Compiler Architecture

char* s = "hello";
while(putchar(*s++));

SSeq
(SDecAsg "s"
(EStrLit "hello there"))
(Swhile
(EFunCall "putchar"
[EDeref (EPostInc (EvVar
(SBlock [1))

Parser

X IR

Result {
ret val =

stdout = "hello\0";

}

[]

Printer

char* s = "hello";
while(putchar(*s++)) {

}i

Evaluator

)

"s"))1)

Valldator j>%

Code

generatory)=

.string "hello"
main:

pushq %rbx
movl $.LCO,
L2:

movq stdout(%rip),
movsbl (%rbx), %edi
addq $1, %rbx

call putc
testl %eax,
jne .L2
popq %rbx
ret

%ebx

%rsi

%eax

How hard can 1t he?

GHC

X86_64

How hard can 1t he?

M98 -

-XGeneraljisedNewtypeDerivin
Famliles yp 9

-XType

»98

M98 -

Sehgatlesyati
-XGADTs

-XUndecidableInstances

GHC

X86_64

How hard can 1t he?

M98 -

-XGeneraljisedNewtypeDerivin
Famliles yp 9

-XType

»98

M98 -

Sehgatlesyati
-XGADTs

-XUndecidableInstances

GHC

aarche4

X86_64

X86

How hard can 1t he?

M=98 =F

-XGeneraljisedNewtypeDerivin
-XTypeFamlfles P 9

»98

M98 -

%?Sﬁé‘ﬂg%ﬁ’ﬁgi’lg{?x
-XGAD

S

-XUndecidableInstances

aarche4

X86_64

X86

How hard can 1t he?

M=98 =F

-XGeneralisedNewtypeDe
“XTypeFamities = Yre

ing

aarche4

»98

X86_64

M98 -

_X%ebéTdableSXn{?x

XondesidableInsta

X86

How hard can 1t he?

W98 F

-XGeneralisedNewtypeDerivin
Famliles yp 9

-XType

aarche4

»98

X86_64

M98 -

ienaldzenserett

- DTs
-XUndecidableInstances

X86

How hard can 1t he?

W98 F

-XGeneralisedNewtypeDerivin
-XTypeFamliles P 9

»98

Meos -
:%%‘SEW%’%B#S?XS{?X \'
:XUndegidableInstances {

'}

0

How hard can it

Me98 - "where IS"
'XGeneFallfedNewtypeDer1v1ng putStrln
-XTypeFamilies defined?

»98 ") | onc

M=98 -

—XReb1 dableS n{?x
-XTem ateHas -

:XUndec1dableInstances

How hard can 1t he?

[

- where is
M98 = "outStrin® System. IO
:§$$ngg}1ﬁedNeWtypeDer1v1ng P (282,00)

Tes xqgﬁned? - (283, 38)

»98 1) | one

M98 =

-XReb1 dableS n{?x
-XTem ateHas -

:XUndec1dableInstances

How hard can 1t be

Meos8 -

-XGeneralisedNewtypeDerivin
-XTypeFamlfles P 9

»98

M=o8 oF

-XReb1 dableS n{?x
-XTem ateHas -

:XUndec1dableInstances

[

where is system. I0
“putStrLn” '
4o LSP (282,00)
,, .d‘?f’”ed' - (283, 38)

?

Hard even for experts

17 r/haskell - u/heisenbug « Dec 30 "1

Current state of GHC cross compilers?

There might be a slight chance to introduce Haskell into a small, well defined embedded
environment, but our tools are x86-64 Linux based, and we would need a cross GHC targetting
PowerPC32- What is the state of cross compilation in v7.4.1? Are the TODOs marked in the wiki

page done? Any magic arm twisters needed? (Which would be okay, as | am open for
experiments.)

permalink reddit 88% Upvoted

6 comments sorted by Confidence = Search comments

2 v u/barsoap Dec 3111

Not good. But that is, as the wiki page you're linking, about cross-compiling ghc, which is more
complex than cross-compiling any random app, primarily because your app's build system isn't
as scary as GHC's. The main issue is that the build system just doesn't properly distinguish
between target and donour, neither in terms of system headers or .o files, resulting in fun bugs
like code thinking directories are files.

You're probably going to have to build the rts for your target platform basically by hand, as the
base libraries... but you can ignore base on the first try and just do a ffi call to your platform's
puts or something.

Prepare to learn a lot of make if you aren't a wizard, yet. The build system isn't for the faint of
heart.

