Finite State
Machines

Recap: RegExp

<> ::R—->R —>R rilrs
<t+> :: R—>R — R rrs
many :: R = R r*
manyl :: R = R r+
option :: R > R r?

symbol :: Char — R C
satisfy :: (Char — Bool) = R \d \s \S [a-Z] ...
type R = Parser Char String

(Bb)?7(8]1)+

Recap: RegExp performance

head $ matchRegExp "a*aaaba™$" "aaaaaaaba:

aaa aaa) _
aaaa aaab aa

Today: matching RegExp fast

e 0(length input * regexp complexity)
matching time

e Algorithm from the bottom up

Problem: computers are complicated

EE ,",‘.EF!%DsplaquHw = i :Jléispig_y
(DDI TCPO-3) : EPHY,
= = (‘DDI’A&‘B)V

| Display Control Logic -
(4x Display Pipes)

e

3

A

Image Processing Unit
(IPU.V6'SE)

rr.'ax_',—

10nm SF Tiger Lake 8Core processor (2821) die shot, by

—
196E3|OA|PSIed

3MiB:—

_L3$/LLC:

- E&2253PHY Por 2x,PHY/ Portf}

Mﬁltlprotocol.k(fo;ltrol Logic
“===(TB3; USB4,Display Output)

L1/Tex$,

16 EUs
(128 Cores)

@Locuza_ on twitter

Simplification: Moore Machine

Input events

v
/ controller /t:@emo@
l

output < / output
/ generator

a.k.a. Finite State Machine (FSM)
v.s.t. Finite State Automaton (FSA)

a.k.a. Deterministic Finite Automaton (DFA)

Concrete Example

Concrete Example

Concrete Example

Concrete Example

Concrete Example

Concrete Example

Concrete Example

Concrete Example

Concrete Example

el Al

Concrete Example

Concrete Example

E3 =1)

Concrete Example

Concrete Example

E3 =1)

Moore Machine for lamp

Moore Machine for lamp

e —
step :: Event -> Memory -> Memory
step [FE _ = State {color=W,on=True} . .
step _ = State {color=Y,on=True} colc.).r B {ellowOrWhlte
step m s = s {on = not (on s)} on = boo

/

genOut (State {color=Y,on=True}) =47

genOut :: Memory -> Output
/ / genOut (State {color= ,on=False}) =47
genOut (State {color=W,on=True}) = 47

Moore Machine for lamp

msolssol
; y

step :: Event -> Memory -> Memory

{color=w,
,on=False}

step [_ = State {color=W,on=True}

step ~ = State {color=Y,on=True} {color=y (color=Y

ste s = s {on = not (on s color= CoLor=y,
P m { ('} ,on=True} ,on=False}

genOut (State {color=Y,on=True}) =47

genOut :: Memory -> Output
/ / genOut (State {color= ,on=False}) =47
genOut (State {color=W,on=True}) = 47

Moore Machine for lamp

msolssol
; y

{color=w,

,on=False}

step :: Event -> Memory -> Memory
step [_ = State {color=W,on=True}
step ~ = State {color=Y,on=True}
step m s = s {on = not (on s)}

/‘:{’/‘77/

{color=Y
,on=True}

{color=Y,
,on=False}

genOut
genOut
genOut

genOut ::

Memory -> Output

(State {color= ,on=False}) =47
(State {color=W,on=True}) = 47
(State {color=Y,on=True}) =47

Moore Machine for lamp

{color=w,

step :: Event -> Memory -> Memory
step [_ = State {color=W,on=True}
step = State {color=Y,on=True}

step m s

s {on = not (on s)}

on=False}

{color=Y,
,on=False}

/‘:{’/‘3’7/

genOut ::

genOut
genOut
genOut

Memory -> Output

(State {color= ,on=False}) =47
(State {color=W,on=True}) = 47
(State {color=Y,on=True}) =47

