A Compositional Interpreter for Expressions
Talen & Compilers

N

%T§ Utrecht University I_a St We e k

ASTs (datatypes) and corresponding folds ...

... applied in several analyses

RN
=N=
NS

A compositional Interpreter
for expressions

Lecture notes: 5.4-5

Computing with parsers

Lecture notes: 6

Today

N

%T§ Utrecht University I_e a r n i n g go a I S

Learning goals:

- associate inherited and synthesised attributes with the
different alternatives of (possibly mutually recursive)
datatypes (or the different nonterminals of grammars)

- define algebraic semantics in terms of compositional (or
syntax driven) code that is defined using algebras of
computations which make use of inherited and synthesised
attributes

- explain deforestation in the context of computing with
parsers

N
-\
K7

/
\

N

\
i

A compositional Interpreter
for expressions

NI

G Ut Uriversicy Simple expressions again
= Add E E
| Neg E

| Num Int

data E

type Ealgebra r = (r > r - r -- add
,r > r -- neg
,Int > r) -- num

foldE :: EAlgebra r » E > r

foldE (add,neg,num) =

where ¥ (Add el e2)
 (Neg e)

£ (Num n)

N = m

add (f el) (f e2)
neg (f e)
num n

N

%T§ Utrecht University Eva I U at i O n

Direct recursion:

eval :: E > Int

eval (Add el e2) = eval el + eval e2
eval (Neg e) = negate (eval e)
eval (Num n) = n

Using folds:

evalAlgebra :: EAlgebra Int

evalAlgebra = ((+),negate,id)

eval = foldE evalAlgebra

N/
.5\\\\ S &4 Utrecht Univel'Sity
N

L
ZIN

Expressions with variables

N

N

%TL\\\% Utrecht University Ad d I n g Va rl a b I eS

We want to write expressions like -x+1 and x+y+y+z

data E = Add E E
Neg E
Num Int
Var Id

type Id = String

N

G Urnecht Universicy Extending the algebra and fold

type Ealgebra r = (r > r - r -- add

,r=>r -- neg
,Int »> r -- num
,Id » r) -- var

foldE :: EAlgebra r » E > r
foldE (add,neg,num,var) = f
where f (Add el e2) = add (f el) (f e2)
 (Neg e) = neg (f e)
£ (Num n) = num n
 (Var x) = var X

NI

€53 vircent Universicy Evaluation revisited

What is the value of -x+17

And how about x+y+y+z?

eval :: E -» Int

eval (Add el e2) = eval el + eval e2
eval (Neg e) = negate (eval e)
eval (Num n) = n

eval (Var x) = ???

X,y,z are free variables

Evaluating expressions with free variables

N

N . .
£ ¥ F Utrecht University
HN

The value of an expression with free variables is a function

Env » Int
where Env is an environment mapping free variables to integers

N

N iversi I I
G Urnecht Universicy Representing environments

Using lists
type Env = [(Id,Int)]

Insert constant time, lookup linear

Using finite maps (balanced trees):

import Data.Map
type Env = Map Id Int

Insert/lookup O(log n)

<

Z 3

G Urnecht Universicy Finite Map interface

import Data.Map as M -- short name to disambiguate

type Map k v -- abstract

M.empty Map k v -- not the parser combinator
insert :: Ord k > k>»>vVv->Map k v->Map k v
(1) :: Ord k > Map kv->k »>v

N

G et Universiy Evaluation revisited Il

eval :: E - Env » Int

eval (Add el e2) env = eval el env + eval e2 env
eval (Neg e) env = negate (eval e env)

eval (Num n) env. = n

eval (Var x) env = envl!x

evalAlgebra :: EAlgebra (Env » Int)

evalAlgebra = (\rl r2 » \env - rl env + r2 env
S \r > \env » negate (r env)
, \N » \env - n
5, \X > \env -» env!x)

N

£02 Utrecht University Where should the environment go?

