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Recap: RegExp

<> ::R—->R —>R rilrs
<t+> :: R—>R — R rrs
many :: R = R r*
manyl :: R = R r+
option :: R > R r?

symbol :: Char — R C
satisfy :: (Char — Bool) = R \d \s \S [a-Z] ...
type R = Parser Char String

(Bb)?7(8]1)+



Recap: RegExp performance

head $ matchRegExp "a*aaaba™$" "aaaaaaaba:

aaa aaa )  _
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Today: matching RegExp fast

e 0(length input * regexp complexity)
matching time

e Algorithm from the bottom up



Problem: computers are complicated
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Simplification: Moore Machine

Input events

v
/ controller /t:@emo@
l

output < / output
/ generator

a.k.a. Finite State Machine (FSM)
v.s.t. Finite State Automaton (FSA)

a.k.a. Deterministic Finite Automaton (DFA)
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Moore Machine for lamp



Moore Machine for lamp

e —
step :: Event -> Memory -> Memory
step [FE _ = State {color=W,on=True} . .
step _ = State {color=Y,on=True} colc.).r B {ellowOrWhlte
step m s = s {on = not (on s)} on = boo

/

genOut (State {color=Y,on=True}) =47

genOut :: Memory -> Output
/ / genOut (State {color= ,on=False}) =47
genOut (State {color=W,on=True}) = 47




Moore Machine for lamp

msolssol
; y

step :: Event -> Memory -> Memory

{color=w,
,on=False}

step [ _ = State {color=W,on=True}

step ~ = State {color=Y,on=True} {color=y (color=Y

ste s = s {on = not (on s color= CoLor=y,
P m { ( '} ,on=True} ,on=False}

genOut (State {color=Y,on=True}) =47

genOut :: Memory -> Output
/ / genOut (State {color= ,on=False}) =47
genOut (State {color=W,on=True}) = 47




Moore Machine for lamp

msolssol
; y

{color=w,

,on=False}

step :: Event -> Memory -> Memory
step [ _ = State {color=W,on=True}
step ~ = State {color=Y,on=True}
step m s = s {on = not (on s)}

/‘:{’/‘77/

{color=Y
,on=True}

{color=Y,
,on=False}

genOut
genOut
genOut

genOut ::

Memory -> Output

(State {color= ,on=False}) =47
(State {color=W,on=True}) = 47
(State {color=Y,on=True}) =47




Moore Machine for lamp

{color=w,

step :: Event -> Memory -> Memory
step [ _ = State {color=W,on=True}
step = State {color=Y,on=True}

step m s

s {on = not (on s)}

on=False}

{color=Y,
,on=False}
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genOut ::

genOut
genOut
genOut

Memory -> Output

(State {color= ,on=False}) =47
(State {color=W,on=True}) = 47
(State {color=Y,on=True}) =47




Moore Machine for lamp

{color=w,

on=False}

step :: Event -> Memory -> Memory

step [ _ = State {color=W,on=True}

step ~ = State {color=Y,on=True}

step EEp] S = s {on = not (on s)} ({)rc\g;g{::«}




Moore Machine for lamp

step :: Event -> Memory -> Memory
step [ _ = State {color=W,on=True}
step m ~ = State {color=Y,on=True}

step m s = s {on = not (on s)}
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Moore Machines benefits

g
B

Easy to write

Fasy to modify

Fasy to verify



More Moore Machines bhenefits

o #©
By the inventor of Moore’s law L

o false! Edward F. Moore vs
Gordon E. Moore

e Easy to implement -



Moore Machines in Haskell

gscllasallasg

step :: Event -> Memory -> Memory

—

step [ _ = State {color=W,on=True} color :: YellowOrWhite
step = State {color=Y,on=True} on B 1
step EEp) S = s {on = not (on s)} se BoO

