@
>
©
-

O
S
v O
.mw
C
c G
S
==
O ©
Y
© -5
%n
ap ©
™ oo
5 C
Q0 ‘'
C >
gy
-
©
c
@)
Ay




Who am I?

- Professor Software
Technology for Learning
and Teaching

- Information and
Computing Sciences
Departement and
Freudenthal Institute

- Taught this course until
2017, after that head of
department

- Now again teaching and
research




Who are you?

- Go to wooclap.com
- Event code: ZFNFAM




N/
.5\\\\ S &4 Utrecht Univel'Sity
N

L
ZIN

What is this course about?

Lecture notes: 1



S trecht University Information processing

N

AN

We describe and transfer information by means of language

Information is obtained by assigning meaning to sentences

The meaning of a sentence is inferred from its structure



o -‘VV.
gﬂ% Utrecht University La n g U a ge S cee

U

N

Language is the composition of
words into meaningful
utterances by using rules to
modify and arrange them in a
particular order.

Languages are used to educate
or instruct.

The Importance

of
Being Educable

nnnnnnnnnnnnnnnnnnn

L

Languages are
essential for many
human activities:
verbal and written
communication,
musical scores, DNA,
and also programming



N/
§\U% Utrecht University La n g u a ges *ee

YN

A language is a set of “correct” sentences.

What does that mean?
Are natural and formal languages different?

Are all languages equally expressive?
How can we decide if a sentence is correct?

How can we represent a correct sentence?



Au‘vy. 4
gﬂ% Utrecht University eee a n d CO m p I I e rS

N

A compiler translates one language into another (possibly the
same). How?

Get hold of the structure of the input program
Attach semantics to a sequence of symbols
Check whether a program makes sense
Optimize

Generate good machine code



& '
gﬂ% Utrecht University Le a r n I n g go a | S

N

To describe language structures using grammars

To parse, i.e., to recognise (build) such structures in (from) a sequence of
symbols

To analyse grammars to determine whether or not specific properties hold
To compose components such as parsers, analysers, and code generators
To apply these techniques in the construction of all kinds of programs

To explain and prove why certain problems can or cannot be described by
means of formalisms such as context-free grammars or finite-state
automata.



& '
gﬂ% Utrecht University Le a r n I n g h OW ?

N

AN

Lectures (Tuesdays, Thursdays)

Labs

Lab/exercise sessions (Tuesdays, Thursdays)
Lecture notes

Learning requires effort and time

Can be both frustrating and (very!) satisfying



§LW% Utrecht University Le Ct u res
K\

Johan Jeuring (Tuesdays)
Lawrence Chonavel (Thursdays)

We'll discuss most topics you need to learn in the course
But some topics might only appear in the lecture notes

Try to actively participate

- Asking questions is fine

- Participating in the online activities helps learning
(and gives some bonus points)

- Don’t disturb your fellow students



N
§ v % Utrecht University La b S

N

AN

- PO: Haskell refresh, does not contribute to your grade (but
bonus)

- P1-P3: practical and theoretical aspects of the contents of the
course

- Work and submit in pairs (why?)
Build teams of 2. No lab-partner? Mail j.t.jeuring@uu.nl
Do not divide the work, but discuss it together

- Do not use GenAl (why?)
- Al-index level 1
- We will report fraud and plagiarism to the exam committee



N/
§U% Utrecht University O ra | exa m

N

- For each pair, one lab will be the subject of an oral exam, to
verify authorship
- If you fail, you won’t get a grade for the lab



N
§U% Utrecht University E Xa m S

N

AN

Midterm and a final exam in Remindo



L — Exercises

- We will recommend exercises to solve to practice with the
contents, and to prepare for the exam

- Help and feedback during the lab/exercise sessions. Sometimes
a bonus

- Go to your assigned labroom



<

% Y % Utrecht University B O n u S

NS

- We will organize at most 20 (but probably fewer) activities at
which you can earn a bonus point by participating

- Each bonuspoint adds 5 centipoints to your grade (0.05)
- Your final grade cannot be higher than 10

First three bonus activities:

- Wooclap in this lecture
- Showing that you work on PO in the lab session

- Reporting a new error in the lecture notes (except exercises) to
me. Report as often as you want (please!), but bonus just once



N
;’}\\U% Utrecht University G ra d e
N

P1 1
P2 1.5
P3 2.5
T1 2
T2 3
Bonus <=1

You have to participate in all assessment activities

You can resit at most one assessment activity

Your grade for T1+T2 needs to be at least 2.5

You can participate in a resit assessment if your grade is at least 4



§ er% Utrecht University H a S ke I I

UNS

N

Many of the learning goal components need to be described in a
programming language. We will use Haskell for this.

