How flow-sensitive typing

works Iin Kotlin
Nikita Bobko, Software Engineer @ JetBrains

How flow-sensitive typing

works In Kotlin
Nikita Bobko, Software Engineer @ JetBrains

lengthOrZero in Java

// JAVA
public static int lengthOrZero (Object any) {
1f (any instanceof String) {
return ((String) any) .length();
} else {

return 0;

lengthOrZero in Java

// JAVA
public static int lengthOrZero (Object any) {
1f (any instanceof String) {
return (_ any) .length () ;
} else {

return 0;

Smart-casts in Kotlin

// KOTLIN
fun lengthOrzZero(any: Any): Int {
if (any 1s String) {
return any.length
} else {

return 0O

Smart-casts in Kotlin

// KOTLIN
fun lengthOrZero(any: Any): Int {
if (any is String) {
return any.length
} else {
any.length // error: unresolved reference: length

return O

}

any.length // error: unresolved reference: length

A

Smart-casts in Kotlin are powerful *;

. ~“

@
fun isNotEmptyString(any: Any): Boolean {

if (any !is String) return false

return any.length != 0 // It also works

fun isNotEmptyString(any: Any): Boolean {

return any is String && any.length != 0 // Yeap, works as well

Smart-casts in Kotlin are powerful %3

fun foo(any: Any) {
1f (any 1s String) any.length else return

any.length // No problem, Kotlin can do it too

Smart-casts in Kotlin are powerful *#

fun foo(any: Any) {
1f (any 1s String) any.length else return

any.length // No problem, Kotlin can do it too

How would you implement
Kotlin smart-casts?

Control-flow graph (CFG)

Control-flow graph (CFG) for "if

val pillChoice = suggestAPill () val pillChoice = suggestAPill()
1f (pillChoice == "red") {
print("You awake from the " +

pillChoice == “red”

"1llusion of the Matrix") [////////\\\\\\\\\‘
} else {

, . . print(“You awake ...”) print(“lgnorance ...”)
print("Ignorance 1s bliss!")

} \/

wakeUpNeo () wakeUpNeo()

11

Control-flow graph (CFG) for "while

var countdown = 12

var countdown = 12

while (countdown >= 0) {
println(countdown--)
Thread.sleep (1)

}

println("Happy New Year!")

countdown >=0

val tmp = countdown--

printin(tmp)

Thread.sleep(1)

printin(*Happy New Year!”)

12

Desugaring (aka “Compiler lowering”)

var counter = 0

foo (bar (counter++))

13

Desugaring (aka “Compiler lowering”)

var counter
val tmp0 =
val tmpl =

val tmp2 =

= 0
counter++
bar (tmp0)

foo (tmpl)

Split the program into minimal units.
Each unit has only one side-effect

14

Desugaring (aka “Compiler lowering”)

var

val

val

val

counter
tmp0 =
tmpl =

tmp2 =

= 0
counter++
bar (tmp0)

foo (tmpl)

CFG

var counter =0

val tmp0O = counter++

val tmp1 = bar(tmp0)

val tmp2 = foo(tmp1)

15

Desugaring (aka “Compiler lowering”)

var counter = 0

val tmp0O = counter++

I
o
Q

val tmpl

Np0 = counter++

val tmp

val tmp1 = bar(tmp0)

val tmp2 = foo(tmp1)

16

fun maxInList(list: List<Int>): Int {
1f (list.isEmpty()) throw Exception ()

var max: Int = Int.MIN_VALUE

for (item in list) {

if (item > max) {

max = 1ltem

}

return max

17

fun maxInList(list: List<Int>): Int {
1f (list.isEmpty()) throw Exception ()

var max: Int = Int.MIN VALUE (
val iterator = list.iterator() 6
while (iterator.hasNext()) { Og . gﬁ\
val item = iterator.next() 65 \Ne(\(\
O
<\

if (item > max) {

= item \
max = 1t “OO(“Q

}

return max

18

fun maxInList(list: List<Int>): Int {

list.isEmpty()

1f (list.isEmpty()) throw Exception ()

var max: Int = Int.MIN_VALUE

var max: Int = Int. MIN_VALUE

throw Exception()

val iterator = list.iterator ()

4

while (iterator.hasNext ()) {

val iterator = list.iterator()

val i1tem = iterator.next ()

if (item > max) {

A

max = 1ltem

iterator.hasNext()

4

val item = iterator.next()

}

return max

return max

item > max

max = item

19

Control flow analysis applications

- Dead code elimination optimization
- Loop unrolling optimization
- Escape analysis optimization

what variables should be allocated on the stack and which ones should escape to the heap
Allocations eliminations

- Check that variable is initialized before used
- IDE analysis

20

Control flow analysis applications

- Dead code elimination optimization
- Loop unrolling optimization
- Escape analysis optimization

what variables should be allocated on the stack and which ones should escape to the heap
Allocations eliminations

- Check that variable is initialized before used
- IDE analysis

- Flow-sensitive typing implementation

21

How flow-sensitive typing

works In Kotlin
Nikita Bobko, Software Engineer @ JetBrains

Flow-sensitive typing. The definition. Finally!