2 v u/heisenbug Jan 01'12

Hard even for experts

r/haskell

Current

There mit
environm
PowerPC
page dor
experime

permalin}

6 comments sor

3

v u/bars

Not goo
complex
as scary
betweer
like cod

You're p
base libi
puts or ¢

Prepare
heart.

23

20

r/Zig - u/[deleted] - Mar 26 ‘20

What is so great/hard about cross compilation?

| read Andrew's newest article (https://andrewkelley.me/post/zig-cc-powerful-drop-in-
replacement-gcc-clang.html) last night and after reading through the comments on various
sites it seems that people are pretty impressed by the cross compilation feature.

| don't have a CS background so | am just lacking the knowledge to appreciate this, but why is
cross compilation so great/hard?

Here's my current understanding, feel free to correct any assumptions that are incorrect:

A compiler is a program that translates source code into machine code. | compile something
and | get a working binary. That binary works, because the compiler understands how to
transform source code into machine code. Every single time. So the "formula" is known and
understood.

Let's say | code an image library. It takes an SVG file and converts it to a JPEG. This works
every time | run it. Flawlessly. This works because my program understands both the SVG
format as well as the JPEG format. Now let's further assume | add the possibility to also convert
SVG files to PNG. This works because my program now understands the SVG format, the JPEG
format and now also the PNG format. But nobody would say "oh my god this is so great | can
now do PNG as well". However this seems to be the case with cross compilation.

Why is it not mind-blowing if my image library can convert a SVG image to both JPEG and PNG?

Why is it mind-blowing that the zig compiler can convert source code to both Linux and macOS
(and other) binaries?

We have had C compilers for decades on many different platforms. So we know the formula for
how to convert source code to many different machine codes. If we know that formula just like
we know it for SVG-to-JPEG and SVG-to-PNG conversion then why is it so special?

| hope you can understand where my confusion lies. I'd really like to understand this, but it
hasn't quite made "click" yet.

permalink reddit 97% Upvoted

16 comments sorted by Confidence = Search comments

v u/[deleted] Mar 26 20

| absolutely love this perspective. This is what you would think if you reason about things

Hard even for experts

23 r/Zig - u/[deleted] « Mar 26 20

Chris Fallin Blog About Projects Academics & Publications

A New Backend for Cranelift, Part 1:
Instruction Selection

This post is the first in a three-part series about my recent work on Cranelift as part of my day job at
Mozilla. In this first post, | will set some context and describe the instruction selection problem. In
particular, I'll talk about a revamp to the instruction selector and backend framework in general that
we've been working on for the last nine months or so. This work has been co-developed with my
brilliant colleagues Julian Seward and Benjamin Bouvier, with significant early input from Dan Gohman
as well, and help from all of the wonderful Cranelift hackers.

Background: Cranelift

So what is Cranelift? The project is a compiler framework written in Rust that is designed especially

(huik nak avrelicivali) Far inckin-Fima ramnilatian IFe 3 nanaral-niirnaca ramnilar: ife mack naniilar iica-
heart. | hope you can understand where my confusion lies. I'd really like to understand this, but it
hasn't quite made "click" yet.

2 v permalink reddit 97% Upvoted

16 comments sorted by Confidence = Search comments

20 Y u/[deleted] Mar 26 '20

| absolutely love this perspective. This is what you would think if you reason about things

Hard even for experts

Code to Workspace Find
23 r/Zig - u/[Language Maintainer Repository completion Hover def symbols references Diagnostics
. . cquery-proj
Chris Fallin ecticquery
C/C++ MaskRay github.com/ « v v v v v
MaskRay/c
A New Backe
Clojure snoe github.com/ « v v v v
ol snoe/clojur
Instruction S
o Common Seven Rabix/Bent «” v v v v
Az Workflow Bridges/Rabix en
Language (CWL)
This post is the first in a three-p
Moz!lla. In this first post, | will s Coq CogLSPTeam coglsp v v
particular, I'll talk about a revam
we've been working on for the |
brilliant colleagues Julian Sewar Cucumber Cucumber core cucumber/l « v
(Gherkin) team anguage-s
as well, and help from all of the erver .
IBM Enterprise IBM marketplac v v v v v
COBOL for z/0S e.visualstu
dio.com/ite
. = ms?itemNa
Background: Crz eienia
peneditor
So what is Cranelift? The projecl
(huk nat avelucivah Far inckin.t |BM Enterprise Broadcom github.com/ v v v v
heart. ! hop'e yO}. COBOL for z/0S eclipse/che
hasnitiquif -che4z-Isp-f
2 v permalink or-cobo!
16 comments sor
CSS/LESS/SASS Microsoft github.com/ « v v v v
20 ¥ u/[dele! Microsoft/v
| absolute scode/tree

