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Learning goals

- prove that a language is not regular
- prove that a language is not context-free
- identify languages and grammars as regular, context-free or 

none of these
- give examples of languages that are not regular, and/or not 

context-free
- explain the Chomsky hierarchy



Sapir - Whorf: the words we use influence the way we perceive 
the world

Quality and efficiency aspects of language1

1Steven Mithen (2024). The language puzzle - Piecing Together the Six-Million-Year Story of How Words Evolved. Basic Books

The sounds we make depend on our climate (warm: long 
distance communication: vowels; cold: short distance 
communication: consonants)

Many adult second language learners -> less complex language

Difficult to find out through experiments



Some common questions…



Grammar types

Type 3: regular grammars
Type 2: context-free grammars
Strictly more powerful than regular grammars

Type 0:
Rewrite rules of the form φ → ψ
Strictly more powerful than context-sensitive grammars

Type 1: context-sensitive grammars:
Rewrite rules of the form φAψ → φδψ
Strictly more powerful than context-free grammars

Chomsky’s hierarchy (1956)



How do you prove a language is not regular? 

To show that a language is regular: give a regular grammar, FSA, 
regexp, …

To show that a language is not regular: show for all regular 
grammars that they don’t describe the language. 



How do you prove a language is not regular? 

Expose a limitation in the formalism (in this case, in the concept of 
finite state automata)

From this limitation, derive a property that all languages in the class 
(in this case, regular languages) satisfy

If a language does not have that property, it cannot be in the class



Loops in DFAs

Suppose we have a DFA, and we use it to accept a string

How many states do we visit…
- If the string has length 0?

One (the start state)

- If the string has length 1?

Two or one. If one we visit a state twice and go through a loop.

- If the string has length 2?
Three or less. If less than 3 we go through a loop.



Finite state automata are finite

Any DFA has a finite number of states

Suppose we have a DFA with n states
How many states do we visit if we read a string that is accepted and 
has length n?
n+1 or less. If less, we go through a loop
But there are only n states! So we have to go through a loop.



A property satisfied by all regular languages

What can we do if a DFA has a loop?

We can go through it as often as we want

If we have a word that is accepted and goes through the loop once, 
then the words that follow the same path and go through the loop 
any number of times are also accepted



An example
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xlooploopy
xlooplooploopy
…

start



The general case

ES A
wustart

v

This is a simplified situation: there may be more nodes and edges

u and w may be empty, v not
All words of the form uviw for i ∈ N are accepted



Generalised

ES A
zx

start
y

A loop occurs in any subword of at least length n

Suppose xyz is accepted, and length y is at least n

C



Generalised

ES A
zx

start

A loop occurs in any subword of at least length n

Suppose xyz is accepted, and length y is at least n
Then y is of the form uvw, with v not empty, accepted by a loop

C

v

B
u w

All words of the form xuviwz for i ∈ N are accepted



A property satisfied by all regular languages

Pumping lemma for regular languages
(Rabin and Scott, 1959; gave them a Turing award (well…))

For every regular language L there exists an n ∈ N
such that for every word w = xyz in L with |y| ≥ n
we can split y into three parts, y = uvw, with |v|> 0
such that for every i ∈ N, we have xuviwz ∈ L

Extremely informally: a DFA cannot recognize a language when it 
needs to maintain a counter that can become arbitrarily large



How do you prove a language is not regular? 

Expose a limitation in the formalism (in this case, in the concept of 
finite state automata)

From this limitation, derive a property that all languages in the class 
(in this case, regular languages) satisfy

If a language does not have that property, it cannot be in the class



How do you prove a language is not regular? 