In programming language theory, flow-sensitive typing (also
called flow typing or occurrence typing) is a type system where the
type of an expression depends on its position in the control flow.

Smart-casts in Kotlin is a
special case of flow-sensitive

typing

23

Data-flow (DF) framework

Data-flow (DF) framework

interface Base
interface Foo

interface Bar

{ fun base () }
: Base { fun foo() }
: Base { fun bar () }

fun main (any: Any) {

if (any is Foo) any.foo() // Green

else if (any is Bar) any.bar() // Green

else return

any.base ()

// Green (in Kotlin 2.0)

25

Data-flow (DF) framework

any.foo()

ENTER
interface Base { fun base () }
any is Foo
interface Foo : Base { fun foo() }
interface Bar : Base { fun bar () } any is Bar
fun main (any: Any) {
if (any is Foo) any.foo() // Green
else if (any is Bar) any.bar() // Green

else return

any.base() // Green (in Kotlin 2.0)

any.bar()

any.base()

4

return

26

Data-flow (DF) framework

DF info: any is Any

any.foo()

ENTER
interface Base { fun base () }
any is Foo
interface Foo : Base { fun foo() }
interface Bar : Base { fun bar () } any is Bar
fun main (any: Any) {
if (any is Foo) any.foo() // Green
else if (any is Bar) any.bar() // Green

else return

any.base() // Green (in Kotlin 2.0)

any.bar()

any.base()

4

return

27

Data-flow (DF) framework

ENTER
interface Base { fun base() DF'”f01an)"SAny

any.foo()

any is Foo
interface Foo : Base { fun foo() 1}
interface Bar : Base { fun bar () } any is Bar
fun main (any: Any) {
if (any is Foo) any.foo() // Green
else if (any is Bar) any.bar() // Green

else return

any.base() // Green (in Kotlin 2.0)

any.bar()

any.base()

4

return

28

Data-flow (DF) framework
ENTER

interface Base { fun base() } DF info: any is Foo

any is Foo any.foo()

interface Foo : Base { fun foo() }
interface Bar : Base { fun bar () } any is Bar any.bar()
fun main (any: Any) { DF info: any is Any

if (any is Foo) any.foo() // Green AbEEa)

else if (any 1is Bar) any.bar () // Green /////

else return

return

any.base() // Green (in Kotlin 2.0)

Data-flow (DF) framework
ENTER

interface Base { fun base() } DF info: any is Foo

any is Foo any.foo()
interface Foo : Base { fun foo() }
interface Bar : Base { fun bar () } any is Bar any.bar()
fun main(any: Any) { DF info: any is Any
if (any is Foo) any.foo() // Green AbEEa)
else if (any 1s Bar) any.bar () // Green /////
else return

return

any.base() // Green (in Kotlin 2.0)

Data-flow (DF) framework
ENTER

' DF info: is F
interface Base { fun base() }

any is Foo any.foo()

interface Foo : Base { fun foo() }

interface Bar : Base { fun bar () } any is Bar any.bar()

DF info: any is Bar

any.base() [+——

/

return

DF info: any is Any

fun main (any: Any) {

if (any is Foo) any.foo() // Green

else if (any is Bar) any.bar() // Green

else return

any.base() // Green (in Kotlin 2.0)

Data-flow (DF) framework

ENTER
interface Base { fun base() }

any is Foo any.foo()
interface Foo : Base { fun foo() }
interface Bar : Base { fun bar () } any is Bar any.bar()

fun main(any: Any) { DF info: any is Any

if (any is Foo) any.foo() // Green

any.base()

else if (any is Bar) any.bar() // Green DF info: any is

commonSuper(Foo, Bar)

else return

return

any.base() // Green (in Kotlin 2.0)