YN

evalAlgebra :: EAlgebra (Env » Int)

evalAlgebra = (\rl r2 » \env > rl env + r2 env
S \r > \env » negate (r env)
, \N » \env - n
5, \X > \env > env!x)

evalAlgebra :: Env » EAlgebra Int
evalAlgebra env =

(\rl r2 > rl + r2

s\l > negate r

> \N > N

5, \X > env!x)

N =
YN

L
AN

Expressions with definitions

NI

G Ui Univrsiy Adding definitions
data E = Add E E

Neg E

Num Int

Var Id

Def Id E E -- let X = el 1in e2

N

G Urnecht Universicy Extending the algebra and fold

type Ealgebra r = (r > r > r -- add
,r > r -- neg
,Int »> r -- num
,Id » r -- var

,Id » r > r) -- def

foldE :: EAlgebra r » E > r
foldE (add,neg,num,var,def) = f

where f (Add el e2) = add (f el) (f e2)
 (Neg e) = neg (f e)
£ (Num n) = num n
£ (Var x) = var X

f (Def x el e2) = def x (f el) (f e2)

NI

G et Universiy Evaluation revisited again

What is the value of:

let x=1 in X

let x=y in x+Xx

let x=1 in let x=2 1n X
let x=1 in let x=x+1 in X

Design decisions:

 We still need an environment, although we can define closed
terms using definitions

* |nner definitions shadow outer definitions

 No recursive definitions: variable not available in rhs of definition

N

N

G Ui Univrsiy Evaluation revisited again |l

eval :: E » Env » Int
-- as before
eval (Def x el e2) env =
eval e2 (insert x (eval el env) env)

evalAlgebra :: EAlgebra (Env » Int)
evalAlgebra =
(... -- as before

,\X rl r2 »> \env » r2 (insert x (rl env) env))

A
£ U= Utrecht University

N

a Go to wooclap.com Event code
@ Enter the event code in the top CY N XXG
banner

& Enable answers by SMS

W
-\
K7

/
\

N

\
i

Mutually recursive datatypes
declarations and expressions

NI

G Ut Uriversicy Mutually recursive datatypes

In many real-life situations, datatypes are mutually recursive.

data E = Add E E

Neg E

Num Int

Var _1d

Def‘Id EIIE -- let x = el in e2

N

G et Universiy Mutually recursive datatypes

In many real-life situations, datatypes are mutually recursive.

Add E E

Neg E

Num Int

Var Id

Def D E -- let x = el in e2

data E

data D Dcl Id E

NI

G et Universiy An algebra for a family of datatypes

type EDAlgebra e d =

Add :: E > E » E (e > e »>e
Neg :: E > E ,e > e

Num :: Int - E ,Int » e
Var :: Id > E ,Id » e
Def :: D> E > E ,d > e e

Dcl :: Id > E > D ,Id » e » d)

N

G et Universiy A fold for a family of datatypes

foldE :: EDAlgebra e d » Expr -» e
foldE (add,neg,num,var,def,dcl) = fe
where fe (Add el e2) = add (fe el) (fe e2)

fe (Neg e) = neg (fe e)
fe (Num n) = num n
fe (Var x) = var X

fe (Def d e) = def ||(fd d)| (fe e)
fd (Dcl x e) = dcl x|[(fe e)

N

G Urnecht Universicy Adapting evaluation (direct recursion)

evalE :: E » Env » Int

evalE (Add el e2) env = evalE el env + evalE e2 env
evalE (Num e) env = negate (evalE e env)

evalE (Num n) env = n

evalE (Var x) env = env!x

evalE (Def d e) env

evalE e (evalD d env)

evalD :: D » Env - Env
evalD (Dcl x e) env = insert x (evalE e env) env

N

N

= ¥ F Utrecht University

N

AN

Adapting evaluation (as a fold)

EDAlgebra (Env » Int) (Env - Env)

evalAlgebra

evalAlgebra=
(\el e2 -» \env
,\e - \env
,\n - \env
,\X = \env
,\d e » \env
,\X e - \env

L 2K EEUEE 2R R 2

el env + e2 env
negate (e env)

n

env!x

e (d env)

insert x (e env) env)

N/
{\\ o ﬁA Utrecht University
N

L
ZIN

Lists of declarations

NI

£53 Uit Universiy Multiple declarations

We often want to introduce multiple definitions:

