
How flow-sensitive typing
works in Kotlin

Nikita Bobko, Software Engineer @ JetBrains

1

How flow-sensitive typing
works in Kotlin

Nikita Bobko, Software Engineer @ JetBrains

2

lengthOrZero in Java

// JAVA

public static int lengthOrZero(Object any) {

 if (any instanceof String) {

 return ((String) any).length();

 } else {

 return 0;

 }

}

3

lengthOrZero in Java

// JAVA

public static int lengthOrZero(Object any) {

 if (any instanceof String) {

 return ((String) any).length();

 } else {

 return 0;

 }

}

4

Smart-casts in Kotlin

// KOTLIN

fun lengthOrZero(any: Any): Int {

 if (any is String) {

 return any.length

 } else {

 return 0

 }

}

5

Smart-casts in Kotlin

// KOTLIN

fun lengthOrZero(any: Any): Int {

 if (any is String) {

 return any.length

 } else {

 any.length // error: unresolved reference: length

 return 0

 }

 any.length // error: unresolved reference: length

}

6

Smart-casts in Kotlin are powerful 🤯
fun isNotEmptyString(any: Any): Boolean {

 if (any !is String) return false

 return any.length != 0 // It also works

}

fun isNotEmptyString(any: Any): Boolean {

 return any is String && any.length != 0 // Yeap, works as well

}

7

Smart-casts in Kotlin are powerful 🤯
fun foo(any: Any) {

 if (any is String) any.length else return

 any.length // No problem, Kotlin can do it too

}

8

Smart-casts in Kotlin are powerful 🤯
fun foo(any: Any) {

 if (any is String) any.length else return

 any.length // No problem, Kotlin can do it too

}

9

How would you implement
Kotlin smart-casts?

Control-flow graph (CFG)

10

Control-flow graph (CFG) for `if`

val pillChoice = suggestAPill()

if (pillChoice == "red") {

 print("You awake from the " +

 "illusion of the Matrix")

} else {

 print("Ignorance is bliss!")

}

wakeUpNeo()

val pillChoice = suggestAPill()

pillChoice == “red”

print(“You awake …”) print(“Ignorance …”)

wakeUpNeo()

11

Control-flow graph (CFG) for `while`

var countdown = 12

while (countdown >= 0) {

 println(countdown--)

 Thread.sleep(1)

}

println("Happy New Year!")

12

var countdown = 12

countdown >= 0

val tmp = countdown--

Thread.sleep(1)

println(“Happy New Year!”)

println(tmp)

Desugaring (aka “Compiler lowering”)

var counter = 0

foo(bar(counter++))

13

Desugaring (aka “Compiler lowering”)

var counter = 0

val tmp0 = counter++

val tmp1 = bar(tmp0)

val tmp2 = foo(tmp1)

14

Split the program into minimal units.
Each unit has only one side-effect

Desugaring (aka “Compiler lowering”)

var counter = 0

val tmp0 = counter++

val tmp1 = bar(tmp0)

val tmp2 = foo(tmp1)

15

var counter = 0

val tmp0 = counter++

val tmp1 = bar(tmp0)

val tmp2 = foo(tmp1)

CFG

Desugaring (aka “Compiler lowering”)

var counter = 0

val tmp0 = counter++

val tmp1 = bar(tmp0)

val tmp2 = foo(tmp1)

16

var counter = 0

val tmp0 = counter++

val tmp1 = bar(tmp0)

val tmp2 = foo(tmp1)

CFG

Important! I will omit

desugaring for the

rest of the talk

fun maxInList(list: List<Int>): Int {

 if (list.isEmpty()) throw Exception()

 var max: Int = Int.MIN_VALUE

 for (item in list) {

 if (item > max) {

 max = item

 }

 }

 return max

}
17

fun maxInList(list: List<Int>): Int {

 if (list.isEmpty()) throw Exception()

 var max: Int = Int.MIN_VALUE

 val iterator = list.iterator()

 while (iterator.hasNext()) {

 val item = iterator.next()

 if (item > max) {

 max = item

 }

 }

 return max

}

Desugar

(aka “Compiler lowering”)

18

fun maxInList(list: List<Int>): Int {

 if (list.isEmpty()) throw Exception()

 var max: Int = Int.MIN_VALUE

 val iterator = list.iterator()

 while (iterator.hasNext()) {

 val item = iterator.next()

 if (item > max) {

 max = item

 }

 }

 return max

}
19

list.isEmpty()

throw Exception()var max: Int = Int.MIN_VALUE

val iterator = list.iterator()

iterator.hasNext()

val item = iterator.next()

item > max max = item

return max

Control flow analysis applications

- Dead code elimination optimization
- Loop unrolling optimization
- Escape analysis optimization