Overview of FP concepts in Visual Studio, and Wooclap



SV Grecht University Haskell and formal languages

N

Datatype Alphabet

List Sequence

A concrete list Sentence or word
Datatype Abstract syntax

Parser Grammar

Parser transformation Grammar transformation
Value of an abstract syntax type Parse tree

Fold function, algebra Semantics



Formal languages

Lecture notes: 2.1



N 1
%T§ Utrecht University W h at I S a | a n g U a ge ?

A language is a set of sentences (or words)

Which sentences belong to a language, and why?

In natural languages, this is often informally defined and subject to
discussion

For a formal language, we want a precise definition



N
§ Y % Utrecht University S e t S
NS

A set is a collection of elements

- No duplicates

- No order

- The empty set: @

- A nonempty set: {a,b,c,d,e}



§;W%: Utrecht University AI p h a b et

N

An alphabet is a (finite) set of symbols that can be used to
form sentences.

- The set of all Latin letters

- {a,b,c,d,e}

- {0,1}

- The set of all ASCII characters

- The set of all Unicode code points
- {A,C,G,T}

- {if, then, else, do}
- {730



N/
§ KJ% Utrecht University S e q u e n Ce

N

AN

Given a set, we can consider (finite) sequences of elements of
that set.
Let A= {a, b, c}. Examples of sequences over A:

- abc

- a

- acccabcabcabbaca

- bbbbbbbbb

- €

The empty sequence is difficult to visualize.

€ is a placeholder to denote the empty sequence.



SV Grecht University Sequences, inductively

N

U
Given an arbitrary sequence over elements of a set A, we can

make one of the two following observations:

- itis the empty sequence €
- the sequence has a first element a € A, and if we split off that

element, the tail is still a (possibly empty) sequence z

We can use this observation to define sequences



SV Grecht University Sequences, inductively

N

AN

Given a set A. The set of sequences over A, written A*, is
defined as follows

- The empty sequence € is in A*
- If a€A and z€A*, then azisin A*

In such an inductive definition, it is implicitly understood that

- Nothing else is in A*
- We can only apply the construction steps a finite number of
times, i.e., only finite sequences are in A*



SV Girecht University Sets and sequences

N

N
How many elements do the following sets have?

- 0

-0

{a, b, c}

{if, then, else}*



N/
§U% Utrecht University La n g u a g e

N

UN
Given an alphabet A, a language is a subset of A*
Note that we consider any set X to be a subset of itself: X € X

So A* is a valid language with alphabet A



gg’% Utrecht University DEﬁ n i ng a I a ng U a ge

N

N
A language is a set of sentence
How do we define such a set?

- By enumerating all elements?
- By using a predicate?
- By giving an inductive definition?

All of these are possible, and more



N/
§\U% Utrecht University An exa m p | e

N

Consider the alphabet Latin = {a,b,c,d,...,z}
How do we describe the language L defined by
L = {thumb, index finger, middle finger, ring finger, little finger}

The language L is the language over the Latin alphabet consisting
of all finger names



SV Grecht University Languages by enumeration

N

AN

Enumerating all elements of a language is impossible if the
language is infinite

Most interesting languages are infinite: C#, Haskell, natural
languages

Defining a language using a predicate seems more promising



AV Gerecht Universicy Languages by predicate: example

N

Let DNA be the alphabet {A,C,T,G}
Then PAL={s € DNA* | s=s®}

where s® is the reverse of s, is the language of palindromes over
DNA



SV Grecht University Languages by induction: example

N
DNA palindromes can also be defined inductively:
- €is a DNA palindrome

- A, C, T, Gare DNA palindromes
- |f P is a DNA palindrome, then so are APA, CPC, TPT, GPG



AV Gerecht Universicy By predicate versus by induction

N

Definition by predicate is (in this case) shorter
How can we check whether a given sequence is in PAL?
How can we generate all the words in PAL?

An inductive definition gives us more structure, and is
self-contained, making it easier to explain why a sentence is in

a language



N/
§U% Utrecht University S U m m a ry

N

Alphabet Finite set of symbols

Language A set of words/sentences, i.e., sequences
of symbols from the alphabet

Grammar Next lecture: A way to define a language
inductively by means of rewrite rules

This werkcollege: Haskell setup and PO



