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The midterm results

…



LL parsing
Lecture notes: 9.1, 10.1
(Note: I added a chapter before LL parsing.)

Today



Learning goals

- Parse a sentence top-down using the LL(1) algorithm

- Perform grammar analyses to determine whether or not a 
grammar is LL(1): determine empty, first, follow, and 
lookAhead



Parsing until now

Parser combinators: can parse sentences from many grammars and 
are often efficient. Can be slow for ambiguous grammars or 
grammars that can be left-factored

(N)DFAs: can parse regular languages in linear time

LR parsing: can parse sentences from LR grammars in linear time

Earley parsing/CKY: can parse sentences from any grammar in 
time O(n3).



Linear-time parsing

When developing a compiler, we want parsing to happen in linear 
time
LL & LR parsing are potential solutions 

LL parsing:
- Left-to-right input processing
- Leftmost derivation
- Top-down

LR parsing:
- Left-to-right input processing
- Rightmost derivation
- Bottom-up



LL parsing

LL parsing uses a state:
- a stack containing a sequence of terminals and nonterminals
- the current input

Start with (S,input)

At each step:
- Expand: top nonterminal symbol by a right-hand side 
- Match: top terminal symbol with first symbol in input

Succeed if stack and input are empty, otherwise fail



Example I

Stack Input Action

S aab

Grammar: S → aS | cS | b Input: aab



Example I

Stack Input Action

S aab Expand

cS aab

Grammar: S → aS | cS | b Input: aab



Example I

Stack Input Action

S aab Expand

cS aab Fail

Grammar: S → aS | cS | b Input: aab



Example I

Stack Input Action

S aab Expand

aS aab

Grammar: S → aS | cS | b Input: aab



Example I

Stack Input Action

S aab Expand

aS aab Match

S ab

Grammar: S → aS | cS | b Input: aab
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Stack Input Action

S aab Expand

aS aab Match

S ab Expand

aS ab

Grammar: S → aS | cS | b Input: aab
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Stack Input Action

S aab Expand

aS aab Match

S ab Expand

aS ab Match

S b

Grammar: S → aS | cS | b Input: aab



Example I

Stack Input Action

S aab Expand

aS aab Match

S ab Expand

aS ab Match

S b Expand

b b

Grammar: S → aS | cS | b Input: aab



Example I

Stack Input Action

S aab Expand

aS aab Match

S ab Expand

aS ab Match

S b Expand

b b Match

ε ε

Grammar: S → aS | cS | b Input: aab



Example I

Stack Input Action

S aab Expand

aS aab Match

S ab Expand

aS ab Match

S b Expand

b b Match

ε ε Succeed

Grammar: S → aS | cS | b Input: aab



Expanding which right-hand side?

Look at the first symbol a production can derive

Grammar: S → aS | cS | b Input: aab



A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
S ccccba



A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
S ccccba Expand
cA ccccba



A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
S ccccba Expand
cA ccccba Match
A cccba



A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
S ccccba Expand
cA ccccba Match
A cccba Expand
cBC cccba



A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
S ccccba Expand
cA ccccba Match
A cccba Expand
cBC cccba Match
BC ccba



A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
S ccccba Expand
cA ccccba Match
A cccba Expand
cBC cccba Match
BC ccba Expand? 



A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
S ccccba Expand
cA ccccba Match
A cccba Expand
cBC cccba Match
BC ccba Expand
ccC ccba



A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
S ccccba Expand
cA ccccba Match
A cccba Expand
cBC cccba Match
BC ccba Expand
ccC ccba Match
cC cba



A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
S ccccba Expand
cA ccccba Match
A cccba Expand
cBC cccba Match
BC ccba Expand
ccC ccba Match
cC cba Match
C ba



A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
S ccccba Expand
cA ccccba Match
A cccba Expand
cBC cccba Match
BC ccba Expand
ccC ccba Match
cC cba Match
C ba Expand
ba ba



