
Finite State
Machines

Recap: RegExp

(0b)?(0|1)+

<|> :: R → R → R
<+> :: R → R → R
many :: R → R
many1 :: R → R
option :: R → R
symbol :: Char → R
satisfy :: (Char → Bool) → R
type R = Parser Char String

r₁|r₂
r₁r₂
r*
r+
r?
c
\d \s \S [a-z] ...

Recap: RegExp performance

head $ matchRegExp "a*aaaba*$" "aaaaaaabaa"
 aaa❌
a aaa❌
aa aaa❌
aaa aaa❌
aaaa aaab aa ✅

Today: matching RegExp fast

O(length input * regexp complexity)
matching time
Algorithm from the bottom up

•

•

Problem: computers are complicated

10nm SF Tiger Lake 8Core processor (2021) die shot, by @Locuza_ on twitter

Simplification: Moore Machine

a.k.a. Finite State Machine (FSM)

v.s.t. Finite State Automaton (FSA)

a.k.a. Deterministic Finite Automaton (DFA)

Concrete Example

Concrete Example

Concrete Example

Concrete Example

Concrete Example

Concrete Example

Concrete Example

Concrete Example

Concrete Example

Concrete Example

Concrete Example

Concrete Example

Concrete Example

Moore Machine for lamp

Moore Machine for lamp

Moore Machine for lamp

Moore Machine for lamp

Moore Machine for lamp

Moore Machine for lamp

Moore Machine for lamp

Moore Machine for lamp

Moore Machine for lamp

Another Example

Another Example

Another Example

Another Example

Another Example

Another Example

Another Example

A Big Example

Moore Machines benefits

Easy to write

Easy to modify

Easy to verify

•

•

•

More Moore Machines benefits

By the inventor of Moore’s law
False! Edward F. Moore vs
Gordon E. Moore

Easy to implement 👈

•

◦

•

Moore Machines in Haskell

Moore Machines in C

Moore Machines in Hardware

Moore Machines in Mathematics

Moore Machines in Haskell (with types)

Moore Machines in Haskell (with types)

data Moore event memory output = Moore
 { step :: event → memory → memory
 , genOut :: memory → output
 , s0 :: memory}

Moore Machines in Haskell (with types)

data Moore symbol memory output = Moore
 { step :: symbol → memory → memory
 , genOut :: memory → output
 , s0 :: memory}

Moore Machines in Haskell (with types)

data Moore symbol state output = Moore
 { step :: symbol → state → state
 , genOut :: state → output
 , s0 :: state}

Moore Machines in Haskell (with types)