Moore Machine for lamp

{color=w,

on=False}

step :: Event -> Memory -> Memory

step [_ = State {color=W,on=True}

step ~ = State {color=Y,on=True}

step EEp] S = s {on = not (on s)} ({)rc\g;g{::«}

Moore Machine for lamp

step :: Event -> Memory -> Memory
step [_ = State {color=W,on=True}
step m ~ = State {color=Y,on=True}

step m s = s {on = not (on s)}

Moore Machine for lamp

Moore Machine for lamp

Another Example

Another Example

Another Example

B

Another Example

CD

Another Example

Bl
]

Another Example

CD

Another Example

PSP Rijkswaterstaat
&é’ Ministerie van Infrastructuur
en Waterstaat

-

L

A29: Heinenoordtunnel
voor renovatie; december:

Lees het nieuwsbericht >

A29 Heinenoordtunnel dicht; 1 - 4

Hacarnier Bestrijding gladheid op de wegen Kustversterking Scheveningen

A Codegeel Vanmiddag envanavond gladheid door sneeuw (KNMI 7)

Waterdata

Moore Machines benefits

g
B

Easy to write

Fasy to modify

Fasy to verify

More Moore Machines bhenefits

o #©
By the inventor of Moore’s law L

o false! Edward F. Moore vs
Gordon E. Moore

e Easy to implement -

Moore Machines in Haskell

gscllasallasg

step :: Event -> Memory -> Memory

—

step [_ = State {color=W,on=True} color :: YellowOrWhite
step = State {color=Y,on=True} on B 1
step EEp) S = s {on = not (on s)} se BoO

/

genOut :: Memory -> Output
/ / genOut (State {color= ,on=False}) =47
genOut (State {color=W,on=True}) = 47

genOut (State {color=Y,on=True}) =47

Moore Machines in C

e

— I—
Memory step(Event e, Memory s){switch (e) {
casem return (Memory){.color=W, .on=true}; typedef struct memory {
caseu return (Memory){.color=Y, .on=true}; YellowOrWhite COlOf‘;
casem: return (Memory){.color=s.color, .on=1-s.on}; bool on;
H } Memory;

e I

/

}

Output genOut(Memory mem){
if (mem.on == false) {returns« ;}
if (mem.color == W) {return& ;}
if (mem.color ==Y) {return® ;}

Moore Machines in Hardware

Moore Machines in Mathematics

msolssol
; y

step € Event x Memory — Memory
W)

step (FEE >) =
: , J)=(Y, L
! BB e (1,9)

147157

genOut :: Memory — Output
genOut (_, L) = *7
genOut (W, 7)) = &
genOut (Y, T) = «

Formal defimtion | ean) . .
o L '
A NOOre Mathing Can e efirmd 38 2 5708 15, 9, B0 4G cenEstng oo
W
e AMnite set of slales S : g)‘
e A Starm state |akO cabed Inual stater s, wach s anelamertof S & “
o A Tnite set called ™he input et Y u
~
¢ A fnite et called ™e eurowt aghaber O T

o A transitien functiar &1 F x 5 -+ § ragpng a state and the inpwt alphabet o the next state

o An outpat furction G 1 S <+ O magp g eack tate 10 the sutput alphabet

Moore Machines in Haskell (with types)
//

step :: Event -> Memory -> Memory

I

step [FE _ = State {color=W,on=True} 3 '
step ~ = State {color=Y,on=True} COI?T B {ellowomhlte
step EEr] S = s {on = not (on s)} on :: Boo

/

genOut :: Memory -> Output
/ / genOut (State {color= ,on=False}) =47
genOut (State {color=W,on=True}) = 47

genOut (State {color=Y,on=True}) =47

Moore Machines in Haskell (with types)
//

step :: Event -> Memory -> Memory

—

step [FE _ = State {color=W,on=True} 3 '
step _ = State {color=Y,on=True} colc.).r B {ellowOrWhlte
step EEr] S = s {on = not (on s)} on :: Boo

/

genOut :: Memory -> Output
/ / genOut (State {color= ,on=False}) =47
genOut (State {color=W,on=True}) = 47

genOut (State {color=Y,on=True}) =47

data Moore event memory output = Moore
{ step :: event — memory — memory
, genOut :: memory — output
, SO :: memory}

Moore Machines in Haskell (with types)
//

step :: Event -> Memory -> Memory

—

step [FE _ = State {color=W,on=True} 3 '
step _ = State {color=Y,on=True} colc.).r B {ellowOrWhlte
step EEr] S = s {on = not (on s)} on :: Boo

