
16 June 2022

Johan Jeuring

Intermediate summary
Talen en Compilers

Johan Jeuring and Lawrence Chonavel

What is the midterm about?
Lecture notes: 1 – 7.3, 9.2-3,
Slides from lectures 1 (12 November 2025) – 11 (16 December 2025)

Concept Explanation

Grammar Inductive description of a language

Production A rewrite rule of a grammar

Context-free Rewriting happens irrespective of the context

Nonterminal Auxiliary symbols in a grammar

Terminal Alphabet symbols in a grammar

Derivation Rewrite using productions until reaching a sentence

Parse tree Tree representation of a derivation

Ambiguity Multiple parse trees for the same sentence

Abstract syntax (Haskell) Datatype corresponding to a grammar

Semantic function Function defined on the abstract syntax

Languages

Languages – typical tasks

Given a grammar, find words in the language
Given a language specified as a set, find a context-free grammar
Given a language defined in words and by means of some examples,
define a context-free grammar
Given a grammar and a word, draw a parse tree
Judge whether two given derivations of a word correspond to the
same parse tree or not
Given a grammar and a word, add a production rule so that the
word can be derived using the grammar

Grammar transformations

Grammar transformation

Inlining or abstraction

Introducing or eliminating *, +, ?

Removing unreachable productions

Removing duplicate productions

Left factoring

Removing left-recursion

Associative operators or separators

Introducing operator priorities

Grammar transformations – typical tasks

Given a grammar, apply a certain transformation
Given a grammar, try to simplify it, or to transform it such that it is
suitable for deriving a parser
Given a grammar, determine if you can apply a certain transformation
Explain how a grammar transformation works
Given two grammars, try to prove their equivalence by transforming
one into the other, or to prove that they are not equivalent by
providing an example word that can be derived by only one
grammar

Concrete and abstract syntax

(Haskell) datatypes can be constructed systematically from a
grammar:

One datatype per nonterminal, one constructor per production,
arguments of constructors correspond to nonterminals on right
hand sides

Use Int, Char and String where the match is “good enough”

Often, we can simplify: use lists for ∗ and +, use Maybe for ?

Concrete and abstract syntax – typical tasks

Given a grammar, give a suitable abstract syntax
Given a Haskell datatype, come up with a concrete syntax

Parser combinators

Implementation of simple parser combinators

Using parser combinators: systematic derivation from grammar and
performance pitfalls

Implementation of derived combinators

Defining your own abstractions

Lexing and parsing in one or two phases, handling of spaces

Constructing an abstract syntax tree as a default semantic function

Parser combinators – typical tasks

Given a grammar, come up with a combinator parser
For a certain pattern, define a derived combinator
Analyze the efficiency of a given parser
Transform the grammar underlying a certain problematic parser
such that performance improves
Plug in a semantic function directly into a parser

Semantics and compositionality

Folds abstract from the standard pattern for defining recursive
functions over algebraic datatypes

Algebras and folds can be defined for most datatypes

Algebras can have various return types, in particular functions

Also families of datatypes and recursive positions wrapped
into lists

.
Arguments represent inherited information, results synthesized

Semantics and compositionality – typical tasks

Given an abstract syntax, define a corresponding algebra type
and fold function
For a desired semantics, define a directly recursive semantic
function
For a desired semantics, define an algebra that can be used with the
fold function
For a desired semantics, give a suitable result type for an algebra

LR parsing

Bottom-up parsing using LR constructs a rightmost derivation of a
sentence

LR parsing uses a stack, an automaton, and (often) a shift-reduce
table

LR parsing – typical tasks

Show a rightmost derivation of a sentence using LR parsing

Construct an LR(0) automaton for a grammar

Identify shift-reduce and reduce-reduce conflicts in an LR(0)
automaton