Data-flow (DF) framework

ENTER
interface Base { fun base() }

any is Foo any.foo()
interface Foo : Base { fun foo() }
interface Bar : Base { fun bar () } any is Bar any.bar()

fun main(any: Any) { DF info: any is Any

if (any is Foo) any.foo() // Green

any.base()

else if (any is Bar) any.bar() // Green DF info: any is Base

else return

return

any.base () // Green (in Kotlin 2.0)

Data-flow (DF) framework

ENTER
interface Base { fun base () }
any is Foo any.foo()
interface Foo : Base { fun foo() }
interface Bar : Base { fun bar () } any is Bar any.bar()
fun main (any: Any) {
if (any is Foo) any.foo() // Green i) B

// Green

else 1f (any 1s Bar) any.bar ()

else return DF info: any is Any

return
any.base () // Green (in Kotlin 2.0)

34

Symbol resolution

“Symbol resolution” depends on “Smart-casts inference”

class Foo { fun foo() { ol
class Bar { fun foo() { ol
fun function (any: Any) {

1if (any 1s Bar) any.foo()

1f (any 1s Foo) any.foo()

36

“Symbol resolution” depends on “Smart-casts inference”

class Foo { fun foo () { /*...*/ } }

t

class Bar { fun foo () { /*...*/ } }

fun function (any: Any) {

“Resolves to” “Resolves to”

1if (any 1s Bar) any.foo()

1f (any 1s Foo) any.foo()

“Resolves to” relation works like “Go to definition” in your IDE

“Smart-casts inference” depends on “Symbol resolution”

val foo: Any = ""
fun bar () {
if (foo is String) {

foo.length

val foo: Any = ""

foo.length

38

“Smart-casts inference” depends on “Symbol resolution”

val foo: Any = ""
fun bar() [{

ifl] (foo is String) {

—rfoo.length

val foo: Any = ""

]

foo.length

Won’t smart-cast this foo’ because it resolves to a
different ‘foo’

39

“Smart-casts inference” and “Symbol resolution” cycle

Depends on

Symbol
resolution

Smart-casts

Inference

Depends on

40

“Smart-casts inference” and “S

DOl resg

on” cycle

41

Resolution and smart-casts are performed together

val foo: Any = ""

\
fun bar ()| { Current step:
if (foo is String) {
foo.length foo is resolved to global.foo
\ J
val foo: Any = "" The analysis is performed from top to

bottom in CFG, together with smart-casts

foo.length // error: unresolved reference: 'length'

42

Resolution and smart-casts are performed together

val foo: Any = ""

\
fun bar() { Current step:
if |(foo is String) | { }
global.foo is smart-casted to
foo.length String
\ %
val foo: Any = "" The analysis is performed from top to

bottom in CFG, together with smart-casts

foo.length // error: unresolved reference: 'length'

43

Resolution and smart-casts are performed together

val foo: Any = ""

A 4 I
fun Qar () | Current step:
ifl (foo is String) {
___foo.length foo is resolved to global.foo
\ J
val foo: Any = "" The analysis is performed from top to

bottom in CFG, together with smart-casts

foo.length // error: unresolved reference: 'length'

44

Resolution and smart-casts are performed together

val foo: Any = ""

\
fun bar() { Current step:
if (foo is String) {
foo.llength Smart-cast is applied to foo
\ %
val foo: Any = "" The analysis is performed from top to

bottom in CFG, together with smart-casts

foo.length // error: unresolved reference: 'length'

45

Resolution and smart-casts are performed together

val foo: Any = ""

\
fun bar () { Current step:
if (foo is String) {
foo|length String.length is resolved
\ J
val foo: Any = "" The analysis is performed from top to

bottom in CFG, together with smart-casts

foo.length // error: unresolved reference: 'length'

46

Resolution and smart-casts are performed together

val foo: Any = ""

\
fun bar () { Current step:
if (foo is String) {
foo.length New variable ‘foo’ is defined
\ J
val foo: Any = "" The analysis is performed from top to

bottom in CFG, together with smart-casts

foo.length // error: unresolved reference: 'length'

47

Resolution and smart-casts are performed together

val foo: Any = ""
fun bar () {
if (foo is String) {

foo.length

val foo: Any = ""

,_f

foo.length // error:

~

Current step:

foo is resolved to local.foo

o /

The analysis is performed from top to
bottom in CFG, together with smart-casts

unresolved reference: 'length'

48

Resolution and smart-casts are performed together

val foo: Any = ""

\
fun bar () { Current step:
if (foo is String) {
foo.length Any.length can’t be resolved
\ J
val foo: Any = "" The analysis is performed from top to

bottom in CFG, together with smart-casts

foollength |// error: unresolved reference: 'length'

49

Loops analysis

50

Will it compile?

var any: Any = ""

if (any 1s String) {
any.length
while (true) {

any.length

1if (any 1is String) any = 1

else if (any 1s Int)

any = "W

51

Compilation error. How does Kotlin compiler understand?

var any: Any = ""
if (any 1s String) {
any.length // Green code
while (true) {
any.length // error: unresolved reference: length
1if (any 1is String) any = 1

else if (any 1s Int) any = ""

52

Compilation error. How does Kotlin compiler understand?