Expose a limitation in the formalism (in this case, in the concept of 
finite state automata)

From this limitation, derive a property that all languages in the 
class (in this case, regular languages) satisfy

If a language does not have that property, it cannot be in the class



Using the pumping lemma

To show that a language is not regular, we show that it does not have 
the pumping lemma property as follows:

Assume that the language is regular

Use the pumping lemma to derive words that must be in the 
language, but are not:

find a word xyz in L with |y| ≥ n,
from the pumping lemma there must be a loop in y,
but repeating this loop takes us outside of the language

The contradiction means that the language cannot be regular



Using the pumping lemma - strategy

For every natural number n

find a word xyz in L with |y| ≥ n (you choose the word)

such that for every splitting y= uvw with |v|> 0,

there exists a number i (you choose the number)

such that xuviwz ∉ L (you have to show it)



Example 

The language L = {ambm |m ∈ N} is not regular

Proof:

Assume L is regular

Then there exists a DFA accepting L
Assume this DFA has n states



Example 

anbn is a word in L

Let x = ε, y = an, z = bn, then xyz= anbn ∈L and |y| ≥ n

From the pumping lemma, we know there must be a loop in y

Let y= uvw where |v|> 0 and xuviwz ∈L for all i ∈ N

Let u= ap, v = aq, w = ar where p + q + r = n

If i = 2, then xuv2wz = apa2qarbn = an+qbn

But n + q ≠ n because q > 0! So xuv2wz ∉ L



Example 

The language L = {ambm |m ∈ N} is not regular

Proof:

Assume L is regular

The contradiction means our assumption is wrong: L is not regular

[Previous slide: L does not satisfy the property of regular languages]





Q1



How about context-free languages?

Expose a limitation in the formalism (in this case, in the concept of 
context-free grammars)

From this limitation, derive a property that all languages in the class 
(in this case, context-free languages) satisfy

If a language does not have that property, it cannot be in the class

If you want to prove that a certain language is not context-free,
apply the same strategy as for regular languages:



Grammars and parse trees

Every sentence in a context-free language has a parse tree

We can produce parse trees of arbitrary depth if we find 
sentences in the language that are long enough, because the
number of children per node is bounded by the maximum
length of a right-hand side of a production

Once a path from a leaf to the root has more than n internal 
nodes, where n is the number of nonterminals in the grammar, 
one nonterminal has to occur twice on such a path
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The situation

If a sentence is long enough, we have a derivation of the form

S ⇒∗ uAy ⇒∗ uvAxy ⇒∗ uvwxy
where |vx| > 0
Because the grammar is context-free:
A ⇒∗ vAx 
A ⇒∗ w

It follows we can derive
S ⇒∗ uAy ⇒∗ uviwxiy
for any i in N



A property satisfied by all context-free languages

Pumping lemma for context-free languages
(Bar-Hillel, 1961)

For every context-free language L there exist c, d ∈ N
such that for every word z in L with |z| ≥ c
we can split z into five parts, y = uvwxy, with |vx|> 0 and |vwx| ≤ d
such that for every i ∈ N, we have uviwxiy ∈ L

Extremely informally: a CFG cannot recognize a language when it 
needs to maintain two counters that can become arbitrarily large



Using the pumping lemma - strategy

For every pair of numbers c and d

find a word z in L with |z| ≥ c (you choose the word)

such that for every splitting z = uvwxy with |vx|> 0 and |vwx| ≤ d 

there exists a number i (you choose the number)

such that uviwxiy ∉ L (you have to show it)



Example 

The language L = {ambmcm |m ∈ N} is not context-free

Proof:

Assume L is context-free

The contradiction means our assumption is wrong: L is not context-
free

Next slide: L does not satisfy the property of context-free languages



Example 

L = {ambmcm |m ∈ N}

Let r = max c d

Take z = arbrcr

The pumped part can thus not contain a’s, b’s and c’s, but is not 
empty either, leading to a contradiction

Pump z such that the part that gets pumped is at most d, with d ≤ r 



Q2



Summary

Different kinds of classes (types) of grammars vary in expressive 
power

Pumping lemmas describe a property that all languages of a 
particular type satisfy 

We can use pumping lemmas to show that a language is not 
regular or not context-free