Add E E
Neg E
Num Int
Var Id
Def [D]E

data E

data D Dcl Id E

(Or create a separate datatype Ds for lists of declarations)

N

£52 Vet Universiy Adapting the algebra and fold

AN

type EDAlgebra e d =
(..
,[d] » e » e

)2

foldE :: EDAlgebra e d » Expr -» e

foldE (add,neg,num,var,def,dcl) = fe

where ..
fe (Def ds e) = def (map fd d) (fe e)
fd (Dcl x e) = dcl x (fe e)

N

N iversi I .
€53 vircent Universicy Adapting evaluation

evalAlgebra :: EDAlgebra (Env - Int) (Env » Env)

evalAlgebra=
(\el e2 » \env » el env + e2 env
,\e - \env -» negate (e env)
,\n - \env »> n
, \X - \env » env!x
,\ds e » \env » e (process ds env)
,\x e > \env -» insert x (e env) env)

process :: [Env » Env] » Env » Env
process ds env = foldl (flip ($)) env ds

A
£ U= Utrecht University

N

Use before def

N

G Urnecht Universicy Def before use, use before def

Earlier we mentioned for
let x=1 in let x=x+1 in X
No recursive definitions: variable not available in rhs of definition

Suppose we want to allow

let { x =y + 1

3y =2

; Z=X+Yy + 3}
in z

N

N

G et Universiy Current and final environment

The result type for declarations now becomes

Env » Env » Env

The first environment is the current environment, which we will
extend

The second environment is the final environment, which we use
to evaluate the expression in

N

N iversi I .
€53 vircent Universicy Adapting evaluation

evalAlgebra :: EDAlgebra (Env - Int) (Env » Env)
evalAlgebra=
(..
,\ds e » \env » let fenv = process ds env fenv
in e fenv
,\x e > \env » \fenv -» insert x (e fenv) env)

process :: [Env » Env » Env] » Env » Env - Env
process ds env fenv =
foldl (\cenv d » d cenv fenv) env ds

N

A2 . .
%T § Utrecht University S u m m a ry

- We can define algebras and folds also for families of mutually
recursive types, also if lists (or other types) surround the recursive
positions

- Often, the result types of algebras are themselves functions

- Function arguments represent information that is distributed
over the abstract syntax tree

- Function results represent information that is computed from
the abstract syntax tree (and the distributed values)

N/
.5\\\\ S &4 Utrecht Univel'Sity
N

L
ZIN

Computing with parsers

N

G Urnecht Universicy Example: Matched parentheses

S-(S)S | €

Examples: (())(()), (), (00), ...

Abstract syntax:

data Parens = Match Parens Parens
| Empty

N

N iversi I
%T§ Utrecht University Nestlng parentheses

parens :: Parser Char Parentheses
parens = Match <$ open <*> parens <* close <*> parens
<|> succeed Empty

nesting :: Parser Char Int
nesting = (\b d » max (1+b) d) <$
open <*> nesting <* close <*> nesting
<|> succeed @

nesting’ :: Parser Char Int
nesting’ = depthParentheses <$> parens

N

%T§ Utrecht University (D e) fo re Stat i O n

Transform nesting’ into nesting

N

G Urnecht Universicy Class instead of abstract syntax

class Parens a where

match :: a » a » a
empty :: a
parens :: Parens a => Parser Char a
parens = match <$ open <*> parens <* close <*> parens

<|> succeed empty

N

%T§ Utrecht University CI a S S i n Sta n Ce S

instance Parens Parentheses where
match = Match
empty = Empty

instance Parens Int where

match b d = max (1+b) d
empty = 0

Just one instance per type

N

A2

£0% Utrecht University Passing an algebra to the parser

N

AN

parens

ParenthesesAlgebra a -> Parser Char a

parens (match,empty) = par where

par =

match <$ open <*> par <* close <*> par

<|> succeed empty

nesting,
nesting
breadth

b

readth :: Parser Char Int
parens (\b d » max (1+b) d,0)
parens (\b d » d+1,0)

N

A2 . .
%T § Utrecht University S u m m a ry

The compositional approach to developing compilers can be used
in a deforested computation

