
16 June 2022

Johan Jeuring
Expressive power of languages

Talen & Compilers

Expressive power
of languages
Lecture notes: 8

Today

Learning goals

- prove that a language is not regular
- prove that a language is not context-free
- identify languages and grammars as regular, context-free or

none of these
- give examples of languages that are not regular, and/or not

context-free
- explain the Chomsky hierarchy

Sapir - Whorf: the words we use influence the way we perceive
the world

Quality and efficiency aspects of language1

1Steven Mithen (2024). The language puzzle - Piecing Together the Six-Million-Year Story of How Words Evolved. Basic Books

The sounds we make depend on our climate (warm: long
distance communication: vowels; cold: short distance
communication: consonants)

Many adult second language learners -> less complex language

Difficult to find out through experiments

Some common questions…

Grammar types

Type 3: regular grammars
Type 2: context-free grammars
Strictly more powerful than regular grammars

Type 0:
Rewrite rules of the form φ → ψ
Strictly more powerful than context-sensitive grammars

Type 1: context-sensitive grammars:
Rewrite rules of the form φAψ → φδψ
Strictly more powerful than context-free grammars

Chomsky’s hierarchy (1956)

How do you prove a language is not regular?

To show that a language is regular: give a regular grammar, FSA,
regexp, …

To show that a language is not regular: show for all regular
grammars that they don’t describe the language.

How do you prove a language is not regular?

Expose a limitation in the formalism (in this case, in the concept of
finite state automata)

From this limitation, derive a property that all languages in the class
(in this case, regular languages) satisfy

If a language does not have that property, it cannot be in the class

Loops in DFAs

Suppose we have a DFA, and we use it to accept a string

How many states do we visit…
- If the string has length 0?

One (the start state)

- If the string has length 1?

Two or one. If one we visit a state twice and go through a loop.

- If the string has length 2?
Three or less. If less than 3 we go through a loop.

Finite state automata are finite

Any DFA has a finite number of states

Suppose we have a DFA with n states
How many states do we visit if we read a string that is accepted and
has length n?
n+1 or less. If less, we go through a loop
But there are only n states! So we have to go through a loop.

A property satisfied by all regular languages

What can we do if a DFA has a loop?

We can go through it as often as we want

If we have a word that is accepted and goes through the loop once,
then the words that follow the same path and go through the loop
any number of times are also accepted

An example

E

D

S

C

A

B

ypx

o o

l

xy
xloopy

Accepts:

xlooploopy
xlooplooploopy
…

start

The general case

ES A
wustart

v

This is a simplified situation: there may be more nodes and edges

u and w may be empty, v not
All words of the form uviw for i ∈ N are accepted

Generalised

ES A
zx

start
y

A loop occurs in any subword of at least length n

Suppose xyz is accepted, and length y is at least n

C

Generalised

ES A
zx

start

A loop occurs in any subword of at least length n

Suppose xyz is accepted, and length y is at least n
Then y is of the form uvw, with v not empty, accepted by a loop

C

v

B
u w

All words of the form xuviwz for i ∈ N are accepted

A property satisfied by all regular languages

Pumping lemma for regular languages
(Rabin and Scott, 1959; gave them a Turing award (well…))

For every regular language L there exists an n ∈ N
such that for every word w = xyz in L with |y| ≥ n
we can split y into three parts, y = uvw, with |v|> 0
such that for every i ∈ N, we have xuviwz ∈ L

Extremely informally: a DFA cannot recognize a language when it
needs to maintain a counter that can become arbitrarily large

How do you prove a language is not regular?

Expose a limitation in the formalism (in this case, in the concept of
finite state automata)

From this limitation, derive a property that all languages in the class
(in this case, regular languages) satisfy

If a language does not have that property, it cannot be in the class

How do you prove a language is not regular?

