>
=
(qe]
=
o
+
(V)]
o
o
-
o
O

0]
C
A
>
Q
—
o
O
<
O
o

N
§U% Utrecht University I_a St We e k

N
Parser combinators ...

... designing grammars and parsers

Involving semantic functions

A
£ U= Utrecht University

N

e Go to wooclap.com Eventicode
@ Enter the event code in E ' PR N 5
the top banner

& Enable answers by SMS

A

G Ut Uriversicy About the labs and autograding

From now on, we will merge the group from BBG 165 (today
KBG 208) with the groups BBG 223 and BBG 209

The first feedback moment for the iCal lab was on Sunday; the
second is on Wednesday

We will try to get the autograder results back to you today

Note the autograder doesn’t answer particular questions:
please asks them in the labs. TAs are happy to help!

Compositionality

Lecture notes: 5.1-3

N

G Ut Uriversicy Compiler phases
- Lexing and parsing

- Analysis and type checking

- Desugaring

- Optimization

- Code generation

Not all compilers implement all phases
Some compilers implement many more phases

N

N -
G Ut Uriversicy Abstract syntax trees

Abstract syntax trees (ASTs) play a central role:

- Some phases build ASTs (parsing)

- Most phases traverse ASTs (analysis, type checking, code
generation)

- Some phases traverse one AST and build another (such as
desugaring)

N/ :
§\U% Utrecht University Lea rn I n g goa I S

YN

Parsers build abstract syntax trees

Learning goals:

- Develop software to traverse ASTs systematically to compute
all sorts of information

- Write compositional functions, also known as folds, on
(possibly mutually recursive) datatypes

- Explain the relation between concrete syntax, abstract
syntax, datatypes, algebras and folds.

N

G Urnecht Universicy Example: Matched parentheses

S->(S)S | €

Examples: (())(()), (), (00), ...

Abstract syntax:

data Parens = Match Parens Parens
| Empty

82 Gurecht Universiey Counting matching pairs of parentheses

YN

data Parens = Match Parens Parens
| Empty

runParser (count <$> parens) “(())(())” IE::$> 4

count :: Parens > Int
count (Match pl1 p2) = (count pl + 1) + count p2
count Empty = 0

The definition of count mirrors the recursive structure of the
datatype

NI

%T§ Utrecht University More semantic functions

data Parens = Match Parens Parens

| Empty
runParser (depth <$> parens) “(())(())” [::$> 2
depth :: Parens > Int

depth (Match pl1 p2) = (depth p1 + 1) ‘max‘ depth p2
depth Empty = 0

runParser (print <$> parens) “(())(())” E::i> “(O)0))”

print :: Parens > String
print (Match pl1 p2) = "(" ++ print pl ++ ")" ++ print p2
print Empty = =

N

£5% Ureehc Universiy Capturing the recursive structure |

AN

All functions have the following structure:

+ :: Parens > ..
f (Match p1 p2) = .. (f pl1l) .. (f p2) ..
f Empty =

We abstract from this structure

N

G et Universiy Capturing the recursive structure

f :: Parens >
f (Match pl p2)
f Empty

: (f pl) .. (f p2) ..

NI

G et Universiy Capturing the recursive structure
f :: Parens > r

f (Match pl p2) = match (f pl) (f p2)

f Empty empty

Match :: Parens -» Parens - Parens
match :: r > r > r

Empty :: Parens
empty :: r

N o
%T § Utrecht University AI gebra and fOld
Each semantic function needs a different instance of match,

empty and r

type ParensAlgebra r = (r > r » r -- match
1) -- empty
foldParens :: ParensAlgebra r - Parens - r

foldParens (match,empty) = f
where £ (Match pl p2) = match (f pl) (f p2)
f Empty = empty

N

%T§ Utrecht University C O u N t reVI S Ite d

type ParensAlgebra r = (r > r » r -- match
1) -- empty
foldParens :: ParensAlgebra r - Parens - r

foldParens (match,empty) = f
where £ (Match pl p2) = match (f pl) (f p2)

f Empty = empty
count :: Parens > Int
count (Match p1 p2) = (count pl + 1) + count p2
count Empty = 0

countAlgebra = (\1 r » 1+1+r, 0)

count = foldParens countAlgebra

< o :
%T§ Utrecht University d e p t h a n d p I" 1 n t

depthAlgebra = (\1 r »> max (1+1) r, 0)
depth foldParens depthAlgebra

printAlgebra (\1 r » "(++1++")’++r,)
print = foldParens printAlgebra

A

Tz apsi . I
G et Universiy Example: Expressions

Examples: 2+(-3+4), -(2+8)+16

E—->E+E
E—>-E
E 2 Nat
E - (E)

Associative operator grammar transformation
E >E +E

E' = -F

E’ > Nat

E' = (E)

N

N -
%T§ Utrecht University A bSt ra Ct Sy ntaX

Based on original grammar:

N

N iversi I .
s Ureche Universic Functions on expressions

data E = Add E E
| Neg E
| Num Int
eval :: E » Int

eval el + eval e2
- (eval e)
i

eval (Add el e2)
eval (Neg e)
eval (Num 1)