type DFA symbol state = Moore symbol state Bool

Moore Machines summary

Easy to use

Easy to modify

Easy to verify

Easy to implement

•

•

•

•

Moore Machines for RegExp Matching

a*aaaba*

Moore Machines for RegExp Matching

a*aaaba*

aaaaaaabaabba

Moore Machines for RegExp Matching

a*aaaba*

aaaaaaabaabba

Moore Machines for RegExp Matching

a*aaaba*

|aaaaaaabaabba

Moore Machines for RegExp Matching

a*aaaba*

[aaaaaaabaabba

Moore Machines for RegExp Matching

a*aaaba*

a|aaaaaabaabba

Moore Machines for RegExp Matching

a*aaaba*

a[aaaaaabaabba

Moore Machines for RegExp Matching

a*aaaba*

aa|aaaaabaabba

Moore Machines for RegExp Matching

a*aaaba*

aa[aaaaabaabba

Moore Machines for RegExp Matching

a*aaaba*

aaa|aaaabaabba

Moore Machines for RegExp Matching

a*aaaba*

aaa[aaaabaabba

Moore Machines for RegExp Matching

a*aaaba*

aaaa|aaabaabba

Moore Machines for RegExp Matching

a*aaaba*

aaaa[aaabaabba

Moore Machines for RegExp Matching

a*aaaba*

aaaaa|aabaabba

Moore Machines for RegExp Matching

a*aaaba*

aaaaa[aabaabba

Moore Machines for RegExp Matching

a*aaaba*

aaaaaa|abaabba

Moore Machines for RegExp Matching

a*aaaba*

aaaaaa[abaabba

Moore Machines for RegExp Matching

a*aaaba*

aaaaaaa|baabba

Moore Machines for RegExp Matching

a*aaaba*

aaaaaaa[baabba

Moore Machines for RegExp Matching

a*aaaba*

aaaaaaab|aabba

Moore Machines for RegExp Matching

a*aaaba*

aaaaaaab[aabba

Moore Machines for RegExp Matching

a*aaaba*

aaaaaaaba|abba

Moore Machines for RegExp Matching

a*aaaba*

aaaaaaaba[abba

Moore Machines for RegExp Matching

a*aaaba*

aaaaaaabaa|bba

Moore Machines for RegExp Matching

a*aaaba*

aaaaaaabaa[bba

Moore Machines for RegExp Matching

a*aaaba*

aaaaaaabaab|ba

Moore Machines for RegExp Matching

a*aaaba*

aaaaaaabaab[ba

Moore Machines for RegExp Matching

a*aaaba*

aaaaaaabaabb|a

Moore Machines for RegExp Matching

a*aaaba*

aaaaaaabaabb[a

Moore Machines for RegExp Matching

a*aaaba*

aaaaaaabaabba|

More Moore Machine Matching

(0b)?(0|1)+

More Moore Machine Matching

(0b)?(0|1)+

0b110100,10

More Moore Machine Matching

(0b)?(0|1)+

0b110100,10

More Moore Machine Matching

(0b)?(0|1)+

|0b110100,10

More Moore Machine Matching

(0b)?(0|1)+

[0b110100,10

More Moore Machine Matching

(0b)?(0|1)+

0|b110100,10

More Moore Machine Matching

(0b)?(0|1)+

0[b110100,10

More Moore Machine Matching

(0b)?(0|1)+

0b|110100,10

More Moore Machine Matching

(0b)?(0|1)+

0b[110100,10

More Moore Machine Matching

(0b)?(0|1)+

0b1|10100,10

More Moore Machine Matching

(0b)?(0|1)+

0b1[10100,10

More Moore Machine Matching

(0b)?(0|1)+

0b11|0100,10

More Moore Machine Matching

(0b)?(0|1)+

0b11[0100,10

More Moore Machine Matching

(0b)?(0|1)+

0b110|100,10

More Moore Machine Matching

(0b)?(0|1)+

0b110[100,10

More Moore Machine Matching

(0b)?(0|1)+

0b1101|00,10

More Moore Machine Matching

(0b)?(0|1)+

0b1101[00,10

More Moore Machine Matching

(0b)?(0|1)+

0b11010|0,10

More Moore Machine Matching

(0b)?(0|1)+

0b11010[0,10

More Moore Machine Matching

(0b)?(0|1)+

0b110100|,10

More Moore Machine Matching

(0b)?(0|1)+

0b110100[,10

More Moore Machine Matching

(0b)?(0|1)+

0b110100,|10

More Moore Machine Matching

(0b)?(0|1)+

0b110100,[10

More Moore Machine Matching

(0b)?(0|1)+

0b110100,1|0

More Moore Machine Matching

(0b)?(0|1)+

0b110100,1[0

More Moore Machine Matching

(0b)?(0|1)+

0b110100,10|

Making Matching Moore Machines

co(bra|d)

Making Matching Moore Machines

co(bra|d)

Making Matching Moore Machines

co(bra|d)

Making Matching Moore Machines

co(bra|d)

Making Matching Moore Machines

co(bra|d)

Making Matching Moore Machines

co(bra|d)

Making Matching Moore Machines

co(bra|d)

Making Matching Moore Machines

co(bra|d)

Making Matching Moore Machines

co(bra|d)

Making Matching Moore Machines

co(bra|d)

Making Matching Moore Machines

co(bra|d)

Making Matching Moore Machines

co(bra|d)

