Compiler Architecture

char* s = "hello";
while(putchar(*s++));

SSeq
(SDecAsg "s"
(EStrLit "hello there"))
(Swhile
(EFunCall "putchar"
[EDeref (EPostInc (EvVar
(SBlock [1))
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X IR

Result {
ret val =

stdout = "hello\0";

}
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Printer

char* s = "hello";
while(putchar(*s++)) {
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Evaluator

)

"s"))1)
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Code

generatory)=

.string "hello"
main:

pushq %rbx
movl $.LCO,
L2:

movq stdout(%rip),
movsbl (%rbx), %edi
addq $1, %rbx

call putc
testl %eax,
jne .L2
popq %rbx
ret
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%rsi
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Hard even for experts

17 r/haskell - u/heisenbug « Dec 30 "1

Current state of GHC cross compilers?

There might be a slight chance to introduce Haskell into a small, well defined embedded
environment, but our tools are x86-64 Linux based, and we would need a cross GHC targetting
PowerPC32- What is the state of cross compilation in v7.4.1? Are the TODOs marked in the wiki

page done? Any magic arm twisters needed? (Which would be okay, as | am open for
experiments.)

permalink reddit 88% Upvoted

6 comments sorted by Confidence = Search comments

2 v u/barsoap Dec 3111

Not good. But that is, as the wiki page you're linking, about cross-compiling ghc, which is more
complex than cross-compiling any random app, primarily because your app's build system isn't
as scary as GHC's. The main issue is that the build system just doesn't properly distinguish
between target and donour, neither in terms of system headers or .o files, resulting in fun bugs
like code thinking directories are files.

You're probably going to have to build the rts for your target platform basically by hand, as the
base libraries... but you can ignore base on the first try and just do a ffi call to your platform's
puts or something.

Prepare to learn a lot of make if you aren't a wizard, yet. The build system isn't for the faint of
heart.

2 v u/heisenbug Jan 01'12
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r/Zig - u/[deleted] - Mar 26 ‘20

What is so great/hard about cross compilation?

| read Andrew's newest article (https://andrewkelley.me/post/zig-cc-powerful-drop-in-
replacement-gcc-clang.html) last night and after reading through the comments on various
sites it seems that people are pretty impressed by the cross compilation feature.

| don't have a CS background so | am just lacking the knowledge to appreciate this, but why is
cross compilation so great/hard?

Here's my current understanding, feel free to correct any assumptions that are incorrect:

A compiler is a program that translates source code into machine code. | compile something
and | get a working binary. That binary works, because the compiler understands how to
transform source code into machine code. Every single time. So the "formula" is known and
understood.

Let's say | code an image library. It takes an SVG file and converts it to a JPEG. This works
every time | run it. Flawlessly. This works because my program understands both the SVG
format as well as the JPEG format. Now let's further assume | add the possibility to also convert
SVG files to PNG. This works because my program now understands the SVG format, the JPEG
format and now also the PNG format. But nobody would say "oh my god this is so great | can
now do PNG as well". However this seems to be the case with cross compilation.

Why is it not mind-blowing if my image library can convert a SVG image to both JPEG and PNG?

Why is it mind-blowing that the zig compiler can convert source code to both Linux and macOS
(and other) binaries?

We have had C compilers for decades on many different platforms. So we know the formula for
how to convert source code to many different machine codes. If we know that formula just like
we know it for SVG-to-JPEG and SVG-to-PNG conversion then why is it so special?

| hope you can understand where my confusion lies. I'd really like to understand this, but it
hasn't quite made "click" yet.

permalink reddit 97% Upvoted

16 comments sorted by Confidence = Search comments

v u/[deleted] Mar 26 20

| absolutely love this perspective. This is what you would think if you reason about things



Hard even for experts

23 r/Zig - u/[deleted] « Mar 26 20

Chris Fallin Blog About Projects Academics & Publications

A New Backend for Cranelift, Part 1:
Instruction Selection

This post is the first in a three-part series about my recent work on Cranelift as part of my day job at
Mozilla. In this first post, | will set some context and describe the instruction selection problem. In
particular, I'll talk about a revamp to the instruction selector and backend framework in general that
we've been working on for the last nine months or so. This work has been co-developed with my
brilliant colleagues Julian Seward and Benjamin Bouvier, with significant early input from Dan Gohman
as well, and help from all of the wonderful Cranelift hackers.

Background: Cranelift

So what is Cranelift? The project is a compiler framework written in Rust that is designed especially

(huik nak avrelicivali) Far inckin-Fima ramnilatian IFe 3 nanaral-niirnaca ramnilar: ife mack naniilar iica-
heart. | hope you can understand where my confusion lies. I'd really like to understand this, but it
hasn't quite made "click" yet.

2 v permalink reddit 97% Upvoted

16 comments sorted by Confidence = Search comments

20 Y u/[deleted] Mar 26 '20

| absolutely love this perspective. This is what you would think if you reason about things
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Mo rwe opened this issue on Jan 20, 2019 - 22 comments

parl

we'

brill >

3] Q" rwe commented on Jan 20, 2019 « edited ~ Contributor

This is a discussion/proposal issue, not a functional bug.

The modules under src/full are currently closely interdependent which
. makes reasoning/learning about Agda's compiler implementation somewhat

¢ . . o
challenging and makes refactoring difficult. About half of the source
modules form a single 140+-module import cycle including
So\ Agda.Compiler.* , Agda.Interaction.* , Agda.TypeChecking.* .
(hiil

Additionally, although not cyclic, these modules import most of everything
else.

