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Recap: RegExp

(0b)?(0|1)+

<|> :: R → R → R
<+> :: R → R → R
many  :: R → R
many1 :: R → R
option  :: R → R
symbol  :: Char → R
satisfy :: (Char → Bool) → R
type R = Parser Char String

r₁|r₂
r₁r₂
r*
r+
r?
c
\d \s \S [a-z] ...



Recap: RegExp performance

head $ matchRegExp "a*aaaba*$" "aaaaaaabaa"
 aaa❌
a aaa❌
aa aaa❌
aaa aaa❌
aaaa aaab aa ✅



Today: matching RegExp fast

O(length input * regexp complexity)
matching time
Algorithm from the bottom up

• 

• 



Problem: computers are complicated

10nm SF Tiger Lake 8Core processor (2021) die shot, by @Locuza_  on twitter



Simplification: Moore Machine

a.k.a. Finite State Machine  (FSM)

v.s.t. Finite State Automaton  (FSA)

a.k.a. Deterministic Finite Automaton  (DFA)
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A Big Example



Moore Machines benefits

Easy to write 

Easy to modify 

Easy to verify 

• 

• 

• 



More Moore Machines benefits

By the inventor of Moore’s law 
False!  Edward F. Moore vs
Gordon E. Moore

Easy to implement 👈

• 

◦ 

• 



Moore Machines in Haskell



Moore Machines in C



Moore Machines in Hardware



Moore Machines in Mathematics



Moore Machines in Haskell (with types)



Moore Machines in Haskell (with types)

data Moore event memory output = Moore
  { step :: event → memory → memory
  , genOut :: memory → output
  , s0 :: memory}



Moore Machines in Haskell (with types)

data Moore symbol memory output = Moore
  { step :: symbol → memory → memory
  , genOut :: memory → output
  , s0 :: memory}



Moore Machines in Haskell (with types)

data Moore symbol state output = Moore
  { step :: symbol → state → state
  , genOut :: state → output
  , s0 :: state}



Moore Machines in Haskell (with types)

type DFA symbol state = Moore symbol state Bool



Moore Machines summary

Easy to use 

Easy to modify 

Easy to verify 

Easy to implement 

• 

• 

• 

• 



Moore Machines for RegExp Matching

a*aaaba*



Moore Machines for RegExp Matching

a*aaaba*

aaaaaaabaabba



Moore Machines for RegExp Matching

a*aaaba*

aaaaaaabaabba



Moore Machines for RegExp Matching

a*aaaba*

|aaaaaaabaabba



Moore Machines for RegExp Matching

a*aaaba*

[aaaaaaabaabba



Moore Machines for RegExp Matching

a*aaaba*

a|aaaaaabaabba



Moore Machines for RegExp Matching

a*aaaba*

a[aaaaaabaabba



Moore Machines for RegExp Matching

a*aaaba*

aa|aaaaabaabba



Moore Machines for RegExp Matching

a*aaaba*

aa[aaaaabaabba



Moore Machines for RegExp Matching

a*aaaba*

aaa|aaaabaabba



Moore Machines for RegExp Matching

a*aaaba*

aaa[aaaabaabba



Moore Machines for RegExp Matching

a*aaaba*

aaaa|aaabaabba



Moore Machines for RegExp Matching

a*aaaba*

aaaa[aaabaabba



Moore Machines for RegExp Matching

a*aaaba*

aaaaa|aabaabba



Moore Machines for RegExp Matching

a*aaaba*

aaaaa[aabaabba



Moore Machines for RegExp Matching

a*aaaba*

aaaaaa|abaabba



Moore Machines for RegExp Matching

a*aaaba*

aaaaaa[abaabba



Moore Machines for RegExp Matching

a*aaaba*

aaaaaaa|baabba



Moore Machines for RegExp Matching

a*aaaba*

aaaaaaa[baabba



Moore Machines for RegExp Matching

a*aaaba*

aaaaaaab|aabba



Moore Machines for RegExp Matching

a*aaaba*

aaaaaaab[aabba



Moore Machines for RegExp Matching

a*aaaba*

aaaaaaaba|abba



Moore Machines for RegExp Matching

a*aaaba*

aaaaaaaba[abba



Moore Machines for RegExp Matching

a*aaaba*

aaaaaaabaa|bba



Moore Machines for RegExp Matching

a*aaaba*

aaaaaaabaa[bba



Moore Machines for RegExp Matching

a*aaaba*

aaaaaaabaab|ba



Moore Machines for RegExp Matching

a*aaaba*

aaaaaaabaab[ba



Moore Machines for RegExp Matching

a*aaaba*

aaaaaaabaabb|a



Moore Machines for RegExp Matching

a*aaaba*

aaaaaaabaabb[a



Moore Machines for RegExp Matching

a*aaaba*

aaaaaaabaabba|
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More Moore Machine Matching