/

genOut :: Memory -> Output
/ / genOut (State {color= ,on=False}) =47
genOut (State {color=W,on=True}) = 47

genOut (State {color=Y,on=True}) =47

data Moore symbol memory output = Moore
{ step :: symbol — memory — memory
, genOut :: memory — output
, SO :: memory}

Moore Machines in Haskell (with types)
//

step :: Event -> Memory -> Memory

—

step [FE _ = State {color=W,on=True} 3 '
step _ = State {color=Y,on=True} colc.).r B {ellowOrWhlte
step EEr] S = s {on = not (on s)} on :: Boo

/

genOut :: Memory -> Output
/ / genOut (State {color= ,on=False}) =47
genOut (State {color=W,on=True}) = 47

genOut (State {color=Y,on=True}) =47

data Moore symbol state output = Moore
{ step :: symbol — state — state
, genOut :: state — output
, sB :: state}

Moore Machines in Haskell (with types)
//

step :: Event -> Memory -> Memory

—

step [FE _ = State {color=W,on=True} 3 '
step B _ = State {color=Y,on=True} COI(?'r 5 {ellOWOFWhlte
step EEr] S = s {on = not (on s)} on :: Boo

/

genOut :: Memory -> Output
/ / genOut (State {color= ,on=False}) =47
genOut (State {color=W,on=True}) = 47

genOut (State {color=Y,on=True}) =47

type DFA symbol state = Moore symbol state Bool

Moore Machines summary

Easy to use

Easy to modify

Easy to verify

Easy to implement

Moore Machines for RegExp Matching

a*aaaba™

Moore Machines for RegExp Matching

a*aaaba™

aaaaaaabaabba

Moore Machines for RegExp Matching

a*aaaba™

aaaaaaabaabba

Moore Machines for RegExp Matching

a*aaaba™

| aaaaaaabaabba

Moore Machines for RegExp Matching

a*aaaba™

| aaaaaaabaabba

Moore Machines for RegExp Matching

a*aaaba™

a | aaaaaabaabba

Moore Machines for RegExp Matching

a*aaaba™

al aaaaaabaabba

Moore Machines for RegExp Matching

a*aaaba™

aa|aaaaabaabba

Moore Machines for RegExp Matching

a*aaaba™

aal aaaaabaabba

Moore Machines for RegExp Matching

a*aaaba™

aaa|aaaabaabba

Moore Machines for RegExp Matching

a*aaaba™

aaal aaaabaabba

Moore Machines for RegExp Matching

a*aaaba™

aaaa|aaabaabba

Moore Machines for RegExp Matching

a*aaaba™

aaaal aaabaabba

Moore Machines for RegExp Matching

a*aaaba™

aaaaa|aabaabba

Moore Machines for RegExp Matching

a*aaaba™

aaaaal aabaabba

Moore Machines for RegExp Matching

a*aaaba™

aaaaaa|abaabba

Moore Machines for RegExp Matching

a*aaaba™

aaaaaal abaabba

Moore Machines for RegExp Matching

a*aaaba™

aaaaaaa|baabba

Moore Machines for RegExp Matching

a*aaaba™

SN

AvS

aaaaaaal baabba

Moore Machines for RegExp Matching

a*aaaba™

a
(R~
b
b b
h V/\]
a. b
A& :

aaaaaaab|aabba

Moore Machines for RegExp Matching

a*aaaba™

b

bl b ;

b -
oA)

aaaaaaab| aabba

Moore Machines for RegExp Matching

a*aaaba™

a
(R~
b
b b
h V/\]
a. b
A& :

aaaaaaabalabba

Moore Machines for RegExp Matching

a*aaaba™

b

bl b ;

b -
oA)

aaaaaaabal abba

Moore Machines for RegExp Matching

a*aaaba™

a
(R~
b
b b
h V/\]
a. b
A& :

aaaaaaabaalbba

Moore Machines for RegExp Matching

RR@

aaaaaaabaa[bba

Moore Machines for RegExp Matching

a*aaaba™

e

aaaaaaabaab|ba

Moore Machines for RegExp Matching

Je)