The structure of the function again reflects the structure
of the datatype

NI

G Urnecht Universicy An expression algebra

Add :: E » E » E
Neg :: E > E
Num :: Int »> E

type Ealgebra r = (r - r »> r -- add
,Pp>r -- neg
,Int > r) -- num

N

N iversi .
€53 vircent Universicy Folds on expressions

type Ealgebra r = (r > r - r -- add
,r > r -- neg
,Int > r) -- num

foldE :: EAlgebra r - E > r

foldE (add,neg,num) =

where ¥ (Add el e2)
 (Neg e)

£ (Num n)

N = m

add (f el) (f e2)
neg (f e)
num n

evalAlgebra :: EAlgebra Int
evalAlgebra ((+),negate,id)

eval = foldE evalAlgebra

N

Utrecht University

Q2

Folds for all data types

N
§\ N % Utrecht University Tre e S

N

AN

data Tree a = Leaf a
| Node (Tree a) (Tree a)

Leat :: a » Tree a
Node :: Tree a » Tree a » Tree a
type TreeAlgebra a r = (a > r -- leaf
,F > r > r) -- node
foldTree :: TreeAlgebra a r » Tree a » r
foldTree (leaf,node) = f
where f (Leaf x) = leaf x

f (Node 1 r) = node (f 1) (f r)

N

K 2 . .
£ U= Utrecht University

N

sizeAlgebra
sumAlgebra

inorderAlgebra ::
reverseAlgebra ::

sizeAlgebra
sumAlgebra
inorderAlgebra
reverseAlgebra

idAlgebra
idAlgebra

Tree algebra examples

:: TreeAlgebra a Int
:: TreeAlgebra Int Int

TreeAlgebra a [a]
TreeAlgebra a (Tree a)

(const 1,(+))
(id, (+))
(C:[1),++)
(Leaf,flip Node)

:: TreeAlgebra a (Tree a)

(Leaf,Node)

NI

%T§ Utrecht University U Se r'd efl n ed | I StS

data List a = Nil
| Cons a (List a)

Nil :: List a
Cons :: a » List a » List a

type ListAlgebra a r = (r
,@a > ->r)

foldList :: ListAlgebra a r » List a - r
foldList (nil,cons) = f
where f Nil = nil
f (Cons x xs) = cons x (f xs)

N

%T§ Utrecht University B u i It'i n | iStS
[]
a .

data [a] =
|
[1 :: [a]
(:) :: a->[a] » [a]

type LAlgebra a r = (r
,@a > nr ->r)

foldL :: LAlgebra a r -»[a] -»r
foldL (nil,cons) = f
where f [] = nil
f (x:xs) = cons x (f xs)

[a]

N

N

= ¥ F Utrecht University

N

type LAlgebra a r

foldL versus foldr

:(r‘
,@a > nr ->r)

LAlgebra a r »[a] -»r

.F
nil
cons x (f xs)

c: (a>r->r)->r->1[a]->r

= nil

cons nil (x:xs) = cons x (foldr cons nil xs)

foldL ::
foldL (nil,cons)
where f []

f (x:xs)
foldr
foldr cons nil []
foldr
foldr cons nil ==

foldL (nil,cons)

A _
%T § Utrecht University M d y b e

Non-recursive datatypes:
data Maybe a = Nothing
| Just a
Nothing :: Maybe a
Just :: a » Maybe a

type MaybeAlgebra a r = (r,a -r)

foldMaybe :: MaybeAlgebra a r » Maybe a » r
foldMaybe (nothing,just) = f
where £ Nothing = nothing
£ (Just x) = just x

@
£02 Utreche University foldMaybe versus maybe

N
type MaybeAlgebra a r = (r,a -r)

foldMaybe :: MaybeAlgebra a r » Maybe a » r
foldMaybe (nothing,just) = f
where £ Nothing = nothing
f (Just x) = just x

maybe :: r » (a »> r) » Maybe a » r
maybe nothing just Nothing = nothing
maybe nothing just (Just x) = just x

maybe nothing just == foldMaybe (nothing, just)

W
% N % Utrecht University B 0]0) 1

AN

data Bool = True

| False
True :: Bool
False :: Bool

type BoolAlgebra r = (r,r)

foldBool :: BoolAlgebra r - Bool - r
foldBool (true,false) True = true
foldBool (true,false) False = false

,W. ,
UL Gtrecht Universicy foldBool versus if-then-else

N
type BoolAlgebra r = (r,r)

foldBool :: BoolAlgebra r -» Bool -» r
foldBool (true,false) True = true
foldBool (true,false) False = false

foldBool (true,false) x == if x then true else false

N
£ U= Utrecht University

N

Q3,4

NI

%T § Utrecht University S u m m a ry

For a datatype T, we can define a fold function as follows:

- Define an algebra type TAlgebra that is parameterized over all of
T’s parameters, plus a result type r

- The algebra is a tuple containing one component per constructor
function

- The types of the components are like the types of the constructor
functions, but all occurrences of T are replaced with r

- The fold function is defined by traversing the data structure,
replacing constructors with their corresponding algebra
components, and recursing where required

N

N

£5% Uurecht University Advantages of using folds

N

A systematic recursion “design” pattern that is well known and
easy to understand (compare with iterator)

Using a fold forces us to define semantics in a compositional
fashion — the semantics of a whole term is composed from the
semantics of its subterms

The systematic nature of a fold makes it easy to combine several
folds into one (fusion). This is essential for efficiency in a compiler

Compilers cannot determine the recursive structure of general
recursive’ functions