- what variables should be allocated on the stack and which ones should escape to the heap
- Allocations eliminations

- Check that variable is initialized before used
- IDE analysis
- …

20

Control flow analysis applications

- Dead code elimination optimization
- Loop unrolling optimization
- Escape analysis optimization

- what variables should be allocated on the stack and which ones should escape to the heap
- Allocations eliminations

- Check that variable is initialized before used
- IDE analysis
- …
- Flow-sensitive typing implementation

21

How flow-sensitive typing
works in Kotlin

Nikita Bobko, Software Engineer @ JetBrains

22

Flow-sensitive typing. The definition. Finally!

In programming language theory, flow-sensitive typing (also
called flow typing or occurrence typing) is a type system where the
type of an expression depends on its position in the control flow.

23

Smart-casts in Kotlin is a
special case of flow-sensitive
typing

Data-flow (DF) framework

24

Data-flow (DF) framework

interface Base { fun base() }

interface Foo : Base { fun foo() }

interface Bar : Base { fun bar() }

fun main(any: Any) {

 if (any is Foo) any.foo() // Green

 else if (any is Bar) any.bar() // Green

 else return

 any.base() // Green (in Kotlin 2.0)

} 25

Data-flow (DF) framework

interface Base { fun base() }

interface Foo : Base { fun foo() }

interface Bar : Base { fun bar() }

fun main(any: Any) {

 if (any is Foo) any.foo() // Green

 else if (any is Bar) any.bar() // Green

 else return

 any.base() // Green (in Kotlin 2.0)

} 26

any is Foo

any is Bar

return

any.base()

ENTER

any.foo()

any.bar()

Data-flow (DF) framework

interface Base { fun base() }

interface Foo : Base { fun foo() }

interface Bar : Base { fun bar() }

fun main(any: Any) {

 if (any is Foo) any.foo() // Green

 else if (any is Bar) any.bar() // Green

 else return

 any.base() // Green (in Kotlin 2.0)

} 27

any is Foo

any is Bar

return

any.base()

ENTER

any.foo()

any.bar()

DF info: any is Any

Data-flow (DF) framework

interface Base { fun base() }

interface Foo : Base { fun foo() }

interface Bar : Base { fun bar() }

fun main(any: Any) {

 if (any is Foo) any.foo() // Green

 else if (any is Bar) any.bar() // Green

 else return

 any.base() // Green (in Kotlin 2.0)

} 28

any is Foo

any is Bar

return

any.base()

ENTER

any.foo()

any.bar()

DF info: any is Any

Data-flow (DF) framework

interface Base { fun base() }

interface Foo : Base { fun foo() }

interface Bar : Base { fun bar() }

fun main(any: Any) {

 if (any is Foo) any.foo() // Green

 else if (any is Bar) any.bar() // Green

 else return

 any.base() // Green (in Kotlin 2.0)

} 29

any is Foo

any is Bar

return

any.base()

ENTER

any.foo()

any.bar()

DF info: any is Foo

DF info: any is Any

Data-flow (DF) framework

interface Base { fun base() }

interface Foo : Base { fun foo() }

interface Bar : Base { fun bar() }

fun main(any: Any) {

 if (any is Foo) any.foo() // Green

 else if (any is Bar) any.bar() // Green

 else return

 any.base() // Green (in Kotlin 2.0)

} 30

any is Foo

any is Bar

return

any.base()

ENTER

any.foo()

any.bar()

DF info: any is Foo

DF info: any is BarDF info: any is Any

Data-flow (DF) framework

interface Base { fun base() }

interface Foo : Base { fun foo() }

interface Bar : Base { fun bar() }

fun main(any: Any) {

 if (any is Foo) any.foo() // Green

 else if (any is Bar) any.bar() // Green

 else return

 any.base() // Green (in Kotlin 2.0)

} 31

any is Foo

any is Bar

return

any.base()

ENTER

any.foo()

any.bar()

DF info: any is Foo

DF info: any is BarDF info: any is Any

Data-flow (DF) framework

interface Base { fun base() }

interface Foo : Base { fun foo() }

interface Bar : Base { fun bar() }

fun main(any: Any) {

 if (any is Foo) any.foo() // Green

 else if (any is Bar) any.bar() // Green

 else return

 any.base() // Green (in Kotlin 2.0)