Expose a limitation in the formalism (in this case, in the concept of
finite state automata)

From this limitation, derive a property that all languages in the
class (in this case, regular languages) satisfy

If a language does not have that property, it cannot be in the class

Using the pumping lemma

To show that a language is not regular, we show that it does not have
the pumping lemma property as follows:

Assume that the language is regular

Use the pumping lemma to derive words that must be in the
language, but are not:

find a word xyz in L with |y| ≥ n,
from the pumping lemma there must be a loop in y,
but repeating this loop takes us outside of the language

The contradiction means that the language cannot be regular

Using the pumping lemma - strategy

For every natural number n

find a word xyz in L with |y| ≥ n (you choose the word)

such that for every splitting y= uvw with |v|> 0,

there exists a number i (you choose the number)

such that xuviwz ∉ L (you have to show it)

Example

The language L = {ambm |m ∈ N} is not regular

Proof:

Assume L is regular

Then there exists a DFA accepting L
Assume this DFA has n states

Example

anbn is a word in L

Let x = ε, y = an, z = bn, then xyz= anbn ∈L and |y| ≥ n

From the pumping lemma, we know there must be a loop in y

Let y= uvw where |v|> 0 and xuviwz ∈L for all i ∈ N

Let u= ap, v = aq, w = ar where p + q + r = n

If i = 2, then xuv2wz = apa2qarbn = an+qbn

But n + q ≠ n because q > 0! So xuv2wz ∉ L

Example

The language L = {ambm |m ∈ N} is not regular

Proof:

Assume L is regular

The contradiction means our assumption is wrong: L is not regular

[Previous slide: L does not satisfy the property of regular languages]

Q1

How about context-free languages?

Expose a limitation in the formalism (in this case, in the concept of
context-free grammars)

From this limitation, derive a property that all languages in the class
(in this case, context-free languages) satisfy

If a language does not have that property, it cannot be in the class

If you want to prove that a certain language is not context-free,
apply the same strategy as for regular languages:

Grammars and parse trees

Every sentence in a context-free language has a parse tree

We can produce parse trees of arbitrary depth if we find
sentences in the language that are long enough, because the
number of children per node is bounded by the maximum
length of a right-hand side of a production

Once a path from a leaf to the root has more than n internal
nodes, where n is the number of nonterminals in the grammar,
one nonterminal has to occur twice on such a path

S

A

A

u v w x y

S

A

u

w

y

S

A

Au v

w

x y

A

v x

The situation

If a sentence is long enough, we have a derivation of the form

S ⇒∗ uAy ⇒∗ uvAxy ⇒∗ uvwxy
where |vx| > 0
Because the grammar is context-free:
A ⇒∗ vAx
A ⇒∗ w

It follows we can derive
S ⇒∗ uAy ⇒∗ uviwxiy
for any i in N

A property satisfied by all context-free languages

Pumping lemma for context-free languages
(Bar-Hillel, 1961)

For every context-free language L there exist c, d ∈ N
such that for every word z in L with |z| ≥ c
we can split z into five parts, y = uvwxy, with |vx|> 0 and |vwx| ≤ d
such that for every i ∈ N, we have uviwxiy ∈ L

Extremely informally: a CFG cannot recognize a language when it
needs to maintain two counters that can become arbitrarily large

Using the pumping lemma - strategy

For every pair of numbers c and d

find a word z in L with |z| ≥ c (you choose the word)

such that for every splitting z = uvwxy with |vx|> 0 and |vwx| ≤ d

there exists a number i (you choose the number)

such that uviwxiy ∉ L (you have to show it)

Example

The language L = {ambmcm |m ∈ N} is not context-free

Proof:

Assume L is context-free

The contradiction means our assumption is wrong: L is not context-
free

Next slide: L does not satisfy the property of context-free languages

Example

L = {ambmcm |m ∈ N}

Let r = max c d

Take z = arbrcr

The pumped part can thus not contain a’s, b’s and c’s, but is not
empty either, leading to a contradiction

Pump z such that the part that gets pumped is at most d, with d ≤ r

Q2

Summary

Different kinds of classes (types) of grammars vary in expressive
power

Pumping lemmas describe a property that all languages of a
particular type satisfy

We can use pumping lemmas to show that a language is not
regular or not context-free