aaaaaaabaab| bz

Moore Machines for RegExp Matching

a*aaaba™

e

aaaaaaabaabb|a

Moore Machines for RegExp Matching

a*aaaba™

/Q;?/E% _fj

aaaaaaabaabbl a

Moore Machines for RegExp Matching

a*aaaba™

e

aaaaaaabaabbal

More Moore Machine Matching
(Bb)?(8]1)+

More Moore Machine Matching
(Bb)?(8]1)+

Ah110100,10

More Moore Machine Matching
(Bb)?(8]1)+

Ah110100,10

More Moore Machine Matching
(Bb)?(8]1)+

9b110100,10

More Moore Machine Matching
(Bb)?(8]1)+

0

[6b110160, 10

More Moore Machine Matching
(Bb)?(8]1)+

A|b110100,18

More Moore Machine Matching
(Bb)?(8]1)+

A[b110100,18

More Moore Machine Matching
(Bb)?(8]1)+

Ab|110100,18

More Moore Machine Matching
(Bb)?(8]1)+

Ab[110100,18

More Moore Machine Matching
(Bb)?(8]1)+

Ab1|10100,18

More Moore Machine Matching
(Bb)?(8]1)+

Ah1[10100,18

More Moore Machine Matching
(Bb)?(8]1)+

Ah11]0100,18

More Moore Machine Matching
(Bb)?(8]1)+

O (anything else)

1

Ah11[0100,18

More Moore Machine Matching
(Bb)?(8]1)+

Ah116|100,18

More Moore Machine Matching
(Bb)?(8]1)+

Ah110[100,18

More Moore Machine Matching
(Bb)?(8]1)+

Ph1101|06,18

More Moore Machine Matching
(Bb)?(8]1)+

O (anything else)

1

Ah1101[06,18

More Moore Machine Matching
(Bb)?(8]1)+

Ah11010|0,10

More Moore Machine Matching
(Bb)?(8]1)+

O (anything else)

1

Ah11010[0, 10

More Moore Machine Matching
(Bb)?(8]1)+

Ah110108|,10

More Moore Machine Matching
(Bb)?(8]1)+

Ah110108[, 10

More Moore Machine Matching
(Bb)?(8]1)+

Ah110108, | 10

More Moore Machine Matching
(Bb)?(8]1)+

Ah110108,[10

More Moore Machine Matching
(Bb)?(8]1)+

Ah110108,1|0

More Moore Machine Matching
(Bb)?(8]1)+

Ah110108,1[0

More Moore Machine Matching
(Bb)?(8]1)+

Ah110100,10)

Making Matching Moore Machines
co(brald)

Making Matching Moore Machines
co(brald)

Making Matching Moore Machines
co(brald)

D

Making Matching Moore Machines
co(brald)

D

Making Matching Moore Machines
co(brald)

D

>

Making Matching Moore Machines
co(brald)

D

Making Matching Moore Machines
co(brald)

;

Making Matching Moore Machines
co(brald)

@

Making Matching Moore Machines
co(brald)

Making Matching Moore Machines
co(brald)

Making Matching Moore Machines
co(brald)

Making Matching Moore Machines
co(brald)

\ anything else

More Making Matching Moore Machines

gr(ale)y|green

More Making Matching Moore Machines

gr(ale)y|green

More Making Matching Moore Machines

gr(ale)y|green

More Making Matching Moore Machines

gr(ale)y|green

9D
X)

More Making Matching Moore Machines

gr(ale)y|green

More Making Matching Moore Machines

gr(ale)y|green

More Making Matching Moore Machines

gr(ale)y|green

More Making Matching Moore Machines

gr(ale)y|green

—@LQ
e anything else

More Making Matching Moore Machines

gr(ale)y|green

@D

e anything else

More Making Matching Moore Machines

gr(ale)y|green

@
r &—>D
\‘ e anything else

More Making Matching Moore Machines

gr(ale)y|green

r @D
‘\‘ @ anything else

More Making Matching Moore Machines

gr(ale)y|green

>
r &—>D
o @ |
e anything else

More Making Matching Moore Machines

gr(ale)y|green

>
r &—>D
o @ |
e anything else

More Making Matching Moore Machines
gr(ale)y|green
e+ Re>@m (D

- (&
r &S 3 >
.\ @ anything else

More Making Matching Moore Machines
gr(ale)y|green
R @m(D

- R— > X))
\iiﬁli/*

e anything else

Quiz

wooclap.com XDYJSD

a*aaaba™ ~>

Running Moore Machines, generally

Running Moore Machines, generally

runMoore :: Moore inp state out — [inp] — state
runMoore (Moore step genOut sB) = 777