} 32

any is Foo

any is Bar

return

any.base()

ENTER

any.foo()

any.bar()

DF info: any is
commonSuper(Foo, Bar)

DF info: any is Any

Data-flow (DF) framework

interface Base { fun base() }

interface Foo : Base { fun foo() }

interface Bar : Base { fun bar() }

fun main(any: Any) {

 if (any is Foo) any.foo() // Green

 else if (any is Bar) any.bar() // Green

 else return

 any.base() // Green (in Kotlin 2.0)

} 33

any is Foo

any is Bar

return

any.base()

ENTER

any.foo()

any.bar()

DF info: any is Base

DF info: any is Any

Data-flow (DF) framework

interface Base { fun base() }

interface Foo : Base { fun foo() }

interface Bar : Base { fun bar() }

fun main(any: Any) {

 if (any is Foo) any.foo() // Green

 else if (any is Bar) any.bar() // Green

 else return

 any.base() // Green (in Kotlin 2.0)

} 34

any is Foo

any is Bar

return

any.base()

ENTER

any.foo()

any.bar()

DF info: any is Any

Symbol resolution

35

“Symbol resolution” depends on “Smart-casts inference”

class Foo { fun foo() { /*...*/ } }

class Bar { fun foo() { /*...*/ } }

fun function(any: Any) {

 if (any is Bar) any.foo()

 if (any is Foo) any.foo()

}

36

“Symbol resolution” depends on “Smart-casts inference”

class Foo { fun foo() { /*...*/ } }

class Bar { fun foo() { /*...*/ } }

fun function(any: Any) {

 if (any is Bar) any.foo()

 if (any is Foo) any.foo()

}

37

“Resolves to” “Resolves to”

“Resolves to” relation works like “Go to definition” in your IDE

“Smart-casts inference” depends on “Symbol resolution”
val foo: Any = ""

fun bar() {

 if (foo is String) {

 foo.length

 val foo: Any = ""

 foo.length // error: unresolved reference: 'length'

 }

}
38

“Smart-casts inference” depends on “Symbol resolution”
val foo: Any = ""

fun bar() {

 if (foo is String) {

 foo.length

 val foo: Any = ""

 foo.length // error: unresolved reference: 'length'

 }

}
39

Won’t smart-cast this ‘foo’ because it resolves to a
different ‘foo’

“Smart-casts inference” and “Symbol resolution” cycle

40

Smart-casts
inference

Symbol
resolution

Depends on

Depends on

“Smart-casts inference” and “Symbol resolution” cycle

41

Smart-casts
inference

Symbol
resolution

Depends on

Depends on

Conclusion: can’t do these

compiler phases in any

sequence. We must do them

in parallel!

Resolution and smart-casts are performed together
val foo: Any = ""

fun bar() {

 if (foo is String) {

 foo.length

 val foo: Any = ""

 foo.length // error: unresolved reference: 'length'

 }

}
42

foo is resolved to global.foo

Current step:

The analysis is performed from top to
bottom in CFG, together with smart-casts

Resolution and smart-casts are performed together
val foo: Any = ""

fun bar() {

 if (foo is String) {

 foo.length

 val foo: Any = ""

 foo.length // error: unresolved reference: 'length'

 }

}
43

global.foo is smart-casted to
String

Current step:

The analysis is performed from top to
bottom in CFG, together with smart-casts

Resolution and smart-casts are performed together
val foo: Any = ""

fun bar() {

 if (foo is String) {

 foo.length

 val foo: Any = ""

 foo.length // error: unresolved reference: 'length'

 }

}
44

foo is resolved to global.foo

Current step:

The analysis is performed from top to
bottom in CFG, together with smart-casts

val foo: Any = ""

fun bar() {

 if (foo is String) {

 foo.length

 val foo: Any = ""

 foo.length // error: unresolved reference: 'length'

 }

}

Resolution and smart-casts are performed together

45

Smart-cast is applied to foo

Current step:

The analysis is performed from top to
bottom in CFG, together with smart-casts

Resolution and smart-casts are performed together
val foo: Any = ""

fun bar() {

 if (foo is String) {

 foo.length

 val foo: Any = ""

 foo.length // error: unresolved reference: 'length'

 }

}
46

String.length is resolved

Current step:

