
16 June 2022

Johan Jeuring
LR Parsing

Talen & Compilers

The 2nd lab

Uses Happy, a parser that internally makes use of LR parsing;
LALR(1) to be precise

LR parsing
Lecture notes: 9.2-3

Today

Learning goals

Learning goals:

- Parse a sentence bottom-up using a stack and an LR(0)
automaton

- Recognize and explain the different kinds of conflicts that
can occur in LR parsing

Parsing

Nondeterministic using parser combinators:

Deterministic using a stack:

[s] → [(r,[s])]

[s] → Bool

together with a single derivation/ AST/ result

Deterministic parsing

LL parsing:
- Left-to-right input processing
- Leftmost derivation
- Top-down

LR parsing:
- Left-to-right input processing
- Rightmost derivation
- Bottom-up

LR parsing idea

LR parsing state:
- A stack consisting of symbols
- The unprocessed part of the input

To parse a string x with a CFG with startsymbol S:
- Start with (ε,x)
- Move/replace symbols, ending with (S,ε)
- If impossible, parsing fails

Donald Knuth
LR: 1965

An example

Grammar: S → aS | cS | b Input: aab

Stack Input Action
ε aab Shift

An example

Grammar: S → aS | cS | b Input: aab

Stack Input Action
ε aab Shift
a ab Shift

An example

Grammar: S → aS | cS | b Input: aab

Stack Input Action
ε aab Shift
a ab Shift
aa b Shift

An example

Grammar: S → aS | cS | b Input: aab

Stack Input Action
ε aab Shift
a ab Shift
aa b Shift
aab ε Reduce

An example

Grammar: S → aS | cS | b Input: aab

Stack Input Action
ε aab Shift
a ab Shift
aa b Shift
aab ε Reduce
aaS ε Reduce

An example

Grammar: S → aS | cS | b Input: aab

Stack Input Action
ε aab Shift
a ab Shift
aa b Shift
aab ε Reduce
aaS ε Reduce
aS ε Reduce

An example

Grammar: S → aS | cS | b Input: aab

Stack Input Action
ε aab Shift
a ab Shift
aa b Shift
aab ε Reduce
aaS ε Reduce
aS ε Reduce
S ε Parse successful

Moving or replacing symbols

Shift:
- The first symbol in the input moves to the stack
- (v,ax) (va,x)

Reduce:
- top symbols of the stack match a production right-hand side
- (vα,x) (vN,x) if N → α

Acceptance

An LR machine accepts a word if there exists a sequence of choices
that leads to success.
- It is not always clear when to shift or reduce
- LR parsing is nondeterministic

A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift

A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift

A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift
cc ccba Try reduce

A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift
cc ccba Try reduce
B ccba Shift

A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift
cc ccba Try reduce
B ccba Shift
Bc cba Shift

A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift
cc ccba Try reduce
B ccba Shift
Bc cba Shift
Bcc ba Try reduce

A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift
cc ccba Try reduce
B ccba Shift
Bc cba Shift
Bcc ba Try reduce
BB ba Shift

A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift
cc ccba Try reduce
B ccba Shift
Bc cba Shift
Bcc ba Try reduce
BB ba Shift
BBb a Try reduce

A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift
cc ccba Try reduce
B ccba Shift
Bc cba Shift
Bcc ba Try reduce
BB ba Shift
BBb a Try reduce
BBS a Shift

A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift
cc ccba Try reduce
B ccba Shift
Bc cba Shift
Bcc ba Try reduce
BB ba Shift
BBb a Try reduce
BBS a Shift
BBSa ε Reduce

A second example

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift
cc ccba Try reduce
B ccba Shift
Bc cba Shift
Bcc ba Try reduce
BB ba Shift
BBb a Try reduce
BBS a Shift
BBSa ε Reduce
BBSA ε Stuck

Another strategy

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift

Another strategy

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift

Another strategy

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift
cc ccba Shift

Another strategy

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift
cc ccba Shift
ccc cba Shift

Another strategy

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift
cc ccba Shift
ccc cba Shift
cccc ba Reduce

Another strategy

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift
cc ccba Shift
ccc cba Shift
cccc ba Reduce
ccB ba Shift

Another strategy

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift
cc ccba Shift
ccc cba Shift
cccc ba Reduce
ccB ba Shift
ccBb a Shift

Another strategy

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift
cc ccba Shift
ccc cba Shift
cccc ba Reduce
ccB ba Shift
ccBb a Shift
ccBba ε Reduce (how?)

Another strategy

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift
cc ccba Shift
ccc cba Shift
cccc ba Reduce
ccB ba Shift
ccBb a Shift
ccBba ε Reduce (how?)
ccBC ε Reduce

Another strategy

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift
cc ccba Shift
ccc cba Shift
cccc ba Reduce
ccB ba Shift
ccBb a Shift
ccBba ε Reduce (how?)
ccBC ε Reduce
cA ε Reduce

Another strategy

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

Input: ccccba

Stack Input Action
ε ccccba Shift
c cccba Shift
cc ccba Shift
ccc cba Shift
cccc ba Reduce
ccB ba Shift
ccBb a Shift
ccBba ε Reduce (how?)
ccBC ε Reduce
cA ε Reduce
S ε Parse

Derivation

S => cA => ccBC => ccBba => ccccba

This is a rightmost derivation

A leftmost derivation:

S => cA => ccBC => ccccC => ccccba

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

cannot be constructed with LR parsing (LL parsing!)