mactar/evie

Hard even for experts

Code to Workspace Find
23 r/Zig - u/[Language Maintainer Repository completion Hover def symbols references
. . cquery-proj
Chris Fallin ectiquery
C/Cus+ MaskRay github.com/ « v v v v
MaskRay/c
Ao ~ 1 cls
A [agda/agda Public N\ Notifications % Fork 315 Y% Star 23k

Ir

<> Code (©) Issues 938 19 Pullrequests 76 (® Actions [Projects

This

Mo rwe opened this issue on Jan 20, 2019 - 22 comments

parl

we'

brill >

3] Q" rwe commented on Jan 20, 2019 « edited ~ Contributor

This is a discussion/proposal issue, not a functional bug.

The modules under src/full are currently closely interdependent which
. makes reasoning/learning about Agda's compiler implementation somewhat

¢ . . o
challenging and makes refactoring difficult. About half of the source
modules form a single 140+-module import cycle including
So\ Agda.Compiler.* , Agda.Interaction.* , Agda.TypeChecking.* .
(hiil

Additionally, although not cyclic, these modules import most of everything
else.

Motivation: I'm interested in playing with Agda's internal type system
implementation to prototype some ideas, and in particular exploring in the
feasibility of decoupling the parsing, type checking, optimization,

e legiom eiewio - FEL sl
CSS/LESS/SASS Microsoft github.com/ «

20 ¥ u/[dele! Microsoft/v

| absolute scode/tree

mactar/avte

9 00 Wiki @) Security ...

Heavy coupling of Haskell source modules #3512 ZEE

Assignees

No one assigned

Labels

refactor type: discussion

Projects

@ Decouple codebase

Todo

Milestone

v v v

Diagnostics

Hard even for experts

Code to Workspace Find
23 r/Zig - ufl Language Maintainer Repository completion Hover def symbols references Diagnostics

2 3 cquery-proj
ChFIS Fal.hn ect/cquery

C/Cs+ MaskRay github.com/ « v v v v v
MaskRay/c

A ~—~ 1 cls
A [agda/agda Public £\ Notifications % Fork 315 Yy Star 2.3k . v

Ir

<> Code (©) Issues 938 19 Pullrequests 76 (® Actions [Projects 9 00 Wiki @ Security

O https://github.com > ghc > hadrian

GitHub - ghc/hadrian: The Hadrian build system for GHC

Hadrian Hadrlan is a new bulld system for the Glasgow Haskell Compiler. It is based on Shake and we

hope that it will soon replace the current Make-based bulld system.

The modules under src/full are currently closely interdependent which Labels

B(makes reasoning/learning about Agda's compiler implementation somewhat refactor’ type: discussion
challenging and makes refactoring difficult. About half of the source
modules form a single 140+-module import cycle including

So\ Agda.Compiler.* , Agda.Interaction.* , Agda.TypeChecking.* . Projects
(hul Additionally, although not cyclic, these modules import most of everything v
[7) Decouple codebase
else.
. TO do
Motivation: I'm interested in playing with Agda's internal type system
implementation to prototype some ideas, and in particular exploring in the
feasibility of decoupling the parsing, type checking, optimization, Milestone
T S SR
CSS/LESS/SASS Microsoft github.com/ « v v v v
20 ¥ u/[dele! Microsoft/v

| absolut¢ scode/tree/

macter/avte

Compiler Architecture: 1-pass

/dev/stdln /dev/stdout j

Compiler Architecture: 1-pass

/dev/stdinj /dev/stdout j

’

Compiler Architecture: 1-pass

/dev/stdinj /dev/stdout j

/ . “g
(3 .:..'N-'"-- S e
s el S X \
y N, A i
3 \ T o .1 A
o .I \l 3 E

Compiler Architecture: 1-pass

/dev/stdinj /dev/stdout j

Compiler Architecture: 1-pass

/dev/stdin

Soeat iy Highest scoce [defaal)