Motivation: I'm interested in playing with Agda's internal type system
implementation to prototype some ideas, and in particular exploring in the
feasibility of decoupling the parsing, type checking, optimization,
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GitHub - ghc/hadrian: The Hadrian build system for GHC

Hadrian Hadrlan is a new bulld system for the Glasgow Haskell Compiler. It is based on Shake and we

hope that it will soon replace the current Make-based bulld system.
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Compiler Architecture: 1-pass

/dev/stdin

Soeat iy Highest scoce [defaal)

Parsing TeX is Turing complete

TeX can only be parsed by a complkte Turing machine (modulo the finite space avaikable)
which pradudes it froen having & BNFE This comes from 2 combination of twe leateras: first,
TeX is Turing complete (if you need prood, this Tucno machine simulator shoud suffice);
and second, TeX can redafine macros (and their parsing rules) at runtime, Since TeX can

rexquires that macros be fallkwwsd by specfic characliens, redefining @ mescr can mesn
recefining the syntax of TeX. Combning these facts means that we can write TeX code like
the folloesing, whare At is defined 1o ba the algonthmic representation in TeX of sorme

-

artiitrary (compuaable) unctian M F 7

et \TuringComaleranpssaldzis
\edef\Dusput .;d'l {;‘ ."}".
Vifnue\Qutout=0



Compiler Architecture: 3-pass
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Compiler Architecture: 3-pass

Pandoc is structured as a set of readers, which translate various input formats into an
abstract syntax tree (the Pandoc AST) representing a structured document, and a set of
writers, which render this AST into various output formats. Pictorially:

[input format] ==reader==> [Pandoc AST] ==writer==> [output format] d;

This architecture allows pandoc to perform M x N conversions with M readers and N
writers.

Pandoc manual, https://github.com/jgm/pandoc/blob/main/doc/using-the-pandoc-api.md
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Nanopass: Parse

char* s = "hello";

while ( char* s = "hello";
)putchar(*s++) while (
‘ putchar(*s++)

);



Nanopass: Infer Types

real_solns :: _ = _ real_solns :: Float — Float
= —> Float
real_solns a b c = real_solns a b c =
let d = b**2 - 4%a*c let d = b™2 - 4%a*c ::
in Float 1n
if d = 0 then if d = (0 :: Float) then
[(-b + sqrt d) / [(-b + sqrt d) / (2%a)
(2*a) ,(-b - sqrt d) / (2%a) ]
,(-b - sgrt d) / else []
(2*a) ]

else []



Nanopass: for — while

for(int i = 0; int i = 6;
i < 1.length; while(i < 1.length) {
i++) do_stuff();
do_stuff(); i++;

; 5



Nanopass: A — class

int[ ] squares (int[] 1) {

Logger q = get_logger();
return
sum( map( (x = q.log(x*x))

, 1));

int[ ] squares (int[] 1) {
Logger q = get_logger();
return
sum( map( new Lam43(q)

, 1));
}

class Lam43 : Runnable {
Logger q;

object run (object x) {

return q.log(x*x); }}



Nanopass: class — struct

class Player {
uint coins;
int hiscore;

void again(){
if(coins-- > 08) {
int score = play();
hiscore = max
( score
, hiscore);

}



Nanopass: reference counting

void test() {
int[] xs =
list(1,1000000):
int[] ys =
map(xs, inc);

print(ys);

void test() {
int[] xs =
1ist(1,1000000):
int[] ys =
map(xs, inc);
_drop(xs);
print(ys);
_drop(ys);
}

https://www.microsoft.com/en-us/research/uploads/prod/2620/11/perceus-tr-v1.pdf



Nanopass: Constant folding

float sphere_area(float r){ float sphere_area(float r){
float pi = calc_pi(5); float pi = calc_pi(5);
return 4 * pi * r * r; return 4 * pi * r * r;

; 5



Nanopass: Constant folding

float sphere_area(float r){ float sphere_area(float r){
float pi = calc_pi(5); float pi = 3.13159;
return 4 * pi * r * r; return 4 *pi * r *

; 5

r



Nanopass: Constant folding

float sphere_area(float r){ float sphere_area(float r){
float pi = calc_pi(5);
return 4 * pi o * r; return 4 * 3.13159* r * r;

; 5



Nanopass: Constant folding

float sphere_area(float r){ float sphere_area(float r){
float pi = calc_pi(5);
return 4 * pi *r ¥ r; return 12.52636 * r * r;

; 5



Nanopass: Constant folding

float sphere_area(float r){ float sphere_area(float r){
float pi = calc_pi(5);
return 4 * pi * r * r; return 12.52636 * r * r;

; 5

e Not essential
e For ‘performance’
o “Optimization” vs “Lowering”



Nanopass: if,while,... — goto

if {

}

1.length > 7/

then {

}

u = insertion_sort(1l)

else {

}

u = quick_sort(1)

.LO:

1.length > 7/
branch .L1 .L2

L1:

u = insertion_sort(1l)
goto .L3

L2:

u = quick_sort(1)
goto .L3

L3:



Skills

e Recognize common nanopasses
e Implement easy nanopasses
e Place nanopasses 1n compiler



Nanopass order hard to change

data Expl da Exp2 da Exp3 da Exp4 da ExpS data Expb6 data ExpN-1

e Research: AST design for nanopass
e Meantime: design right order, early!
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