Select an action

During the parse process:
- we can only shift if there are symbols left in the input
- we should only shift if there is an option of a later reduction
- we can only reduce if the top of the stack matches a right-hand

side

Keep track of where in the productions we might currently be
while recognizing the input

Items

An item (also called LR(0) item) is a production together with
a marked position on the right-hand side. The position can be
either at the beginning, between two symbols, or at the end

leads to the following items

A → cBC

A → ●cBC
A → c●BC
A → cB●C
A → cBC●

Introducing end of file symbol

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

S’→ S$

Constructing item sets

S’→ ●S$
S’→ S$
S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

When we start parsing, we want
to recognize the start symbol

S’→ ●S$
S → ●cA
S → ●b

Which amounts to recognizing
the right-hand side of S

Keep on doing this until nothing can be done anymore: a fixed
point, the closure of the item set.

Constructing item sets

S’→ ●S$
S → ●cA
S → ●b

We cannot reduce in this state: only when ● appears at the end
of a right-hand side we have recognized the necessary symbols
for the non-terminal

We shift on seeing a c or a b

If the next symbol on the input is an a parsing fails

Transitioning between item sets

S’→ ●S$
S → ●cA
S → ●b

We shift on seeing a c

S → c●A
A → ●cBC
A → ●bSA
A → ●a

S’→ S$
S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

This is another shift state

Transitions

S’→ ●S$
S → ●cA
S → ●b

S → c●A
A → ●cBC
A → ●bSA
A → ●a

c

Transitions are labelled with a symbol: a terminal or a non-terminal

In a transition we move the position marker, and compute the new
closure

Transitions continued

S → c●A
A → ●cBC
A → ●bSA
A → ●a

c A → c●BC
B → ●cc
B → ●Cb
C → ●aS
C → ●bA

S’→ S$
S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

This is another shift state

Transitions continued
c

A → c●BC
B → ●cc
B → ●Cb
C → ●aS
C → ●bA

S’→ S$
S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

This is another shift state

B → c●c

Transitions continued
c

This is a reduce state

B → c●c B → cc●

What happens if we reduce?
B

A → c●BC
B → ●cc
B → ●Cb
C → ●aS
C → ●bA

S’→ S$
S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

A → cB●C
C → ●aS
C → ●bA

Part of an automaton

c A → c●BC
B → ●cc
B → ●Cb
C → ●aS
C → ●bA

A → cB●C
C → ●aS
C → ●bA

S’→ ●S$
S → ●cA
S → ●b

S → c●A
A → ●cBC
A → ●bSA
A → ●a

c c
B → c●c

B
S → cA●

A

S’→ S●$

S
c

B → cc●

The complete automaton

Such an automaton (an LR(0) automaton) can become rather large

In the example it has 20 states

Suitable for a generator, not really for manual construction

Conflicts

If a state allows both shifting and reducing, there is a shift-reduce
conflict

If a state allows reducing by more than one production, there is a
reduce-reduce conflict

Shift-reduce conflict example

S’→ S$
S → aSa | aS’→ ●S$

S → ●aSa
S → ●a

S’→ S●$

S

a S → a●Sa
S → a●
S → ●aSa
S → ●a

S → aS●a

S

S → aSa●

a

a

Reduce-reduce conflict example
S’→ S$
S → Aa | Bb
A → a
B → a

S’→ ●S$
S → ●Aa
S → ●Bb
A → ●a
B → ●a

A → a●
B → a●

a

S
S’→ S●$

A
S → A●a

B
S → B●b

a
S → Aa●

b
S → Bb●

Solving the conflict
S’→ S$
S → Aa
S → Bb
A → a
B → a

S’→ ●S$
S → ●Aa
S → ●Bb
A → ●a
B → ●a

A → a●
B → a●

a

S
S’→ S●$

A
S → A●a

B
S → B●b

a
S → Aa●

b
S → Bb●

State a b

1

2 Reduce 4 Reduce 5

…

1

2

1

2

3

4

5

Q2

What to do with conflicts?

Solving the reduce-reduce conflict example is easy using the
lookahead symbols of a non-terminal: SLR(1)
Solving the shift-reduce conflict example is difficult: need infinite
lookahead
Had it been S → (S) instead it would have been easy again

Zoo of approaches: SLR(1), LR(1), LR(k), LALR(1), GLR….

Differences in size of automata, tables, parallel processes,
lookahead per non-terminal or item, …

Summary

Bottom-up parsing using LR uses a stack, an automaton, and
(often) a shift-reduce table

Probably the most used approach (at least in history) in parser
generators