The analysis is performed from top to
bottom in CFG, together with smart-casts

Resolution and smart-casts are performed together
val foo: Any = ""

fun bar() {

 if (foo is String) {

 foo.length

 val foo: Any = ""

 foo.length // error: unresolved reference: 'length'

 }

}
47

New variable `foo` is defined

Current step:

The analysis is performed from top to
bottom in CFG, together with smart-casts

Resolution and smart-casts are performed together
val foo: Any = ""

fun bar() {

 if (foo is String) {

 foo.length

 val foo: Any = ""

 foo.length // error: unresolved reference: 'length'

 }

}
48

foo is resolved to local.foo

Current step:

The analysis is performed from top to
bottom in CFG, together with smart-casts

Resolution and smart-casts are performed together
val foo: Any = ""

fun bar() {

 if (foo is String) {

 foo.length

 val foo: Any = ""

 foo.length // error: unresolved reference: 'length'

 }

}
49

Any.length can’t be resolved

Current step:

The analysis is performed from top to
bottom in CFG, together with smart-casts

Loops analysis

50

Will it compile?

var any: Any = ""

if (any is String) {

 any.length

 while (true) {

 any.length

 if (any is String) any = 1

 else if (any is Int) any = ""

 }

}
51

Compilation error. How does Kotlin compiler understand?

var any: Any = ""

if (any is String) {

 any.length // Green code

 while (true) {

 any.length // error: unresolved reference: length

 if (any is String) any = 1

 else if (any is Int) any = ""

 }

}
52

Compilation error. How does Kotlin compiler understand?

var any: Any = ""

if (any is String) {

 any.length // Green code

 while (true) {

 any.length // error: unresolved reference: length

 if (any is String) any = 1

 else if (any is Int) any = ""

 }

}
53

Before analyzing loops in CFG, Kotlin
discards all data-flow information for
symbols that are mutated inside the
loop

Mutations

Compilation error. How does Kotlin compiler understand?

var any: Any = ""

if (any is String) {

 any.length // Green code

 while (true) {

 any.length // error: unresolved reference: length

 if (any is String) any = 1

 else if (any is Int) any = ""

 }

}
54

Before analyzing loops in CFG, Kotlin
discards all data-flow information for
symbols that are mutated inside the
loop

What’s wrong with the
suggested algorithm?

var any: Any = ""

if (any is String) {

 any.length // Green code

 while (true) {

 any.length // error: unresolved reference: length

 if (any is String) any = 1

 else if (any is Int) any = ""

 }

}

Compilation error. How does Kotlin compiler understand?

55

Before analyzing loops in CFG,
Kotlin discards all data-flow
information for symbols that are
mutated inside the loop

Not yet resolved symbols
Not yet visited part of CFG

Unresolved code

We don’t know whether those symbols are the same

Compilation error. How does Kotlin compiler understand?

var any: Any = ""

if (any is String) {

 any.length // Green code

 while (true) {

 any.length // error: unresolved reference: length

 if (any is String) any = 1

 else if (any is Int) any = ""

 }

}
56

Before analyzing loops in CFG, Kotlin
discards all data-flow information for
symbols with the same names that
are mutated inside the loop

The same name

Approximation!

var any: Any = ""

if (any is String) {

 any.length

 while (true) {

 any.length

 var any: String = ""

 any = ""

 }

}

Will it compile?

57

Before analyzing loops in CFG, Kotlin
discards all data-flow information for
symbols with the same names that
are mutated inside the loop

var any: Any = ""

if (any is String) {

 any.length // Green code

 while (true) {

 any.length // error: unresolved reference: length

 var any: String = ""

 any = ""

 }

}

Compilation error. False positive :(

58

Before analyzing loops in CFG, Kotlin
discards all data-flow information for
symbols with the same names that
are mutated inside the loop

Approximation!

var any: Any = ""

if (any is String) {

 any.length // Green code

 while (true) {

 any.length // Green code

 // var any: String = ""

 // any = ""

 }

}

Compilation error. False positive :(

59

Before analyzing loops in CFG, Kotlin
discards all data-flow information for
symbols with the same names that
are mutated inside the loop

Capturing closures/lambdas analysis

60

Will it compile?

61

var any: Any = ""

if (any is String) {

 any.length

 Thread({

 any.length

 }).start()

 any = 1

}

// etc

Compilation error. How does Kotlin compiler understand?

62

var any: Any = ""

if (any is String) {

 any.length // Green code

 Thread({

 any.length // error: SMARTCAST_IMPOSSIBLE

 }).start()

 any = 1

}

// etc

Compilation error. How does Kotlin compiler understand?

