par where

par  =  match <$ open <*> par <* close <*> par
<|> succeed empty

nesting, breadth :: Parser Char Int
nesting  =  parens (\b d → max (1+b) d,0)
breadth  =  parens (\b d → d+1,0)



Summary

The compositional approach to developing compilers can be used 
in a deforested computation


