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Last week

Parser combinators …

… designing grammars and parsers

Involving semantic functions





About the labs and autograding

From now on, we will merge the group from BBG 165 (today 
KBG 208) with the groups BBG 223 and BBG 209

The first feedback moment for the iCal lab was on Sunday; the 
second is on Wednesday

We will try to get the autograder results back to you today

Note the autograder doesn’t answer particular questions:
please asks them in the labs. TAs are happy to help!



Compositionality
Lecture notes: 5.1-3



Compiler phases

- Lexing and parsing
- Analysis and type checking
- Desugaring
- Optimization
- Code generation

Not all compilers implement all phases
Some compilers implement many more phases



Abstract syntax trees

- Some phases build ASTs (parsing)
- Most phases traverse ASTs (analysis, type checking, code 

generation)
- Some phases traverse one AST and build another (such as 

desugaring)

Abstract syntax trees (ASTs) play a central role:



Learning goals

Learning goals:

Parsers build abstract syntax trees

- Develop software to traverse ASTs systematically to compute 
all sorts of information

- Write compositional functions, also known as folds, on 
(possibly mutually recursive) datatypes

- Explain the relation between concrete syntax, abstract 
syntax, datatypes, algebras and folds. 



Example: Matched parentheses

Abstract syntax:

S -> (S)S | ε

Examples: (())(()), (), (()()), …

data Parens = Match Parens Parens
| Empty



Counting matching pairs of parentheses

data Parens = Match Parens Parens
| Empty

count :: Parens → Int
count    (Match p1 p2) = (count p1 + 1) + count p2
count    Empty         = 0

The definition of count mirrors the recursive structure of the 
datatype

runParser (count <$> parens) “(())(())” 4



More semantic functions

data Parens = Match Parens Parens
| Empty

depth :: Parens → Int
depth    (Match p1 p2) = (depth p1 + 1) ‘max‘ depth p2
depth    Empty         = 0

print :: Parens → String
print    (Match p1 p2) = "(" ++ print p1 ++ ")" ++ print p2
print    Empty         = ""

runParser (depth <$> parens) “(())(())” 2

runParser (print <$> parens) “(())(())” “(())(())”



Capturing the recursive structure I

f :: Parens → …
f    (Match p1 p2) = … (f p1) … (f p2) …
f    Empty         = …

We abstract from this structure

All functions have the following structure:



Capturing the recursive structure II

f :: Parens → …
f    (Match p1 p2) = … (f p1) … (f p2) …
f    Empty         = …



Capturing the recursive structure II

f :: Parens → r
f    (Match p1 p2) = match (f p1) (f p2)
f    Empty         = empty

Match :: Parens → Parens → Parens
match :: r      → r      → r

Empty :: Parens
empty :: r 



Algebra and fold

type ParensAlgebra r = (r → r → r -- match
,r)        -- empty  

Each semantic function needs a different instance of match, 
empty and r

foldParens :: ParensAlgebra r → Parens → r 
foldParens (match,empty) = f

where f (Match p1 p2) = match (f p1) (f p2)
f Empty         = empty                                



count revisited

foldParens :: ParensAlgebra r → Parens → r 
foldParens (match,empty) = f

where f (Match p1 p2) = match (f p1) (f p2)
f Empty         = empty                                

count = foldParens countAlgebra

count :: Parens → Int
count    (Match p1 p2) = (count p1 + 1) + count p2
count    Empty         = 0

type ParensAlgebra r = (r → r → r -- match
,r)        -- empty  

countAlgebra = (\l r → l+1+r, 0)  



depth and print

depthAlgebra = (\l r → max (l+1) r, 0)  
depth        = foldParens depthAlgebra

printAlgebra = (\l r → "(”++l++")”++r, “”)  
print        = foldParens printAlgebra



Example: Expressions

E → E + E
E → -E
E → Nat
E → (E) 

Examples: 2+(-3+4), -(2+8)+16

Associative operator grammar transformation

E  → E’ + E
E’ → -E’
E’ → Nat
E’ → (E) 



Abstract syntax

data E = Add E E
| Neg E
| Num Int

Based on original grammar:



Functions on expressions

eval :: E           → Int
eval    (Add e1 e2) = eval e1 + eval e2
eval    (Neg e)     = - (eval e)
eval    (Num i)     = i

data E = Add E E
| Neg E
| Num Int

The structure of the function again reflects the structure
of the datatype



An expression algebra

Add :: E → E → E
Neg :: E → E
Num :: Int → E

data E = Add E E
| Neg E
| Num Int

type Ealgebra r = (r → r → r -- add
,r → r     -- neg
,Int → r)  -- num



Folds on expressions

foldE :: EAlgebra r → E → r
foldE (add,neg,num) = f

where f (Add e1 e2) = add (f e1) (f e2)
f (Neg e)     = neg (f e)
f (Num n)     = num n

evalAlgebra :: EAlgebra Int
evalAlgebra =  ((+),negate,id)

eval        =  foldE evalAlgebra

type Ealgebra r = (r → r → r -- add
,r → r     -- neg
,Int → r)  -- num
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Folds for all data types