Parsing TeX is Turing complete

TeX can only be parsed by a complkte Turing machine (modulo the finite space avaikable)
which pradudes it froen having & BNFE This comes from 2 combination of twe leateras: first,
TeX is Turing complete (if you need prood, this Tucno machine simulator shoud suffice);
and second, TeX can redafine macros (and their parsing rules) at runtime, Since TeX can

rexquires that macros be fallkwwsd by specfic characliens, redefining @ mescr can mesn
recefining the syntax of TeX. Combning these facts means that we can write TeX code like
the folloesing, whare At is defined 1o ba the algonthmic representation in TeX of sorme

-

artiitrary (compuaable) unctian M F 7

et \TuringComaleranpssaldzis
\edef\Dusput .;d'l {;‘ ."}".
Vifnue\Qutout=0

Compiler Architecture: 3-pass

LLVM Compiler Infrastructure
Lattner et al. |

Objective-C
@ python

DS

FScala

R

i

Front
Ends

P. Teoh, Stackoverflow, https://stackoverflow.com/a/49081640

FE

LLVM

Typed SSA
IR

/_

Optimizations/
Transformations

A

]

ey

Code
Gen/lit

-

MIPSS
(inteD)

SPARC

PowerPC

—

Compiler Architecture: 3-pass

Pandoc is structured as a set of readers, which translate various input formats into an
abstract syntax tree (the Pandoc AST) representing a structured document, and a set of
writers, which render this AST into various output formats. Pictorially:

[input format] ==reader==> [Pandoc AST] ==writer==> [output format] d;

This architecture allows pandoc to perform M x N conversions with M readers and N
writers.

Pandoc manual, https://github.com/jgm/pandoc/blob/main/doc/using-the-pandoc-api.md

Compiler Architecture: nanopass

[

3 g6 4 Lr AF A 4 fb
GHGHGHGHGHG a1 4

Pass 1 Pass2 Pass3 Pass4 Pass5 Pass6 I_ _t_t- Pass n

S https://cakeml.org/

values Languages Transformations BVL:) Inline small functions a GC primitive :(S
(source syntax) functional > Fold constants and Allocat ist)
> Parse concrete syntax language shrink Lets D ocate register names
- y, i
CakelL > Infer types, exit if fail without > Split over-sized functions — > Concretise stack
e _ closures into many small functions Introduce (raw) calls pa
source AST > Lift some Lets to top level _ _ @ : > function preambles
\) Compile global varsintoa 3 StackLang:
- N > Ier:itrrr?ig:f: I%Iggl?:zsvgrs. N dynamically resized array ‘:‘: imperative > Implement GC primitive
- . ° language)
FlatLang replace constructor BVI: > Optimise Let-expressions S with array-like > Turn stack accesses in
: names with numbers)) ° memory acceses
a language for = one global Make some functions tail- g stack and _ |
ili Global dead code elim e e variable recursive using an acc 7] optional GC > Rename' registers to m
® compiling > - EE = sing a : B arch registers/conventi
Q inh- X wn \ J)) . (=]
= away high-level) Turn pattern matches into g % > Switch to imperative style = . > Flatten code
S lang. features if-then-else decision trees % © (\ 2 ~
o L P Switch to de Bruijn Z 8 DatalLang: > Reduce caller-saved vars = (LabLang: D Delete no-ops (Tick, Sk
- C o . . @ assembly lang.
% e N > indexed local variables S £ imperative > Combine adjacent = % Encode progrzm as
D\ : concrete machine code
g > Fuse function calls/apps & © language memory allocations o T
2 into multi-arg calls/apps — > Remove data abstraction 2§ ARMV7 > (silver
e ClosLang: > Track where closure values o L §
T last language flow & inline small functions > Simplify program -
= ith cl 5T ARMv8 x86-64)(MIPs-64)(RisC-
2 With closures > Introduce C-style fast > Select target instructions g 2
2 (has muiti-arg calls wherever possible WordLang: e e e e e
% closures)) Remove deadcode imperative > Perform SSA-like renamingargware below this line —
g language with . i -
% > Annotate closure creations mac?\ingwor ds > Force two-reg code (if req.) Broof-oroduci [as HOL functionsj
’ roof-producing
LN Z > Perform closure conv. memory and D Common subexp. elim. Verilog generator Stver CPU
; ; a GC primitive : :
BVL: > Inline small functions P > Remove deadcode in Verilog

Nanopass: Parse

char* s = "hello";

while (char* s = "hello";
)putchar(*s++) while (
‘ putchar(*s++)

);