More Making Matching Moore Machines

gr(a|e)y|green

More Making Matching Moore Machines

gr(a|e)y|green

More Making Matching Moore Machines

gr(a|e)y|green

More Making Matching Moore Machines

gr(a|e)y|green

More Making Matching Moore Machines

gr(a|e)y|green

More Making Matching Moore Machines

gr(a|e)y|green

More Making Matching Moore Machines

gr(a|e)y|green

More Making Matching Moore Machines

gr(a|e)y|green

More Making Matching Moore Machines

gr(a|e)y|green

More Making Matching Moore Machines

gr(a|e)y|green

More Making Matching Moore Machines

gr(a|e)y|green

More Making Matching Moore Machines

gr(a|e)y|green

More Making Matching Moore Machines

gr(a|e)y|green

More Making Matching Moore Machines

gr(a|e)y|green

More Making Matching Moore Machines

gr(a|e)y|green

Quiz

wooclap.com XDYJSD

Recap

a*aaaba* ~~>

•

~[a]~>

~[a]~> ~[a]~>

•

Running Moore Machines, generally

Running Moore Machines, generally

runMoore :: Moore inp state out → [inp] → state
runMoore (Moore step genOut s0) = ???

Running Moore Machines, generally

runMoore :: Moore inp state out → [inp] → state
runMoore (Moore step _ s0) = ???

Running Moore Machines, generally

runMoore :: Moore inp state out → [inp] → state
runMoore (Moore step _ s0) = runFrom s0 where
 runFrom :: state → [inp] → state
 runFrom st sys = ???

Running Moore Machines, generally

runMoore :: Moore inp state out → [inp] → state
runMoore (Moore step _ s0) = runFrom s0 where
 runFrom :: state → [inp] → state
 runFrom st [] = ???
 runFrom st (i:is) = ???

Running Moore Machines, generally

runMoore :: Moore inp state out → [inp] → state
runMoore (Moore step _ s0) = runFrom s0 where
 runFrom :: state → [inp] → state
 runFrom st [] = st
 runFrom st (i:is) = ???

Running Moore Machines, generally

runMoore :: Moore inp state out → [inp] → state
runMoore (Moore step _ s0) = runFrom s0 where
 runFrom :: state → [inp] → state
 runFrom st [] = st
 runFrom st (i:is) = runFrom ??? ???

Running Moore Machines, generally

runMoore :: Moore inp state out → [inp] → state
runMoore (Moore step _ s0) = runFrom s0 where
 runFrom :: state → [inp] → state
 runFrom st [] = st
 runFrom st (i:is) = runFrom (step i st) is

Running Moore Machines, generally

runMoore :: Moore inp state out → [inp] → state
runMoore (Moore step _ s0) = runFrom s0 where
 runFrom :: state → [inp] → state
 runFrom st [] = st
 runFrom st (i:is) = runFrom (step i st) is
-- Looks familiar...

Running Moore Machines, generally

runMoore :: Moore inp state out → [inp] → state
runMoore (Moore step _ s0) = foldr step s0 where
 runFrom :: state → [inp] → state
 runFrom st [] = st
 runFrom st (i:is) = runFrom (step i st) is

Running Moore Machines, generally

runMoore :: Moore inp state out → [inp] → state
runMoore (Moore step _ s0) = foldr step s0

Compiling RegExp to DFA

Compiling RegExp to DFA

c

Compiling RegExp to DFA

\d

Compiling RegExp to DFA

[x-z]

Compiling RegExp to DFA

Compiling RegExp to DFA

Compiling RegExp to DFA

Compiling RegExp to DFA

Compiling RegExp to DFA

Compiling RegExp to DFA

Compiling RegExp to DFA

Compiling RegExp to DFA

Compiling RegExp to DFA

Compiling RegExp to DFA

Compiling RegExp to DFA

🧠

Compiling RegExp to DFA

❓

Compiling RegExp to DFA

r*

Compiling RegExp to DFA

r?

Compiling RegExp to DFA progress

✅ c
✅ \d
✅ [x-z]
💣 r₁r₂
💣 r₁|r₂

❓ r+

❓ r*

❓ r?

Compiling RegExp to NFAε

Compiling RegExp to NFAε

Compiling RegExp to NFAε

r*

Compiling RegExp to NFAε

Compiling RegExp to NFAε

Compiling RegExp to NFAε

Compiling RegExp to NFAε progress

✅ c
✅ \d
✅ [x-z]
✅ r₁r₂
✅ r₁|r₂

✅ r+

✅ r*

✅ r?