Running Moore Machines, generally

runMoore :: Moore inp state out — [inp] — state
runMoore (Moore step _ sB) = 777

Running Moore Machines, generally

runMoore :: Moore inp state out — [inp] — state
runMoore (Moore step _ sB) = runFrom s@ where
runFrom :: state — [inp] — state
runFrom st sys = 777

Running Moore Machines, generally

runMoore :: Moore inp state out — [inp] — state
runMoore (Moore step _ sB) = runFrom s@ where
runFrom :: state — [inp] — state

runFrom st [] = 777

runFrom st (i:is) = 777

Running Moore Machines, generally

runMoore :: Moore inp state out — [inp] — state
runMoore (Moore step _ sB) = runFrom s@ where
runFrom :: state — [inp] — state

runFrom st [] = st

runFrom st (i:is) = 777

Running Moore Machines, generally

runMoore :: Moore inp state out — [inp] — state
runMoore (Moore step _ sB) = runFrom s@ where
runFrom :: state — [inp] — state

runFrom st [] = st

runFrom st (i:is) = runFrom 777 777

Running Moore Machines, generally

runMoore :: Moore inp state out — [inp] — state
runMoore (Moore step _ sB) = runFrom s@ where
runFrom :: state — [inp] — state

runFrom st [] = st

runFrom st (i:is) = runFrom (step i st) is

Running Moore Machines, generally

runMoore :: Moore inp state out — [inp] — state
runMoore (Moore step _ sB) = runFrom s@ where
runFrom :: state — [inp] — state

runFrom st [] = st

runFrom st (i:is) = runFrom (step i st) is

Running Moore Machines, generally

runMoore :: Moore inp state out — [inp] — state
runMoore (Moore step _ sB) = foldr step sB where
runFrom :: state — [inp] — state

runFrom st [] = st

runFrom st (i:is) = runFrom (step i st) is

Running Moore Machines, generally

runMoore :: Moore inp state out — [inp] — state
runMoore (Moore step _ sB) = foldr step s@

Compiling RegExp to DFA

Compiling RegExp to DFA

C

Compiling RegExp to DFA
\d

Compiling RegExp to DFA
[x-z]

Compiling RegExp to DFA

Compiling RegExp to DFA

Compiling RegExp to DFA

Compiling RegExp to DFA

Compiling RegExp to DFA

Compiling RegExp to DFA

Compiling RegExp to DFA

Compiling RegExp to DFA

Compiling RegExp to DFA

Compiling RegExp to DFA

Compiling RegExp to DFA

-~

Compiling RegExp to DFA
?

Compiling RegExp to DFA

r.*

Compiling RegExp to DFA
r?

Compiling RegExp to DFA progress
C
\d
[x-2Z]
r'1ro

@

@ rilr
?
?

I” +

r.*

Compiling RegExp to NFAe

Compiling RegExp to NFAe

Compiling RegExp to NFAe

r.*

Compiling RegExp to NFAe

Compiling RegExp to NFAe

Compiling RegExp to NFAe

Compiling RegExp to NFAe progress

"4 c

\d
[x-2]
r1r2
r|rs

4 r+
4 r*

Running an NFAe

runNFAe :: NFAe symbol state — [symbol]
— Set state
runNFAe (NFAe step esteps genOut sB) =
foldr (reachable esteps (sB nfa))
(\sy — Set.unions . Set.map
(reachable esteps . step nfa sy))

Putting together the parts

runNFAe :: NFAe syLst — [sy] — Set st

4

r2n :: RegExp — NFAe Char Label -- (by e

matchesRegExp :: RegkExp — String — Bool
matchesRegExp r s = any isAccepting $
runNFAe (r2n r) s

Not done yet!

