
16 June 2022

Johan Jeuring
Languages and compilers

Johan Jeuring and Lawrence Chonavel

Who am I?

- Professor Software
Technology for Learning
and Teaching

- Information and
Computing Sciences
Departement and
Freudenthal Institute

- Taught this course until
2017, after that head of
department

- Now again teaching and
research

Who are you?

- Go to wooclap.com
- Event code: ZFNFAM

What is this course about?
Lecture notes: 1

Information processing

We describe and transfer information by means of language

The meaning of a sentence is inferred from its structure

Information is obtained by assigning meaning to sentences

Languages…

Language is the composition of
words into meaningful
utterances by using rules to
modify and arrange them in a
particular order.

Languages are used to educate
or instruct.

Languages are
essential for many
human activities:
verbal and written
communication,
musical scores, DNA,
and also programming

Languages…

A language is a set of “correct” sentences.

What does that mean?

Are natural and formal languages different?

Are all languages equally expressive?

How can we decide if a sentence is correct?

How can we represent a correct sentence?

… and Compilers

A compiler translates one language into another (possibly the
same). How?

Get hold of the structure of the input program

Check whether a program makes sense

Attach semantics to a sequence of symbols

Optimize

Generate good machine code

Learning goals

To describe language structures using grammars
To parse, i.e., to recognise (build) such structures in (from) a sequence of
symbols

To compose components such as parsers, analysers, and code generators

To analyse grammars to determine whether or not specific properties hold

To apply these techniques in the construction of all kinds of programs

To explain and prove why certain problems can or cannot be described by
means of formalisms such as context-free grammars or finite-state
automata.

Learning how?

- Lectures (Tuesdays, Thursdays)
- Labs
- Lab/exercise sessions (Tuesdays, Thursdays)
- Lecture notes

Learning requires effort and time

Can be both frustrating and (very!) satisfying

Lectures

Johan Jeuring (Tuesdays)
Lawrence Chonavel (Thursdays)

We’ll discuss most topics you need to learn in the course
But some topics might only appear in the lecture notes

Try to actively participate
- Asking questions is fine
- Participating in the online activities helps learning

(and gives some bonus points)
- Don’t disturb your fellow students

Labs

- P0: Haskell refresh, does not contribute to your grade (but
bonus)

- P1 – P3: practical and theoretical aspects of the contents of the
course

- Work and submit in pairs (why?)
Build teams of 2. No lab-partner? Mail j.t.jeuring@uu.nl
Do not divide the work, but discuss it together

- Do not use GenAI (why?)
- AI-index level 1
- We will report fraud and plagiarism to the exam committee

Oral exam

- For each pair, one lab will be the subject of an oral exam, to
verify authorship

- If you fail, you won’t get a grade for the lab

Exams

Midterm and a final exam in Remindo

Exercises

- We will recommend exercises to solve to practice with the
contents, and to prepare for the exam

- Help and feedback during the lab/exercise sessions. Sometimes
a bonus

- Go to your assigned labroom

Bonus

- We will organize at most 20 (but probably fewer) activities at
which you can earn a bonus point by participating

- Each bonuspoint adds 5 centipoints to your grade (0.05)
- Your final grade cannot be higher than 10

- Wooclap in this lecture
- Showing that you work on P0 in the lab session
- Reporting a new error in the lecture notes (except exercises) to

me. Report as often as you want (please!), but bonus just once

First three bonus activities:

Grade

Activity Max points

P1 1

P2 1.5

P3 2.5

T1 2

T2 3

Bonus <=1

You have to participate in all assessment activities
You can resit at most one assessment activity
Your grade for T1+T2 needs to be at least 2.5
You can participate in a resit assessment if your grade is at least 4

Haskell

Many of the learning goal components need to be described in a
programming language. We will use Haskell for this.

Overview of FP concepts in Visual Studio, and Wooclap

Haskell and formal languages

Haskell Formal languages

Datatype Alphabet

List Sequence

A concrete list Sentence or word

Datatype Abstract syntax

Parser Grammar

Parser transformation Grammar transformation

Value of an abstract syntax type Parse tree

Fold function, algebra Semantics

Formal languages
Lecture notes: 2.1

What is a language?

A language is a set of sentences (or words)

In natural languages, this is often informally defined and subject to
discussion

Which sentences belong to a language, and why?

For a formal language, we want a precise definition

Sets

A set is a collection of elements

- No duplicates
- No order
- The empty set: ∅
- A nonempty set: {a,b,c,d,e}

Alphabet

An alphabet is a (finite) set of symbols that can be used to
form sentences.
- The set of all Latin letters
- {a,b,c,d,e}
- {0,1}
- The set of all ASCII characters
- The set of all Unicode code points
- {A,C,G,T}
- {if, then, else, do}
- {🎵,🎶,♭}

Sequence

Given a set, we can consider (finite) sequences of elements of
that set.
Let A= {a, b, c}. Examples of sequences over A:
- abc
- a
- acccabcabcabbaca
- bbbbbbbbb
- ε
The empty sequence is difficult to visualize.
ε is a placeholder to denote the empty sequence.

Sequences, inductively

Given an arbitrary sequence over elements of a set A, we can
make one of the two following observations:

- it is the empty sequence ε
- the sequence has a first element a ∈ A, and if we split off that

element, the tail is still a (possibly empty) sequence z

We can use this observation to define sequences

Sequences, inductively

Given a set A. The set of sequences over A, written A∗, is
defined as follows

- The empty sequence ε is in A∗
- If a∈A and z∈A∗, then az is in A∗

In such an inductive definition, it is implicitly understood that

- Nothing else is in A∗
- We can only apply the construction steps a finite number of

times, i.e., only finite sequences are in A∗

Sets and sequences

- ∅
- ∅∗
- {a, b, c}
- {if, then, else} ∗

How many elements do the following sets have?

Language

Given an alphabet A, a language is a subset of A∗

Note that we consider any set X to be a subset of itself: X ⊆ X

So A∗ is a valid language with alphabet A

Defining a language

A language is a set of sentence

How do we define such a set?

- By enumerating all elements?
- By using a predicate?
- By giving an inductive definition?

All of these are possible, and more

An example

Consider the alphabet Latin = {a,b,c,d,…,z}

How do we describe the language L defined by

L = {thumb, index finger, middle finger, ring finger, little finger}

The language L is the language over the Latin alphabet consisting
of all finger names

Languages by enumeration

Enumerating all elements of a language is impossible if the
language is infinite
Most interesting languages are infinite: C#, Haskell, natural
languages
Defining a language using a predicate seems more promising

Languages by predicate: example

Let DNA be the alphabet {A,C,T,G}

Then PAL = { s ∈ DNA∗ | s=sR }

where sR is the reverse of s, is the language of palindromes over
DNA

Languages by induction: example

DNA palindromes can also be defined inductively:

- ε is a DNA palindrome
- A, C, T, G are DNA palindromes
- If P is a DNA palindrome, then so are APA, CPC, TPT, GPG

By predicate versus by induction

Definition by predicate is (in this case) shorter

How can we check whether a given sequence is in PAL?

An inductive definition gives us more structure, and is
self-contained, making it easier to explain why a sentence is in
a language

How can we generate all the words in PAL?

Summary

This werkcollege: Haskell setup and P0

Concept Definition

Alphabet Finite set of symbols

Language A set of words/sentences, i.e., sequences
of symbols from the alphabet

Grammar Next lecture: A way to define a language
inductively by means of rewrite rules