) o Before analyzing loops in CFG, Kotlin
var any: Any = _ _ _
| | | discards all data-flow information for
1t (any 1s String) A symbols that are mutated inside the

any.length // Green code loop

while (true) {

any.length // error: unresolved reference: length

1if (any 1is String) |any = 1
. . > Mutations
else 1f (any 1s Int) |any = ""

53

Compilation error. How does Kotlin compiler understand?

Before analyzing loops in CFG, Kotlin
discards all data-flow information for
symbols that are mutated inside the
any.length // Green code loop

{ A

var any: Any = ""

if (any 1s String) {

while (true)
any.length // error: unresolved reference: length
1if (any 1is String) any = 1

else if (any 1s Int) any = ""
} What's wrong with the
suggested algorithm?

54

Compilation error. How does Kotlin compiler understand?

Before analyzing loops in CFG,

Kotlin discards all data-flow

1f (any\Is String) { information for symbols that are
any.length // Green code mutated inside the loop

var |any:|Any = ""

while (tr

any.lengtsh // error: unresolved reference: length

else if (Int) ?/ny — nn Not yet resolved symbols
Not yet visited part of CFG

/ Unresolved code

b We don’t know whether [those symbols|are the same

Compilation error. How does Kotlin compiler understand?

var |any: [Any = ""

Before analyzing loops in CFG, Kotlin
discards all data-flow information for
symbols with the same names that

any.Nength // Green code are mutated inside the loop

(true) |

.length // error: unresolved reference: length

any = 1

} The same name

any = ""| Approximation!

56

Will it compile?

var any: Any = ""
if (any 1s String) {
any.length
while (true) {
any.length
var any: String = ""

any = "o

Before analyzing loops in CFG, Kotlin
discards all data-flow information for
symbols with the same names that
are mutated inside the loop

57

Compilation error. False positive :(

Before analyzing loops in CFG, Kotlin

var any: Any = ""] _ _

| discards all data-flow information for

1t (any 1s String) A symbols with the same names that
any.length are mutated inside the loop

while (true) {
any.length
var any: String = ""

any = "" Approximation!

58

Compilation error. False positive :(

var any: Any = ""

if (any 1s String)
any.length
while (true) {

any.length

{

Before analyzing loops in CFG, Kotlin
discards all data-flow information for
symbols with the same names that
are mutated inside the loop

59

Capturing closures/lambdas analysis

Will it compile?

var any: Any = ""
1f (any 1s String)
any.length
Thread ({
any.length
}) .start ()

any = 1

{

61

Compilation error. How does Kotlin compiler understand?

var any: Any = ""
1f (any 1s String) {
any.length // Green code
Thread ({
any.length // error: SMARTCAST IMPOSSIBLE
}) .start ()
any = 1
}
// etc

62

Compilation error. How does Kotlin compiler understand?

var any: Any = ""
1f (any 1s String) {

any.length // Green code

Thread ({
any = 1
}) .start ()

any.length // error: SMARTCAST IMPOSSIBLE

}
// etc

63

Compilation error. How does Kotlin compiler understand?

var any: Any = "" The CFG is linear, no branching!

. . . The lambda has its own CFG
1f (any 1s String) {

length
any.length // Green code i
Thread ({ Thread({...}).start
any = 1
}) .start () any.length

any.length // error: SMARTCAST IMPOSSIBLE

}
// etc 64

Compilation error. How does Kotlin compiler understand?

var any: Any = "' Before analyzing [and (2)
CFG subgraphs, Kotlin forbids
smart-casts for symbols that are
any.length // Green code mutated in . and .

1f (any 1s String) {

Important! (1) and (2) mark all CFG nodes reachable
from the beginning of (1) and . 65

Compilation error. How does Kotlin compiler understand?

var any: Any = "' Before analyzing (1) and (2)
CFG subgraphs, Kotlin forbids
smart-casts for symbols that are
any.length // Green code mutated in . and .