/

genOut :: Memory -> Output
/ / genOut (State {color= ,on=False}) =47
genOut (State {color=W,on=True}) = 47

genOut (State {color=Y,on=True}) =47




Moore Machines in C

e

— I—
Memory step(Event e, Memory s){switch (e) {
casem return (Memory){.color=W, .on=true}; typedef struct memory {
caseu return (Memory){.color=Y, .on=true}; YellowOrWhite COlOf‘;
casem: return (Memory){.color=s.color, .on=1-s.on}; bool on;
H } Memory;

e I

/

}

Output genOut(Memory mem){
if (mem.on == false) {returns« ;}
if (mem.color == W) {return& ;}
if (mem.color ==Y) {return® ;}




Moore Machines in Hardware




Moore Machines in Mathematics

msolssol
; y

step € Event x Memory — Memory
W)

step ( FEE > ) =
: , J)=(Y, L
! BB e (1,9)

147157

genOut :: Memory — Output
genOut (_, L) = *7
genOut (W, 7)) = &
genOut (Y, T) = «

Formal defimtion | ean ) . .
o L '
A NOOre Mathing Can e efirmd 38 2 5708 15, 9, B0 4G cenEstng oo
W
e AMnite set of slales S : g)‘
e A Starm state |akO cabed Inual stater s, wach s anelamertof S & “
o A Tnite set called ™he input et Y u
~
¢ A fnite et called ™e eurowt aghaber O T

o A transitien functiar &1 F x 5 -+ § ragpng a state and the inpwt alphabet o the next state

o An outpat furction G 1 S <+ O magp g eack tate 10 the sutput alphabet



Moore Machines in Haskell (with types)
//

step :: Event -> Memory -> Memory

I

step [FE _ = State {color=W,on=True} 3 '
step ~ = State {color=Y,on=True} COI?T B {ellowomhlte
step EEr] S = s {on = not (on s)} on :: Boo

/

genOut :: Memory -> Output
/ / genOut (State {color= ,on=False}) =47
genOut (State {color=W,on=True}) = 47

genOut (State {color=Y,on=True}) =47




Moore Machines in Haskell (with types)
//

step :: Event -> Memory -> Memory

—

step [FE _ = State {color=W,on=True} 3 '
step _ = State {color=Y,on=True} colc.).r B {ellowOrWhlte
step EEr] S = s {on = not (on s)} on :: Boo

/

genOut :: Memory -> Output
/ / genOut (State {color= ,on=False}) =47
genOut (State {color=W,on=True}) = 47

genOut (State {color=Y,on=True}) =47

data Moore event memory output = Moore
{ step :: event — memory — memory
, genOut :: memory — output
, SO :: memory}



Moore Machines in Haskell (with types)
//

step :: Event -> Memory -> Memory

—

step [FE _ = State {color=W,on=True} 3 '
step _ = State {color=Y,on=True} colc.).r B {ellowOrWhlte
step EEr] S = s {on = not (on s)} on :: Boo

/

genOut :: Memory -> Output
/ / genOut (State {color= ,on=False}) =47
genOut (State {color=W,on=True}) = 47

genOut (State {color=Y,on=True}) =47

data Moore symbol memory output = Moore
{ step :: symbol — memory — memory
, genOut :: memory — output
, SO :: memory}



Moore Machines in Haskell (with types)
//

step :: Event -> Memory -> Memory

—

step [FE _ = State {color=W,on=True} 3 '
step _ = State {color=Y,on=True} colc.).r B {ellowOrWhlte
step EEr] S = s {on = not (on s)} on :: Boo

/

genOut :: Memory -> Output
/ / genOut (State {color= ,on=False}) =47
genOut (State {color=W,on=True}) = 47

genOut (State {color=Y,on=True}) =47

data Moore symbol state output = Moore
{ step :: symbol — state — state
, genOut :: state — output
, sB :: state}



Moore Machines in Haskell (with types)
//

step :: Event -> Memory -> Memory

—

step [FE _ = State {color=W,on=True} 3 '
step B _ = State {color=Y,on=True} COI(?'r 5 {ellOWOFWhlte
step EEr] S = s {on = not (on s)} on :: Boo