63

var any: Any = ""

if (any is String) {

 any.length // Green code

 Thread({

 any = 1

 }).start()

 any.length // error: SMARTCAST_IMPOSSIBLE

}

// etc

Compilation error. How does Kotlin compiler understand?

64

var any: Any = ""

if (any is String) {

 any.length // Green code

 Thread({

 any = 1

 }).start()

 any.length // error: SMARTCAST_IMPOSSIBLE

}

// etc

any.length

Thread({...}).start

any.length

The CFG is linear, no branching!
The lambda has its own CFG

var any: Any = ""

if (any is String) {

 any.length // Green code

 Thread({

 any = 1

 }).start()

 any.length // error: SMARTCAST_IMPOSSIBLE

}

// etc

Compilation error. How does Kotlin compiler understand?

Before analyzing (1) and (2)
CFG subgraphs, Kotlin forbids
smart-casts for symbols that are
mutated in (1) and (2)

65

(1)

(2)

Important! (1) and (2) mark all CFG nodes reachable
from the beginning of (1) and (2)

var any: Any = ""

if (any is String) {

 any.length // Green code

 Thread({

 any = 1

 }).start()

 any.length // error: SMARTCAST_IMPOSSIBLE

}

// etc

Compilation error. How does Kotlin compiler understand?

Before analyzing (1) and (2)
CFG subgraphs, Kotlin forbids
smart-casts for symbols that are
mutated in (1) and (2)

66

What’s wrong with the
suggested algorithm?

(1)

(2)

Important! (1) and (2) mark all CFG nodes reachable
from the beginning of (1) and (2)

var any: Any = ""

if (any is String) {

 any.length // Green code

 Thread({

 any = 1

 }).start()

 any.length // error: SMARTCAST_IMPOSSIBLE

}

// etc

Compilation error. How does Kotlin compiler understand?

Before analyzing (1) and (2)
CFG subgraphs, Kotlin forbids
smart-casts for symbols with
the same names that are
mutated in (1) and (2)

67

(1)

(2)

Important! (1) and (2) mark all CFG nodes reachable
from the beginning of (1) and (2)

Approximation!

False positive compilation error. Again :(

var any: Any = ""

if (any is String) {

 any.length // Green code

 Thread({

 var any: String = ""

 any = ""

 }).start()

 any.length // error: SMARTCAST_IMPOSSIBLE

} 68

Backwards edges + capturing closures
feature interaction

69

Will it compile?

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length })

 .start()

 println("loop end!")

} 70

This code is fine!

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length }) // Green code

 .start()

 println("loop end!")

} 71

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length })

 .start()

 println("loop end!")

} 72

var any: Any

condition()

any = something()

Thread({ … }).start()

println(“loop end!”)

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length })

 .start()

 println("loop end!")

} 73

var any: Any

condition()

any = something()

Thread({ … }).start()

println(“loop end!”)

DF info: any is Any

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length })

 .start()

 println("loop end!")

} 74

var any: Any

condition()

any = something()

Thread({ … }).start()

println(“loop end!”)

DF info: any is Any

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length })

 .start()

 println("loop end!")

} 75

var any: Any

condition()

any = something()

Thread({ … }).start()

println(“loop end!”)

DF info: any is
resolving…

“Resolves to”

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length })

 .start()

 println("loop end!")

} 76

var any: Any

condition()

any = something()

Thread({ … }).start()

println(“loop end!”)

DF info: any is String

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length })

 .start()

 println("loop end!")

} 77

var any: Any

condition()

any = something()

Thread({ … }).start()

println(“loop end!”)

DF info: any is String

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length })

 .start()

 println("loop end!")

} 78

var any: Any

condition()

any = something()

Thread({ … }).start()

println(“loop end!”)

DF info: any is String

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length })

 .start()

 println("loop end!")

} 79

var any: Any

condition()

any = something()

Thread({ … }).start()

println(“loop end!”)

DF info: any is String

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length })

 .start()

 println("loop end!")

} 80

var any: Any

condition()

any = something()

Thread({ … }).start()

println(“loop end!”)

DF info: any is String

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length })

 .start()

 println("loop end!")

} 81

var any: Any

condition()

any = something()

Thread({ … }).start()

println(“loop end!”)

DF info: any is String

Nodes are
reachable via the
backwards edge!