A

1f (any 1s String) {

. What's wrong with the
suggested algorithm?

Important! (1) and (2) mark all CFG nodes reachable
from the beginning of (1) and . 66

Compilation error. How does Kotlin compiler understand?

var any: Any = "" Before analyzing (1) and (2)
CFG subgraphs, Kotlin forbids
smart-casts for symbols with
any.length the same names that are

mutated in (1) and (2)

1f (any 1s String) {

Thread (§
iy =1 (D -
Approximation!
}) .start ()
any.length (2)
} Important! (1) and (2) mark all CFG nodes reachable

from the beginning of (1) and (2)

67

False positive compilation error. Again :(

var any: Any = ""

1f (any 1s String) {
any.length // Green code
Thread ({

var any: String = ""

}) .start ()

any.length // error: SMARTCAST IMPOSSIBLE

Backwards edges + capturing closures
feature interaction

69

Will it compile?

fun something(): String {/*...

var any: Any
while (condition()) {
any = something/()
Thread ({ any.length })
.start ()

println("loop end!")

“/}

70

This code is fine!

fun something(): String {/*...*/}

var any: Any
while (condition()) {
any = something/()
Thread ({ any.length }) // Green code
.start ()

println("loop end!")

71

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any
while (condition()) {
any = something/()
Thread ({ any.length })
.start ()

println("loop end!")

var any: Any

l

condition()

l

any = something()

Thread({ ... }).start()

printin(“loop end!”)

72

Backwards edges + capturing closures feature interaction

- . : * *
fun something(): String {/*...*/}

var any: Any
while (condition()) {
any = something/()
Thread ({ any.length })
.start ()

println("loop end!")

var any: Any

condition()

l

any = something()

Thread({ ... }).start()

printin(“loop end!”)

73

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any
while (condition()) {
any = something/()
Thread ({ any.length })
.start ()

println("loop end!")

var any: Any

DF info: any is Any .
condition()

any = something()

Thread({ ... }).start()

printin(“loop end!”)

74

Backwards edges + capturing closures feature interaction

fun something() :|String|{/*...

T “Resolves to”

var any: Any

while (condition())| {

any = |something/()

Thread ({ any.length })
.start ()

println("loop end!")

“/}

var any: Any

l

condition()
DF info: any is
lving...
resolving any = something()

Thread({ ... }).start()

printin(“loop end!”)

75

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any
while (condition()) {
any = something/()
Thread ({ any.length })
.start ()

println("loop end!")

var any: Any

l

condition()
DF info: any is String _
any = something()

Thread({ ... }).start()

printin(“loop end!”)

76

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any
while (condition()) {
any = something/()
Thread ({ any.length })
.start ()

println("loop end!")

DF info: any is String

var any: Any

l

condition()

l

any = something()

Thread({ ... }).start()

printin(“loop end!”)

77

Bad

fun

var

whil

Compilation error. How does Kotlin compiler understand?

var any: Any = "" Before analyzing (1) and (2)
CFG subgraphs, Kotlin forbids
smart-casts for symbols with
any.length // Green code the same names that are
mutated in (1) and (2)

if (any is String) {

any.length // error: SMARTCAST IMPOSSIBLE (2)

} Important! (1) and (2) mark all CFG nodes reachable
. from the beginning of (1) and (2)

62

DN

art()

317

78

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any
while (condition()) {
any = something/()
Thread ({ any.length })
.start ()

println("loop end!")

DF info: any is String

var any: Any

l

condition()

l

any = something()

Thread({ ... }).start()

printin(“loop end!”)

79

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any
while (condition()) {
any = something/()
Thread ({ any.length })
.start ()

println("loop end!")

DF info: any is String

var any: Any

l

condition()

l

any = something()

Thread({ ... }).start()

printin(“loop end!”)

80

Backwards edges + capturing closures feature interaction

fun something(): String {/*...

var any: Any
while (condition()) {
any = something/()
Thread ({ any.length })
.start ()

println("loop end!")

*/}
var any: Any
Nodes are i
reachable via the »
condition()

backwards edge!

l

any = something()

DF info: any is String

Thread({ ... }).start()

printin(“loop end!”)

81

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any
while (condition()) {
any = something/()
Thread ({ any.length })
.start ()

println("loop end!")

var any: Any

l

condition()

Mutation! :(

v

any = something()

DF info: any is String

Thread({ ... }).start()

printin(“loop end!”)