Running an NFAε

runNFAε :: NFAε symbol state → [symbol]
→ Set state

runNFAε (NFAε step εsteps genOut s0) =
foldr (reachable εsteps (s0 nfa))

 (\sy → Set.unions . Set.map
 (reachable εsteps . step nfa sy))

Putting together the parts

✅
runNFAε :: NFAε sy st → [sy] → Set st

✅
r2n :: RegExp → NFAε Char Label -- (by example)

matchesRegExp :: RegExp → String → Bool
matchesRegExp r s = any isAccepting $
 runNFAε (r2n r) s

Not done yet!

Functions seen so far

runNFAε :: NFAε sy st → [sy] → Set st

runDFA :: DFA sy st → [sy] → st

A special case of runDFA

runNFAε :: NFAε sy st → [sy] → Set st

runDFA :: DFA sy st → [sy] → st
runDFA :: DFA sy (Set st) → [sy] → Set st

Convert NFAε to DFA?

runNFAε :: NFAε sy st → [sy] → Set st
runNFAε = runDFA . n2d

runDFA :: DFA sy (Set st) → [sy] → Set st

n2d :: NFAε sy st
 → DFA sy (Set st)

Another NFAε simulation

Another NFAε simulation

aaba

Another NFAε simulation

]aaba

Another NFAε simulation

!aaba

Another NFAε simulation

|aaba

Another NFAε simulation

[aaba

Another NFAε simulation

a]aba

Another NFAε simulation

a!aba

Another NFAε simulation

a|aba

Another NFAε simulation

a[aba

Another NFAε simulation

aa]ba

Another NFAε simulation

aa!ba

Another NFAε simulation

aa|ba

Another NFAε simulation

aa[ba

Another NFAε simulation

aab]a

Another NFAε simulation

aab!a

Another NFAε simulation

aab|a

Another NFAε simulation

aab[a

Another NFAε simulation

aaba]

Another NFAε simulation

aaba!

Another NFAε simulation

aaba|

Another NFAε simulation

Another NFAε simulation

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

Summary

RegExp 🚀
RegExp → NFAε
NFAε → DFA

DFA →
Challenge : implement in Haskell

•
•
•
•

•

	Finite State Machines
	Recap: RegExp
	Recap: RegExp performance
	Today: matching RegExp fast
	Problem: computers are complicated
	Simplification: Moore Machine
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Moore Machine for lamp
	Moore Machine for lamp
	Moore Machine for lamp
	Moore Machine for lamp
	Moore Machine for lamp
	Moore Machine for lamp
	Moore Machine for lamp
	Moore Machine for lamp
	Moore Machine for lamp
	Another Example
	Another Example
	Another Example
	Another Example
	Another Example
	Another Example
	Another Example
	A Big Example
	Moore Machines benefits
	More Moore Machines benefits
	Moore Machines in Haskell
	Moore Machines in C
	Moore Machines in Hardware
	Moore Machines in Mathematics
	Moore Machines in Haskell (with types)
	Moore Machines in Haskell (with types)
	Moore Machines in Haskell (with types)
	Moore Machines in Haskell (with types)
	Moore Machines in Haskell (with types)
	Moore Machines summary
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	Quiz
	Recap
	Running Moore Machines, generally
	Running Moore Machines, generally
	Running Moore Machines, generally
	Running Moore Machines, generally
	Running Moore Machines, generally
	Running Moore Machines, generally
	Running Moore Machines, generally
	Running Moore Machines, generally
	Running Moore Machines, generally
	Running Moore Machines, generally
	Running Moore Machines, generally
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA progress
	Compiling RegExp to NFAε
	Compiling RegExp to NFAε
	Compiling RegExp to NFAε
	Compiling RegExp to NFAε
	Compiling RegExp to NFAε
	Compiling RegExp to NFAε
	Compiling RegExp to NFAε progress
	Running an NFAε
	Putting together the parts
	Not done yet!
	Functions seen so far
	A special case of runDFA
	Convert NFAε to DFA?
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	Summary

