

Compositionality

Johan Jeuring

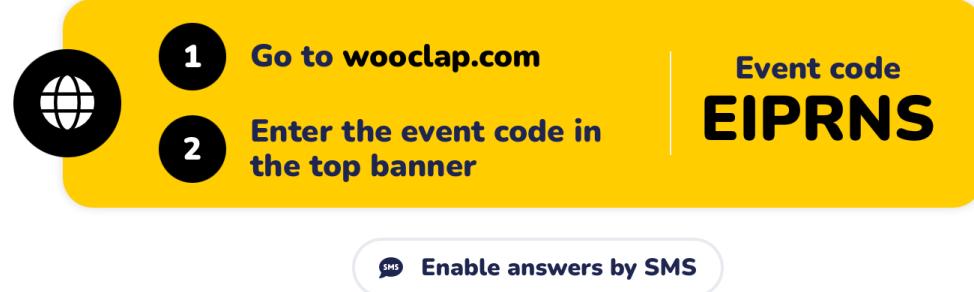
Last week

Parser combinators ...

... designing grammars and parsers

Involving semantic functions

Utrecht University



About the labs and autograding

From now on, we will merge the group from BBG 165 (today KBG 208) with the groups BBG 223 and BBG 209

The first feedback moment for the iCal lab was on Sunday; the second is on Wednesday

We will try to get the autograder results back to you today

Note the autograder doesn't answer particular questions: please ask them in the labs. TAs are happy to help!

Utrecht University

Compositionality

Lecture notes: 5.1-3

Compiler phases

- Lexing and parsing
- Analysis and type checking
- Desugaring
- Optimization
- Code generation

Not all compilers implement all phases

Some compilers implement many more phases

Abstract syntax trees

Abstract syntax trees (ASTs) play a central role:

- Some phases build ASTs (parsing)
- Most phases traverse ASTs (analysis, type checking, code generation)
- Some phases traverse one AST and build another (such as desugaring)

Learning goals

Parsers build abstract syntax trees

Learning goals:

- Develop software to traverse ASTs systematically to compute all sorts of information
- Write **compositional** functions, also known as folds, on (possibly mutually recursive) datatypes
- Explain the relation between concrete syntax, abstract syntax, datatypes, algebras and folds.

Example: Matched parentheses

$S \rightarrow (S)S \mid \epsilon$

Examples: $((())(()), (), ((())(), ...)$

Abstract syntax:

```
data Parens = Match Parens Parens
             | Empty
```


Counting matching pairs of parentheses

```
data Parens = Match Parens Parens
             | Empty
```

```
runParser (count <$> parens) "((())())"  4
```

```
count :: Parens      → Int
count    (Match p1 p2) = (count p1 + 1) + count p2
count    Empty        = 0
```

The definition of `count` mirrors the recursive structure of the datatype

More semantic functions

```
data Parens = Match Parens Parens
             | Empty
```

```
runParser (depth <$> parens) "((())())"  2
```

```
depth :: Parens → Int
```

```
depth (Match p1 p2) = (depth p1 + 1) `max` depth p2
```

```
depth Empty = 0
```

```
runParser (print <$> parens) "((())())"  "((())())"
```

```
print :: Parens → String
```

```
print (Match p1 p2) = "(" ++ print p1 ++ ")" ++ print p2
```

```
print Empty = ""
```


Capturing the recursive structure I

All functions have the following structure:

$f :: \text{Parens} \rightarrow \dots$

$f (\text{Match } p1\ p2) = \dots (f\ p1) \dots (f\ p2) \dots$

$f \text{ Empty} = \dots$

We abstract from this structure

Capturing the recursive structure II

$f :: \text{Parens} \rightarrow \dots$

$f (\text{Match } p1\ p2) = \dots (f\ p1) \dots (f\ p2) \dots$

$f \text{ Empty} = \dots$

Capturing the recursive structure II

```
f :: Parens      → r
f (Match p1 p2) = match (f p1) (f p2)
f Empty         = empty
```

```
Match :: Parens → Parens → Parens
match :: r      → r      → r
```

```
Empty :: Parens
empty :: r
```


Algebra and fold

Each semantic function needs a different instance of match, empty and r

```
type ParensAlgebra r = (r → r → r -- match
                           ,r)           -- empty
```

```
foldParens :: ParensAlgebra r → Parens → r
foldParens (match,empty) = f
  where f (Match p1 p2) = match (f p1) (f p2)
        f Empty           = empty
```


count revisited

```
type ParensAlgebra r = (r → r → r -- match
                           ,r)           -- empty

foldParens :: ParensAlgebra r → Parens → r
foldParens (match,empty) = f
  where f (Match p1 p2) = match (f p1) (f p2)
        f Empty         = empty

count :: Parens          → Int
count   (Match p1 p2) = (count p1 + 1) + count p2
count   Empty          = 0

countAlgebra = (\l r → l+1+r, 0)
count = foldParens countAlgebra
```


depth and print

```
depthAlgebra = (\l r → max (l+1) r, 0)
depth        = foldParens depthAlgebra
```

```
printAlgebra = (\l r → "(" ++ l ++ ")" ++ r, "")
print        = foldParens printAlgebra
```


Example: Expressions

Examples: $2+(-3+4)$, $-(2+8)+16$

$E \rightarrow E + E$

$E \rightarrow -E$

$E \rightarrow \text{Nat}$

$E \rightarrow (E)$

Associative operator grammar transformation

$E \rightarrow E' + E$

$E' \rightarrow -E'$

$E' \rightarrow \text{Nat}$

$E' \rightarrow (E)$

Abstract syntax

Based on original grammar:

```
data E = Add E E
        | Neg E
        | Num Int
```


