
Compiler Architecture

How hard can it be?

How hard can it be?

How hard can it be?

How hard can it be?

How hard can it be?

How hard can it be?

How hard can it be?

How hard can it be?

How hard can it be?

How hard can it be?

Hard even for experts

Hard even for experts

Hard even for experts

Hard even for experts

Hard even for experts

Hard even for experts

Compiler Architecture: 1-pass

Compiler Architecture: 1-pass

Compiler Architecture: 1-pass

Compiler Architecture: 1-pass

Compiler Architecture: 1-pass

Compiler Architecture: 3-pass

P. Teoh, Stackoverflow, https://stackoverflow.com/a/49081640

Compiler Architecture: 3-pass

Pandoc manual, https://github.com/jgm/pandoc/blob/main/doc/using-the-pandoc-api.md

Compiler Architecture: nanopass

Nanopass: Parse
char* s = "hello";
while (
 putchar(*s++)
);

char* s = "hello";
while (
 putchar(*s++)
);

Nanopass: Infer Types

real_solns :: _ -> _
-> _

real_solns a b c =
let d = b**2 - 4*a*c

in
if d >= 0 then

 [(-b + sqrt d) /
(2*a)

 ,(-b - sqrt d) /
(2*a)]

else []

real_solns :: Float -> Float
-> Float

real_solns a b c =
let d = b**2 - 4*a*c ::

Float in
if d >= (0 :: Float) then

 [(-b + sqrt d) / (2*a)
 ,(-b - sqrt d) / (2*a)]

else []

Nanopass: for → while

for(int i = 0;
 i < l.length;
 i++) {
 do_stuff();
}

int i = 0;
while(i < l.length) {
 do_stuff();
 i++;
}

Nanopass: λ → class

int[] squares (int[] l) {
 Logger q = get_logger();
return
sum(map((x => q.log(x*x))

, l));
}

int[] squares (int[] l) {
 Logger q = get_logger();
return
sum(map(new Lam43(q)

, l));
}
class Lam43 : Runnable {
 Logger q;
object run (object x) {
return q.log(x*x); }}

Nanopass: class → struct

class Player {
uint coins;
int hiscore;

void again(){
if(coins-- > 0) {
int score = play();

 hiscore = max
(score
, hiscore);

}

Nanopass: reference counting

void test() {
int[] xs =

 list(1,1000000);
int[] ys =

 map(xs, inc);

 print(ys);

}

void test() {
int[] xs =

 list(1,1000000);
int[] ys =

 map(xs, inc);
 _drop(xs);
 print(ys);
 _drop(ys);
}

https://www.microsoft.com/en-us/research/uploads/prod/2020/11/perceus-tr-v1.pdf

Nanopass: Constant folding

float sphere_area(float r){
float pi = calc_pi(5);
return 4 * pi * r * r;

}

float sphere_area(float r){
float pi = calc_pi(5);
return 4 * pi * r * r;

}

Nanopass: Constant folding

float sphere_area(float r){
float pi = calc_pi(5);
return 4 * pi * r * r;

}

float sphere_area(float r){
float pi = 3.13159;
return 4 * pi * r * r;

}

Nanopass: Constant folding

float sphere_area(float r){
float pi = calc_pi(5);
return 4 * pi * r * r;

}

float sphere_area(float r){

return 4 * 3.13159* r * r;
}

Nanopass: Constant folding

float sphere_area(float r){
float pi = calc_pi(5);
return 4 * pi * r * r;

}

float sphere_area(float r){

return 12.52636 * r * r;
}

Nanopass: Constant folding

Not essential
For ‘performance’
“Optimization” vs “Lowering”

float sphere_area(float r){
float pi = calc_pi(5);
return 4 * pi * r * r;

}

float sphere_area(float r){

return 12.52636 * r * r;
}

•
•
•

Nanopass: if,while,… → goto

if {
 l.length > 7
}
then {
 u = insertion_sort(l)
}
else {
 u = quick_sort(l)
}

.L0:
 l.length > 7
 branch .L1 .L2
.L1:
 u = insertion_sort(l)
 goto .L3
.L2:
 u = quick_sort(l)
 goto .L3
.L3:

Skills

Recognize common nanopasses
Implement easy nanopasses
Place nanopasses in compiler

•
•
•

Nanopass order hard to change

Research: AST design for nanopass
Meantime: design right order, early!

•
•

	Compiler Architecture
	How hard can it be?
	How hard can it be?
	How hard can it be?
	How hard can it be?
	How hard can it be?
	How hard can it be?
	How hard can it be?
	How hard can it be?
	How hard can it be?
	How hard can it be?
	Hard even for experts
	Hard even for experts
	Hard even for experts
	Hard even for experts
	Hard even for experts
	Hard even for experts
	Compiler Architecture: 1-pass
	Compiler Architecture: 1-pass
	Compiler Architecture: 1-pass
	Compiler Architecture: 1-pass
	Compiler Architecture: 1-pass
	Compiler Architecture: 3-pass
	Compiler Architecture: 3-pass
	Compiler Architecture: nanopass
	Nanopass: Parse
	Nanopass: Infer Types
	Nanopass: for → while
	Nanopass: λ → class
	Nanopass: class → struct
	Nanopass: reference counting
	Nanopass: Constant folding
	Nanopass: Constant folding
	Nanopass: Constant folding
	Nanopass: Constant folding
	Nanopass: Constant folding
	Nanopass: if,while,… → goto
	Skills
	Nanopass order hard to change