Functions seen so far
runNFAe :: NFAe sy st — [sy] — Set st

runDFA :: DFA sy st — [sy] — st

runNFAe ::

runDFA
runDFA

A special case of runDFA

NFAg sy st — [sy] — Set st

;o DFA sy st —
:: DFA sy (Set st) —

Sy

SY_

— st
— Set st

Convert NFAe to DFA?

runNFAe :: NFAe sy st — [sy] — Set st
runNFAe = runDFA . nZ2d

runDFA :: DFA sy (Set st) — [sy] — Set st

n2d .. NFAe sy st
— DFA sy (Set st)

Another NFAe simulation

Another NFAe simulation

a b
(D
~

/b a

X

aaba

Another NFAe simulation

a b

QSCD
—»

b a ,

(G

laaba

Another NFAe simulation

.

Another NFAe simulation

Qag Qb

Another NFAe simulation

Wag Qb

7 b /aa
iﬁm

[aaba

Another NFAe simulation
@1§%
a b_) a
Qb

a |aba

Another NFAe simulation
e,
a b\/,/a .

b

alaba

Another NFAe simulation

b
()
7 b\ Ya

b

a|aba

Another NFAe simulation

Wag Qb
b\ /a .

b

al aba

Another NFAe simulation
@1§§
a b\,_) a
Qb

aa |ba

Another NFAe simulation
e,
a b\/,/a .

b

aalba

Another NFAe simulation

b
()
7 b\ Ya

b

aa|ba

Another NFAe simulation

O

_)
7B\ Ya

b

aal ba

Another NFAe simulation

Another NFAe simulation

Another NFAe simulation

Another NFAe simulation

Another NFAe simulation
%9

aaba |

Another NFAe simulation
g
e ,/aijzl

aaba!

Another NFAe simulation
%9

aabal|

Another NFAe simulation

—

Another NFAe simulation

—

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

The subset construction

Summary

RegExp
Regkxp — NFAeg
NFAe — DFA

Challenge : implement in Haskell

	Finite State Machines
	Recap: RegExp
	Recap: RegExp performance
	Today: matching RegExp fast
	Problem: computers are complicated
	Simplification: Moore Machine
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Concrete Example
	Moore Machine for lamp
	Moore Machine for lamp
	Moore Machine for lamp
	Moore Machine for lamp
	Moore Machine for lamp
	Moore Machine for lamp
	Moore Machine for lamp
	Moore Machine for lamp
	Moore Machine for lamp
	Another Example
	Another Example
	Another Example
	Another Example
	Another Example
	Another Example
	Another Example
	A Big Example
	Moore Machines benefits
	More Moore Machines benefits
	Moore Machines in Haskell
	Moore Machines in C
	Moore Machines in Hardware
	Moore Machines in Mathematics
	Moore Machines in Haskell (with types)
	Moore Machines in Haskell (with types)
	Moore Machines in Haskell (with types)
	Moore Machines in Haskell (with types)
	Moore Machines in Haskell (with types)
	Moore Machines summary
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	Moore Machines for RegExp Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	More Moore Machine Matching
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	More Making Matching Moore Machines
	Quiz
	Recap
	Running Moore Machines, generally
	Running Moore Machines, generally
	Running Moore Machines, generally
	Running Moore Machines, generally
	Running Moore Machines, generally
	Running Moore Machines, generally
	Running Moore Machines, generally
	Running Moore Machines, generally
	Running Moore Machines, generally
	Running Moore Machines, generally
	Running Moore Machines, generally
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA
	Compiling RegExp to DFA progress
	Compiling RegExp to NFAε
	Compiling RegExp to NFAε
	Compiling RegExp to NFAε
	Compiling RegExp to NFAε
	Compiling RegExp to NFAε
	Compiling RegExp to NFAε
	Compiling RegExp to NFAε progress
	Running an NFAε
	Putting together the parts
	Not done yet!
	Functions seen so far
	A special case of runDFA
	Convert NFAε to DFA?
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	Another NFAε simulation
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	The subset construction
	Summary