A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
S ccccba Expand
cA ccccba Match
A cccba Expand
cBC cccba Match
BC ccba Expand
ccC ccba Match
cC cba Match
C ba Expand
ba ba Match
a a



A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
S ccccba Expand
cA ccccba Match
A cccba Expand
cBC cccba Match
BC ccba Expand
ccC ccba Match
cC cba Match
C ba Expand
ba ba Match
a a Match
ε ε Succeed

The first set of C consists of 
a and b



Example 3

S → abA | aa
A → bb | bS

Input: abbb

Stack Input Action

S abbb
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A → bb | bS

Input: abbb

Stack Input Action

S abbb Expand?



Example 3

S → abA | aa
A → bb | bS

Input: abbb

Stack Input Action

S abbb Expand

abA abbb



Example 3

S → abA | aa
A → bb | bS

Input: abbb

Stack Input Action

S abbb Expand

abA abbb Match

bA bbb



Example 3

S → abA | aa
A → bb | bS

Input: abbb

Stack Input Action

S abbb Expand

abA abbb Match

bA bbb Match

A bb



Example 3

S → abA | aa
A → bb | bS

Input: abbb

Stack Input Action

S abbb Expand

abA abbb Match

bA bbb Match

A bb Expand?



Example 3

S → abA | aa
A → bb | bS

Input: abbb

Stack Input Action

S abbb Expand

abA abbb Match

bA bbb Match

A bb Expand

bb bb



Example 3

S → abA | aa
A → bb | bS

Input: abbb

Stack Input Action

S abbb Expand

abA abbb Match

bA bbb Match

A bb Expand

bb bb Match

b b



Example 3

S → abA | aa
A → bb | bS

Input: abbb

Stack Input Action

S abbb Expand

abA abbb Match

bA bbb Match

A bb Expand

bb bb Match

b b Match

ε ε Succeed

We need to look ahead two symbols to choose between the 
productions from S 

We need the first set of S to choose between the productions from A



Example 4

S → AaS | B
A → cS | ε
B → b 

Input: acbab

Stack Input Action

S acbab



Example 4

S → AaS | B
A → cS | ε
B → b 

Input: acbab

Stack Input Action

S acbab Expand?
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S → AaS | B
A → cS | ε
B → b 

Input: acbab

Stack Input Action

S acbab Expand

AaS acbab



Example 4

S → AaS | B
A → cS | ε
B → b 

Input: acbab

Stack Input Action

S acbab Expand

AaS acbab Expand?



Example 4

S → AaS | B
A → cS | ε
B → b 

Input: acbab

Stack Input Action

S acbab Expand

AaS acbab Expand

aS acbab



Example 4

S → AaS | B
A → cS | ε
B → b 

Input: acbab

Stack Input Action

S acbab Expand

AaS acbab Expand

aS acbab Match

S cbab



Example 4

S → AaS | B
A → cS | ε
B → b 

Input: acbab

Stack Input Action

S acbab Expand

AaS acbab Expand

aS acbab Match

S cbab Expand

AaS cbab



Example 4

S → AaS | B
A → cS | ε
B → b 

Input: acbab

Stack Input Action

S acbab Expand

AaS acbab Expand

aS acbab Match

S cbab Expand

AaS cbab Expand

cSaS cbab



Example 4

S → AaS | B
A → cS | ε
B → b 

Input: acbab

Stack Input Action

S acbab Expand

AaS acbab Expand

aS acbab Match

S cbab Expand

AaS cbab Expand

cSaS cbab Match

SaS bab Rest is easy

Because A can derive the empty string, S → AaS can start with a

Because A can derive the ε, we need to know which symbols can 
follow on an A in a derivation



LL(1) grammars

The lookahead set of a production N → ⍺ is defined as:

lookAhead (N → ⍺) = { x | S =>* 𝛾N𝛿 => 𝛾⍺𝛿 =>* 𝛾xβ} 

A grammar is LL(1) if all pairs of productions of the same 
nonterminal have disjoint lookahead sets:

lookAhead (N → α) ∩ lookAhead (N → β) = ∅

for all pairs of different productions N → α, N → β.