82

Backwards edges + capturing closures feature interaction

/}

Mutation! :(

DF info: any is String

var any: Any

l

condition()

v

any = something()

Thread({ ... }).start()

printin(“loop end!”)

83

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any
while (condition()) {
any = something/()
Thread ({ any.length })
.start ()

println("loop end!")

var any: Any

l

condition()

Mutation! :(

v

any = something()

DF info: any is String

Thread({ ... }).start()

printin(“loop end!”)

84

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

Symbols in the red _
subgraph are already VE G (7
var any: Any resolved! |
condition()
while (condition()) { We already know]
any = something () something() return type Ty = SR
Th d ({ 1 th }) DF info: any is String)
e S - - SHY Thread({ ... }).start()
.start ()

println("loop end!") printin(‘loop end?)

85

Backwards edges + capturing closures feature interaction

/*.o . * /)
Symbols in the red
subgraph are already var any: Any
resolved! :
condition()
We already know }
something() return type any = something()

DF info: any is String

Thread({ ... }).start()

o

printin(“loop end!”)

ot

YTrTr: i ﬂ"‘%%\;‘__.
7 N -
4 ’

4

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any
while (condition()) {
any = something/()
Thread ({ any.length })
.start ()

println("loop end!")

DF info: any is String

var any: Any

l

condition()

l

any = something()

Thread({ ... }).start()

printin(“loop end!”)

87

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any
while (condition()) {
any = something/()
Thread ({ any.length })
.start ()

println("loop end!")

var any: Any

l

condition()

l

any = something()

Thread({ ... }).start()

printin(“loop end!”)

DF info: any is String

88

Backwards edges + capturing closures feature interaction

fun something(): String {/*...*/}

var any: Any

while (condition()) {
any = something/()
Thread ({ any.length })

.start ()

any = something/()

var any: Any

l

// error: SMARTCAS$]

)

Mutation :(

condition()

l

any = something()

Thread({ ... }).start()

any = something()

89

Why isn’t flow-sensitive typing (FST) the
norm?

90

TypeScript

function f(x: string | number) ({
if (typeof x === "string") {

x.length // (1) green

typeof x !== "string" && x.length // (2) red
// TSError: X Unable to compile TypeScript:
// app.ts:4:32 - error TS2339: Property 'length'
// does not exist on type 'number'.
//

// 4 typeof x !== "string" && x.length

// A~ A~~~ A

C#

volid F (object? x) {

1f

(x 1s string s)

s.Length;

{

92

Technically, inferring a more precise type is a breaking

change

fun |foollany: Any) {/*...*/}

fun f¢o(string: String) {/*..

Resolves to

fun function (any: Any) {

val test = dny is String

1f (test) foo(any)

-5/}

Kotlin 1.9

93

Technically, inferring a more precise type is a breaking

change

fun foo(any: Any) {/*...*/}

fun |fool|(string: String) {/*...*/}

T Resolves to

fun function (any: Any) {

val test = dny is String

if (test) foo(any) // Smart-cast

Kotlin 2.0

94

Technically, inferring a more precise type is a breaking

change

fun foo(any: Any) { }

fun |fool(string: String) {

T Resolves to

fun function(any: Any) {

val test = dny is String

1f (test) foo(any)

Kotlin 2.0

Two considerations:

1.

2.

Overloads do essentially the
same thing

FST algorithm can be frozen
in time, in the language
specification (not Kotlin way)

95

Programming languages break Liskov Substitution
Principle (LSP)!
class Consumer<T>(val t: T) {
fun consume (t: T) { }
)
fun function (any: Any) {
Consumer (any) .consume (1)

1f (any 1s String)

Consumer (any) .consume (1)

96

Programming languages break Liskov Substitution
Principle (LSP)! Java too :)

class Consumer<T> {
Consumer (T t) {}
void consume (T t) { }
static void function (Object any) {

new Consumer<>(any) .consume (1),

new Consumer<>((String)any) .consume (1)

97

That's it. Compilers are fun!

- How does CFG for try-catch-finally look like™?
- (consider cases when symbol types are changed in try, and exceptions and thrown)
- Kaotlin specification:

- https://kotlinlang.org/spec/type-system.html
- https://kotlinlang.org/spec/control--and-data-flow-analysis.html
- https://kotlinlang.org/spec/type-inference.html

- Kaotlin contracts (Inter functional Control-Flow Analysis)

98

https://kotlinlang.org/spec/type-system.html
https://kotlinlang.org/spec/control--and-data-flow-analysis.html
https://kotlinlang.org/spec/type-inference.html