Functions on expressions

```
data E = Add E E
        | Neg E
        | Num Int
```

```
eval :: E          → Int
eval (Add e1 e2) = eval e1 + eval e2
eval (Neg e)      = - (eval e)
eval (Num i)      = i
```

The structure of the function again reflects the structure of the datatype

An expression algebra

```
data E = Add E E
        | Neg E
        | Num Int
```

```
Add :: E → E → E
Neg :: E → E
Num :: Int → E
```

```
type Ealgebra r = (r → r → r -- add
                    ,r → r      -- neg
                    ,Int → r)   -- num
```


Folds on expressions

```
type EAlgebra r = (r → r → r -- add
                     ,r → r      -- neg
                     ,Int → r)   -- num

foldE :: EAlgebra r → E → r
foldE (add,neg,num) = f
  where f (Add e1 e2) = add (f e1) (f e2)
        f (Neg e)     = neg (f e)
        f (Num n)      = num n

evalAlgebra :: EAlgebra Int
evalAlgebra = ((+),negate,id)

eval      = foldE evalAlgebra
```


Utrecht University

Q2

Utrecht University

Folds for all data types

Trees

```
data Tree a = Leaf a
            | Node (Tree a) (Tree a)

Leaf :: a → Tree a
Node :: Tree a → Tree a → Tree a

type TreeAlgebra a r = (a → r          -- leaf
                        ,r → r → r) -- node

foldTree :: TreeAlgebra a r → Tree a → r
foldTree (leaf,node) = f
  where f (Leaf x)  = leaf x
        f (Node l r) = node (f l) (f r)
```


Tree algebra examples

```
sizeAlgebra    :: TreeAlgebra a Int
sumAlgebra     :: TreeAlgebra Int Int
inorderAlgebra :: TreeAlgebra a [a]
reverseAlgebra :: TreeAlgebra a (Tree a)
```

```
sizeAlgebra    = (const 1, (+))
sumAlgebra     = (id, (+))
inorderAlgebra = ((:[]), ++)
reverseAlgebra = (Leaf, flip Node)
```

```
idAlgebra      :: TreeAlgebra a (Tree a)
idAlgebra      = (Leaf, Node)
```


User-defined lists

```
data List a = Nil
            | Cons a (List a)

Nil    :: List a
Cons :: a → List a → List a

type ListAlgebra a r = (r
                        ,a → r → r)

foldList :: ListAlgebra a r → List a → r
foldList (nil,cons) = f
  where f Nil          = nil
        f (Cons x xs) = cons x (f xs)
```


Built-in lists

```
data [a] = []
         | a : [a]

[] :: [a]
(:) :: a → [a] → [a]

type LAlgebra a r = (r
                      , a → r → r)

foldL :: LAlgebra a r → [a] → r
foldL (nil, cons) = f
  where f []       = nil
        f (x:xs) = cons x (f xs)
```


foldL versus foldr

```
type LAlgebra a r = (r
                      ,a → r → r)
```

```
foldL :: LAlgebra a r → [a] → r
foldL (nil,cons) = f
  where f []      = nil
        f (x:xs) = cons x (f xs)
```

```
foldr :: (a → r → r) → r → [a] → r
foldr cons nil []      = nil
foldr cons nil (x:xs) = cons x (foldr cons nil xs)
```

```
foldr cons nil == foldL (nil,cons)
```


Maybe

Non-recursive datatypes:

```
data Maybe a = Nothing
             | Just a
```

Nothing :: Maybe a

Just :: a → Maybe a

```
type MaybeAlgebra a r = (r, a → r)
```

```
foldMaybe :: MaybeAlgebra a r → Maybe a → r
```

```
foldMaybe (nothing, just) = f
```

```
  where f Nothing = nothing
```

```
        f (Just x) = just x
```


foldMaybe versus maybe

```
type MaybeAlgebra a r = (r, a → r)
```

```
foldMaybe :: MaybeAlgebra a r → Maybe a → r
```

```
foldMaybe (nothing, just) = f
```

```
  where f Nothing = nothing
```

```
        f (Just x) = just x
```

```
maybe :: r → (a → r) → Maybe a → r
```

```
maybe nothing just Nothing = nothing
```

```
maybe nothing just (Just x) = just x
```

```
maybe nothing just == foldMaybe (nothing, just)
```


Bool

```
data Bool = True
          | False
```

```
True  :: Bool
False :: Bool
```

```
type BoolAlgebra r = (r,r)
```

```
foldBool :: BoolAlgebra r → Bool → r
foldBool (true, false) True  = true
foldBool (true, false) False = false
```


foldBool versus if-then-else

```
type BoolAlgebra r = (r,r)
```

```
foldBool :: BoolAlgebra r → Bool → r
```

```
foldBool (true, false) True = true
```

```
foldBool (true, false) False = false
```

```
foldBool (true, false) x == if x then true else false
```


Utrecht University

Q3,4

Summary

For a datatype T, we can define a fold function as follows:

- Define an algebra type $T\text{Algebra}$ that is parameterized over all of T's parameters, plus a result type r
- The algebra is a tuple containing one component per constructor function
- The types of the components are like the types of the constructor functions, but all occurrences of T are replaced with r
- The fold function is defined by traversing the data structure, replacing constructors with their corresponding algebra components, and recursing where required

Advantages of using folds

- A systematic recursion “design” pattern that is well known and easy to understand (compare with iterator)
- Using a fold forces us to define semantics in a compositional fashion – the semantics of a whole term is composed from the semantics of its subterms
- The systematic nature of a fold makes it easy to combine several folds into one (fusion). This is essential for efficiency in a compiler
- Compilers cannot determine the recursive structure of ‘general recursive’ functions