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length })

 .start()

 println("loop end!")

} 82

var any: Any

condition()

any = something()

Thread({ … }).start()

println(“loop end!”)

DF info: any is String

Mutation! :(

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length })

 .start()

 println("loop end!")

}

Backwards edges + capturing closures feature interaction

83

var any: Any

condition()

any = something()

Thread({ … }).start()

println(“loop end!”)

DF info: any is String

Mutation! :(

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length })

 .start()

 println("loop end!")

} 84

var any: Any

condition()

any = something()

Thread({ … }).start()

println(“loop end!”)

DF info: any is String

Mutation! :(

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length })

 .start()

 println("loop end!")

} 85

var any: Any

condition()

any = something()

Thread({ … }).start()

println(“loop end!”)

DF info: any is String

Symbols in the red
subgraph are already
resolved!

We already know
something() return type

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length })

 .start()

 println("loop end!")

} 86

var any: Any

condition()

any = something()

Thread({ … }).start()

println(“loop end!”)

DF info: any is String

Symbols in the red
subgraph are already
resolved!

We already know
something() return type

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length })

 .start()

 println("loop end!")

} 87

var any: Any

condition()

any = something()

Thread({ … }).start()

println(“loop end!”)

DF info: any is String

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length })

 .start()

 println("loop end!")

} 88

var any: Any

condition()

any = something()

Thread({ … }).start()

println(“loop end!”)

DF info: any is String

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any

while (condition()) {

 any = something()

 Thread({ any.length }) // error: SMARTCAST_IMPOSSIBLE

 .start()

 any = something()

} 89

var any: Any

condition()

any = something()

Thread({ … }).start()

any = something()Mutation :(

var any: Any

Why isn’t flow-sensitive typing (FST) the
norm?

90

TypeScript

function f(x: string | number) {

 if (typeof x === "string") {

 x.length // (1) green

 }

 typeof x !== "string" && x.length // (2) red

 // TSError: ⨯ Unable to compile TypeScript:

 // app.ts:4:32 - error TS2339: Property 'length'

 // does not exist on type 'number'.

 //

 // 4 typeof x !== "string" && x.length

 // ~~~~~~

} 91

C#

void F(object? x) {

 if (x is string s) {

 s.Length;

 }

}

92

Technically, inferring a more precise type is a breaking
change

93

fun foo(any: Any) {/*...*/}

fun foo(string: String) {/*...*/}

fun function(any: Any) {

 val test = any is String

 if (test) foo(any)

}

Kotlin 1.9Resolves to

Technically, inferring a more precise type is a breaking
change

94

fun foo(any: Any) {/*...*/}

fun foo(string: String) {/*...*/}

fun function(any: Any) {

 val test = any is String

 if (test) foo(any) // Smart-cast

}

Kotlin 2.0Resolves to

Technically, inferring a more precise type is a breaking
change

95

fun foo(any: Any) {/*...*/}

fun foo(string: String) {/*...*/}

fun function(any: Any) {

 val test = any is String

 if (test) foo(any) // Smart-cast

}

Kotlin 2.0Resolves to

Two considerations:
1. Overloads do essentially the

same thing
2. FST algorithm can be frozen

in time, in the language
specification (not Kotlin way)

Programming languages break Liskov Substitution
Principle (LSP)!
class Consumer<T>(val t: T) {

 fun consume(t: T) {/*...*/}

}

fun function(any: Any) {

 Consumer(any).consume(1)

 if (any is String)

 // error: incompatible types

 Consumer(any).consume(1)

}
96

Programming languages break Liskov Substitution
Principle (LSP)! Java too :)
class Consumer<T> {

 Consumer(T t) {}

 void consume(T t) {/*...*/}

 static void function(Object any) {

 new Consumer<>(any).consume(1);

 // error: incompatible types

 new Consumer<>((String)any).consume(1);

 }

}
97

- How does CFG for try-catch-finally look like?
- (consider cases when symbol types are changed in try, and exceptions and thrown)

- Kotlin specification:
- https://kotlinlang.org/spec/type-system.html
- https://kotlinlang.org/spec/control--and-data-flow-analysis.html
- https://kotlinlang.org/spec/type-inference.html

- Kotlin contracts (Inter functional Control-Flow Analysis)

That’s it. Compilers are fun!

98

https://kotlinlang.org/spec/type-system.html
https://kotlinlang.org/spec/control--and-data-flow-analysis.html
https://kotlinlang.org/spec/type-inference.html