Trees

Leaf :: a → Tree a
Node :: Tree a → Tree a → Tree a

type TreeAlgebra a r = (a → r      -- leaf
,r → r → r) -- node

data Tree a = Leaf a
| Node (Tree a) (Tree a)

foldTree :: TreeAlgebra a r → Tree a → r
foldTree (leaf,node) = f

where f (Leaf x)   = leaf x
f (Node l r) = node (f l) (f r)



Tree algebra examples

sizeAlgebra =  (const 1,(+))
sumAlgebra =  (id,(+))
inorderAlgebra =  ((:[]),++)
reverseAlgebra =  (Leaf,flip Node)

sizeAlgebra :: TreeAlgebra a Int
sumAlgebra :: TreeAlgebra Int Int
inorderAlgebra :: TreeAlgebra a [a]
reverseAlgebra :: TreeAlgebra a (Tree a)

idAlgebra :: TreeAlgebra a (Tree a)
idAlgebra =  (Leaf,Node)



User-defined lists

Nil  :: List a
Cons :: a → List a → List a

type ListAlgebra a r = (r
,a → r → r)

data List a = Nil
| Cons a (List a)

foldList :: ListAlgebra a r → List a → r
foldList (nil,cons) = f

where f Nil         = nil
f (Cons x xs) = cons x (f xs)



Built-in lists

[]  :: [a]
(:) :: a → [a] → [a]

type LAlgebra a r = (r
,a → r → r)

data [a] = []
| a : [a]

foldL :: LAlgebra a r →[a] →r
foldL (nil,cons) = f

where f []     = nil
f (x:xs) = cons x (f xs)



foldL versus foldr

foldr cons nil == foldL (nil,cons)

type LAlgebra a r = (r
,a → r → r)

foldr :: (a → r → r) → r → [a] → r
foldr cons nil []     = nil
foldr cons nil (x:xs) = cons x (foldr cons nil xs)

foldL :: LAlgebra a r →[a] →r
foldL (nil,cons) = f

where f []     = nil
f (x:xs) = cons x (f xs)



Maybe

Nothing :: Maybe a
Just    :: a → Maybe a

type MaybeAlgebra a r = (r,a →r)

data Maybe a = Nothing
| Just a

foldMaybe :: MaybeAlgebra a r → Maybe a → r
foldMaybe (nothing,just) = f

where f Nothing  = nothing
f (Just x) = just x

Non-recursive datatypes:



foldMaybe versus maybe

maybe nothing just == foldMaybe (nothing,just)

maybe :: r → (a → r) → Maybe a → r
maybe nothing just Nothing  = nothing
maybe nothing just (Just x) = just x

type MaybeAlgebra a r = (r,a →r)

foldMaybe :: MaybeAlgebra a r → Maybe a → r
foldMaybe (nothing,just) = f

where f Nothing  = nothing
f (Just x) = just x



Bool

True  :: Bool
False :: Bool

type BoolAlgebra r = (r,r)

data Bool = True
| False

foldBool :: BoolAlgebra r → Bool → r
foldBool (true,false) True  = true
foldBool (true,false) False = false



foldBool versus if-then-else

foldBool (true,false) x == if x then true else false

type BoolAlgebra r = (r,r)

foldBool :: BoolAlgebra r → Bool → r
foldBool (true,false) True  = true
foldBool (true,false) False = false
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Summary

- Define an algebra type TAlgebra that is parameterized over all of 
T’s parameters, plus a result type r 

For a datatype T, we can define a fold function as follows:

- The algebra is a tuple containing one component per constructor 
function

- The types of the components are like the types of the constructor 
functions, but all occurrences of T are replaced with r

- The fold function is defined by traversing the data structure, 
replacing constructors with their corresponding algebra 
components, and recursing where required



Advantages of using folds

- A systematic recursion “design” pattern that is well known and 
easy to understand (compare with iterator)

- Using a fold forces us to define semantics in a compositional 
fashion – the semantics of a whole term is composed from the 
semantics of its subterms

- The systematic nature of a fold makes it easy to combine several 
folds into one (fusion). This is essential for efficiency in a compiler

- Compilers cannot determine the recursive structure of `general 
recursive’ functions