Nanopass: Infer Types

real_solns :: _ = _ real_solns :: Float — Float
= —> Float
real_solns a b c = real_solns a b c =
let d = b**2 - 4%a*c let d = b™2 - 4%a*c ::
in Float 1n
if d = 0 then if d = (0 :: Float) then
[(-b + sqrt d) / [(-b + sqrt d) / (2%a)
(2*a) ,(-b - sqrt d) / (2%a)]
,(-b - sgrt d) / else []
(2*a)]

else []

Nanopass: for — while

for(int i = 0; int i = 6;
i < 1.length; while(i < 1.length) {
i++) do_stuff();
do_stuff(); i++;

; 5

Nanopass: A — class

int[] squares (int[] 1) {

Logger q = get_logger();
return
sum(map((x = q.log(x*x))

, 1));

int[] squares (int[] 1) {
Logger q = get_logger();
return
sum(map(new Lam43(q)

, 1));
}

class Lam43 : Runnable {
Logger q;

object run (object x) {

return q.log(x*x); }}

Nanopass: class — struct

class Player {
uint coins;
int hiscore;

void again(){
if(coins-- > 08) {
int score = play();
hiscore = max
(score
, hiscore);

}

Nanopass: reference counting

void test() {
int[] xs =
list(1,1000000):
int[] ys =
map(xs, inc);

print(ys);

void test() {
int[] xs =
1ist(1,1000000):
int[] ys =
map(xs, inc);
_drop(xs);
print(ys);
_drop(ys);
}

https://www.microsoft.com/en-us/research/uploads/prod/2620/11/perceus-tr-v1.pdf

Nanopass: Constant folding

float sphere_area(float r){ float sphere_area(float r){
float pi = calc_pi(5); float pi = calc_pi(5);
return 4 * pi * r * r; return 4 * pi * r * r;

; 5

Nanopass: Constant folding

float sphere_area(float r){ float sphere_area(float r){
float pi = calc_pi(5); float pi = 3.13159;
return 4 * pi * r * r; return 4 *pi * r *

; 5

r

Nanopass: Constant folding

float sphere_area(float r){ float sphere_area(float r){
float pi = calc_pi(5);
return 4 * pi o * r; return 4 * 3.13159* r * r;

; 5

Nanopass: Constant folding

float sphere_area(float r){ float sphere_area(float r){
float pi = calc_pi(5);
return 4 * pi *r ¥ r; return 12.52636 * r * r;

; 5

Nanopass: Constant folding

float sphere_area(float r){ float sphere_area(float r){
float pi = calc_pi(5);
return 4 * pi * r * r; return 12.52636 * r * r;

; 5

e Not essential
e For ‘performance’
o “Optimization” vs “Lowering”

Nanopass: if,while,... — goto

if {

}

1.length > 7/

then {

}

u = insertion_sort(1l)

else {

}

u = quick_sort(1)

.LO:

1.length > 7/
branch .L1 .L2

L1:

u = insertion_sort(1l)
goto .L3

L2:

u = quick_sort(1)
goto .L3

L3:

Skills

e Recognize common nanopasses
e Implement easy nanopasses
e Place nanopasses 1n compiler

Nanopass order hard to change

data Expl da Exp2 da Exp3 da Exp4 da ExpS data Expb6 data ExpN-1

e Research: AST design for nanopass
e Meantime: design right order, early!

	Compiler Architecture
	How hard can it be?
	How hard can it be?
	How hard can it be?
	How hard can it be?
	How hard can it be?
	How hard can it be?
	How hard can it be?
	How hard can it be?
	How hard can it be?
	How hard can it be?
	Hard even for experts
	Hard even for experts
	Hard even for experts
	Hard even for experts
	Hard even for experts
	Hard even for experts
	Compiler Architecture: 1-pass
	Compiler Architecture: 1-pass
	Compiler Architecture: 1-pass
	Compiler Architecture: 1-pass
	Compiler Architecture: 1-pass
	Compiler Architecture: 3-pass
	Compiler Architecture: 3-pass
	Compiler Architecture: nanopass
	Nanopass: Parse
	Nanopass: Infer Types
	Nanopass: for → while
	Nanopass: λ → class
	Nanopass: class → struct
	Nanopass: reference counting
	Nanopass: Constant folding
	Nanopass: Constant folding
	Nanopass: Constant folding
	Nanopass: Constant folding
	Nanopass: Constant folding
	Nanopass: if,while,… → goto
	Skills
	Nanopass order hard to change