(0b)?(0|1)+

0b110100,10|
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gr(a|e)y|green



Quiz

wooclap.com XDYJSD



Recap

a*aaaba* ~~> 

• 



~[a]~>

~[a]~> ~[a]~>

• 
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runMoore :: Moore inp state out → [inp] → state
runMoore (Moore step genOut s0) = ???
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Running Moore Machines, generally

runMoore :: Moore inp state out → [inp] → state
runMoore (Moore step _ s0) = runFrom s0 where
  runFrom :: state → [inp] → state
  runFrom st sys = ???



Running Moore Machines, generally

runMoore :: Moore inp state out → [inp] → state
runMoore (Moore step _ s0) = runFrom s0 where
  runFrom :: state → [inp] → state
  runFrom st [] = ???
  runFrom st (i:is) = ???



Running Moore Machines, generally

runMoore :: Moore inp state out → [inp] → state
runMoore (Moore step _ s0) = runFrom s0 where
  runFrom :: state → [inp] → state
  runFrom st [] = st
  runFrom st (i:is) = ???



Running Moore Machines, generally

runMoore :: Moore inp state out → [inp] → state
runMoore (Moore step _ s0) = runFrom s0 where
  runFrom :: state → [inp] → state
  runFrom st [] = st
  runFrom st (i:is) = runFrom ??? ???



Running Moore Machines, generally

runMoore :: Moore inp state out → [inp] → state
runMoore (Moore step _ s0) = runFrom s0 where
  runFrom :: state → [inp] → state
  runFrom st [] = st
  runFrom st (i:is) = runFrom (step i st) is



Running Moore Machines, generally

runMoore :: Moore inp state out → [inp] → state
runMoore (Moore step _ s0) = runFrom s0 where
  runFrom :: state → [inp] → state
  runFrom st [] = st
  runFrom st (i:is) = runFrom (step i st) is
-- Looks familiar...



Running Moore Machines, generally

runMoore :: Moore inp state out → [inp] → state
runMoore (Moore step _ s0) = foldr step s0 where
  runFrom :: state → [inp] → state
  runFrom st [] = st
  runFrom st (i:is) = runFrom (step i st) is



Running Moore Machines, generally

runMoore :: Moore inp state out → [inp] → state
runMoore (Moore step _ s0) = foldr step s0
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c



Compiling RegExp to DFA

\d



Compiling RegExp to DFA
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Compiling RegExp to DFA
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Compiling RegExp to DFA

r*



Compiling RegExp to DFA

r?



Compiling RegExp to DFA progress

✅ c
✅ \d
✅ [x-z]
💣 r₁r₂
💣 r₁|r₂

❓ r+

❓ r*



❓ r?
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Compiling RegExp to NFAε
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Compiling RegExp to NFAε progress

✅ c
✅ \d
✅ [x-z]
✅ r₁r₂
✅ r₁|r₂

✅ r+

✅ r*



✅ r?



Running an NFAε

runNFAε :: NFAε symbol state → [symbol] 
→ Set state

runNFAε (NFAε step εsteps genOut s0) =
foldr (reachable εsteps (s0 nfa))

  (\sy → Set.unions . Set.map
    (reachable εsteps . step nfa sy))



Putting together the parts

✅ 
runNFAε :: NFAε sy st → [sy] → Set st

✅ 
r2n :: RegExp → NFAε Char Label -- (by example)

matchesRegExp :: RegExp → String → Bool
matchesRegExp r s = any isAccepting $
  runNFAε (r2n r) s



Not done yet!



Functions seen so far

runNFAε :: NFAε sy      st  → [sy] → Set st

runDFA  :: DFA  sy      st  → [sy] →     st



A special case of runDFA

runNFAε :: NFAε sy      st  → [sy] → Set st

runDFA  :: DFA  sy      st  → [sy] →     st
runDFA  :: DFA  sy (Set st) → [sy] → Set st



Convert NFAε to DFA?

runNFAε :: NFAε sy      st  → [sy] → Set st
runNFAε = runDFA . n2d

runDFA  :: DFA  sy (Set st) → [sy] → Set st

n2d      :: NFAε sy      st
          → DFA  sy (Set st)



Another NFAε simulation
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The subset construction



The subset construction



Summary

RegExp 🚀
RegExp → NFAε
NFAε → DFA

DFA → 
Challenge : implement in Haskell

• 
• 
• 
• 

• 
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