Example 2 revisited

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

This grammar is LL(1)

lookAhead (S → cA) = {c}
lookAhead (S → b) = {b}
lookAhead (A → cBC) = {c}
lookAhead (A → bSA) = {b}
lookAhead (A → a)  = {a}
lookAhead (B → cc) = {c}
lookAhead (B → Cb) = {a,b}
lookAhead (C → aS) = {a}
lookAhead (C → ba) = {b}



Example 3 revisited

This grammar is not LL(1)

lookAhead (S → abA) = {a}
lookAhead (S → aa) = {a}
lookAhead (A → bb) = {b}
lookAhead (A → bS) = {b}

S → abA | aa
A → bb | bS

It is LL(2)



Calculating lookahead sets

To calculate lookahead sets, we need to know:
- whether or not a nonterminal can derive the empty string
- which terminals can appear as the first symbol in a string 

derived from a nonterminal
- which terminals can follow a nonterminal in any derivation

These are grammar analyses problems



Deriving the empty string

A nonterminal N can derive the empty string if N ⇒* ε. 

empty N = N ⇒* ε

S  →  AaS | B
A  →  cS | ε
B  →  b



Deriving empty in n steps

The empty function satisfies:

emptyn A = ⋃A→β (emptyRhsn β)

emptyRhsn ε = True
emptyRhsn (Bβ) = emptyn−1 B ∧ emptyRhsn β
emptyRhsn (xβ) = False



Computing empty

Start with empty A = False for all nonterminals A

The first set is empty
The next set includes the previous set
We reach a fixed point sooner or later
The fixed point is our result

{ A | empty0 A }
{ A | empty1 A }
{ A | empty2 A }
…



Example fixed point calculation

S  →  AaS | B
A  →  cS | ε
B  →  b
C  →  AA | B





Q1



First set

The first set of a nonterminal N is the set of terminals that can
appear as the first symbol of a string derived from N:

first N = { x | N ⇒* xβ }

S → AaS | B
A → cS | ε
B → b

first S = {a,b,c}
first A = {c}
first B = {b}



Deriving first sets in n steps

The first function satisfies:

first0 A = ∅
firstn A = ⋃A→β (firstRhsn β)

firstRhsn ε = ∅
firstRhsn (Bβ) = firstn−1 B ∪ if empty B then firstRhsn β else ∅
firstRhsn (xβ) = {x}

The sequence { (A,firstn A) } reaches a fixed point



Example fixed point calculation

S  →  AaS | B
A  →  cS | ε
B  →  b
C  →  AA | B



Q2



Follow set

The follow set of a nonterminal N is the set of terminals that
can follow N in any derivation starting with the start symbol S:

follow N = { x | S ⇒* αNxβ }

S → AaS | B
A → cS | ε
B → b

follow S = {a}
follow A = {a}
follow B = {a}



Deriving follow sets in n steps

The follow function satisfies:

follow0 A = ∅
follown A = ⋃B→⍺Aβ (followRhsn B β)

followRhsn B β = firstRhs β ∪ if emptyRhs β then follown-1 B else ∅

The sequence { (A,follown A) } reaches a fixed point



Example fixed point calculation

S  →  AaS | B
A  →  cS | ε
B  →  b
C  →  AA | B



Q3,4



Computing lookAhead

lookAhead (A → β) = followRhs A β



Summary

Just as LR, top-down parsing using LL(1) uses a stack for parsing

To determine which production to use when expanding a 
nonterminal, LL(1) uses the lookAhead sets of productions

To determine the lookAhead set of a production we use grammar 
analyses such as empty, first and follow

Grammar analyses are calculated using fixed points calculations


