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Compiler Architecture: 3-pass

P. Teoh, Stackoverflow, https://stackoverflow.com/a/49081640



Compiler Architecture: 3-pass

Pandoc manual, https://github.com/jgm/pandoc/blob/main/doc/using-the-pandoc-api.md



Compiler Architecture: nanopass





Nanopass: Parse
char* s = "hello";
while (
  putchar(*s++)
 );

char* s = "hello";
while (
  putchar(*s++)
);



Nanopass: Infer Types

real_solns :: _ -> _ 
-> _

real_solns a b c =
let d = b**2 - 4*a*c 

in
if d >= 0 then

    [(-b + sqrt d) /
(2*a)

    ,(-b - sqrt d) /
(2*a) ]

else []

real_solns :: Float -> Float
-> Float

real_solns a b c =
let d = b**2 - 4*a*c ::

Float in
if d >= (0 :: Float) then

    [(-b + sqrt d) / (2*a)
    ,(-b - sqrt d) / (2*a) ]

else []



Nanopass: for → while

for(int i = 0;
    i < l.length;
    i++) {
  do_stuff();
}

int i = 0;
while(i < l.length) {
  do_stuff();
  i++;
}



Nanopass: λ → class

int[] squares (int[] l) {
 Logger q = get_logger();
return
sum( map( (x => q.log(x*x))

, l ));
}

int[] squares (int[] l) {
 Logger q = get_logger();
return
sum( map( new Lam43(q)

, l ));
}
class Lam43 : Runnable {
 Logger q;
object run (object x) {
return q.log(x*x); }}



Nanopass: class → struct

class Player {
uint coins;
int hiscore;

void again(){
if(coins-- > 0) {
int score = play();

   hiscore = max
( score
, hiscore);

}



Nanopass: reference counting

void test() {
int[] xs =

    list(1,1000000);
int[] ys =

    map(xs, inc);

  print(ys);

}

void test() {
int[] xs =

    list(1,1000000);
int[] ys =

    map(xs, inc);
  _drop(xs);
  print(ys);
  _drop(ys);
}

https://www.microsoft.com/en-us/research/uploads/prod/2020/11/perceus-tr-v1.pdf



Nanopass: Constant folding

float sphere_area(float r){
float pi = calc_pi(5);
return 4 * pi * r * r;

}

float sphere_area(float r){
float pi = calc_pi(5);
return 4 * pi * r * r;

}



Nanopass: Constant folding

float sphere_area(float r){
float pi = calc_pi(5);
return 4 * pi * r * r;

}

float sphere_area(float r){
float pi = 3.13159;
return 4 * pi * r * r;

}



Nanopass: Constant folding

float sphere_area(float r){
float pi = calc_pi(5);
return 4 * pi * r * r;

}

float sphere_area(float r){

return 4 * 3.13159* r * r;
}



Nanopass: Constant folding

float sphere_area(float r){
float pi = calc_pi(5);
return 4 * pi * r * r;

}

float sphere_area(float r){

return 12.52636 * r * r;
}



Nanopass: Constant folding

Not essential
For ‘performance’
“Optimization” vs “Lowering”

float sphere_area(float r){
float pi = calc_pi(5);
return 4 * pi * r * r;

}

float sphere_area(float r){

return 12.52636 * r * r;
}

• 
• 
• 



Nanopass: if,while,… → goto

if {
  l.length > 7
}
then {
  u = insertion_sort(l)
}
else {
  u = quick_sort(l)
}

.L0:
  l.length > 7
  branch .L1 .L2
.L1:
  u = insertion_sort(l)
  goto .L3
.L2:
  u = quick_sort(l)
  goto .L3
.L3:



Skills

Recognize common nanopasses
Implement easy nanopasses
Place nanopasses in compiler

• 
• 
• 



Nanopass order hard to change

Research: AST design for nanopass
Meantime: design right order, early!

• 
• 
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