/

genOut :: Memory -> Output
/ / genOut (State {color= ,on=False}) =47
genOut (State {color=W,on=True}) = 47

genOut (State {color=Y,on=True}) =47

type DFA symbol state = Moore symbol state Bool



Moore Machines summary

Easy to use

Easy to modify

Easy to verify

Easy to implement



Moore Machines for RegExp Matching
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More Making Matching Moore Machines
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runMoore :: Moore inp state out — [inp] — state
runMoore (Moore step genOut sB) = 777
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Running Moore Machines, generally

runMoore :: Moore inp state out — [inp] — state
runMoore (Moore step _ sB) = runFrom s@ where
runFrom :: state — [inp] — state
runFrom st sys = 777



Running Moore Machines, generally

runMoore :: Moore inp state out — [inp] — state
runMoore (Moore step _ sB) = runFrom s@ where
runFrom :: state — [inp] — state

runFrom st [] = 777

runFrom st (i:is) = 777




Running Moore Machines, generally

runMoore :: Moore inp state out — [inp] — state
runMoore (Moore step _ sB) = runFrom s@ where
runFrom :: state — [inp] — state

runFrom st [] = st

runFrom st (i:is) = 777




Running Moore Machines, generally

runMoore :: Moore inp state out — [inp] — state
runMoore (Moore step _ sB) = runFrom s@ where
runFrom :: state — [inp] — state

runFrom st [] = st

runFrom st (i:is) = runFrom 777 777




Running Moore Machines, generally

runMoore :: Moore inp state out — [inp] — state
runMoore (Moore step _ sB) = runFrom s@ where
runFrom :: state — [inp] — state

runFrom st [] = st

runFrom st (i:is) = runFrom (step i st) is




Running Moore Machines, generally

runMoore :: Moore inp state out — [inp] — state
runMoore (Moore step _ sB) = runFrom s@ where
runFrom :: state — [inp] — state

runFrom st [] = st

runFrom st (i:is) = runFrom (step i st) is




Running Moore Machines, generally

runMoore :: Moore inp state out — [inp] — state
runMoore (Moore step _ sB) = foldr step sB where
runFrom :: state — [inp] — state

runFrom st [] = st

runFrom st (i:is) = runFrom (step i st) is




Running Moore Machines, generally

runMoore :: Moore inp state out — [inp] — state
runMoore (Moore step _ sB) = foldr step s@
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Compiling RegExp to DFA progress
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Compiling RegExp to NFAe




Compiling RegExp to NFAe progress

"4 c

\d
[x-2]
r1r2
r|rs

4 r+
4 r*






Running an NFAe

runNFAe :: NFAe symbol state — [symbol]
— Set state
runNFAe (NFAe step esteps genOut sB) =
foldr (reachable esteps (sB nfa))
(\sy — Set.unions . Set.map
(reachable esteps . step nfa sy))




Putting together the parts

runNFAe :: NFAe syLst — [sy] — Set st

4

r2n :: RegExp — NFAe Char Label -- (by e

matchesRegExp :: RegkExp — String — Bool
matchesRegExp r s = any isAccepting $
runNFAe (r2n r) s




Not done yet!




Functions seen so far
runNFAe :: NFAe sy st — [sy] — Set st

runDFA  :: DFA sy st — [sy] — st



runNFAe ::

runDFA
runDFA

A special case of runDFA

NFAg sy st — [sy] — Set st

;o DFA sy st —
:: DFA sy (Set st) —

Sy

SY_

— st
— Set st



Convert NFAe to DFA?

runNFAe :: NFAe sy st — [sy] — Set st
runNFAe = runDFA . nZ2d

runDFA  :: DFA sy (Set st) — [sy] — Set st

n2d .. NFAe sy st
— DFA sy (Set st)
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The subset construction




Summary

RegExp
Regkxp — NFAeg
NFAe — DFA

Challenge : implement in Haskell
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