(Vp)
S
Q
> 8
= &
“ESe
Dq.aC
R&
S (e
Q
(qo]
_I




§;W%: Utrecht University Th e 2 n d I a b

N

AN

Uses Happy, a parser that internally makes use of LR parsing;
LALR(1) to be precise
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LR parsing

Lecture notes: 9.2-3
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Learning goals:

- Parse a sentence bottom-up using a stack and an LR(O)

automaton
- Recognize and explain the different kinds of conflicts that

can occur in LR parsing
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Nondeterministic using parser combinators:
[s] » [(r,[s])]

Deterministic using a stack:

[s] » Bool

together with a single derivation/ AST/ result
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LL parsing:

- Left-to-right input processing
- Leftmost derivation

- Top-down

LR parsing:

- Left-to-right input processing
- Rightmost derivation

- Bottom-up
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LR parsing state:
- A stack consisting of symbols

- The unprocessed part of the input

To parse a string x with a CFG with startsymbol S:
- Start with (g,x)

- n]c/lpve/reptl)?ce symboI:, .tlendmg with (S,€) Donald Knuth
- Itimpossible, parsing talls LR: 1965
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Grammar: S -»>aS | cS | b Input: aab

€ aab Shift
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Grammar: S -»>aS | cS | b Input: aab
€ aab Shift
ab Shift
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Grammar: S -»>aS | cS | b Input: aab
€ aab Shift
a ab Shift
b Shift

dd
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Grammar: S > aS | ¢S | b Input:
€ aab Shift
a ab Shift
aa b Shift

aab € Reduce

aab
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Grammar: S -»>aS | cS | b Input: aab
€ aab Shift
a ab Shift
aa b Shift
aab € Reduce

aasS € Reduce
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Grammar:

An example

S>aS | cS| b Input:
€ aab Shift
a ab Shift
aa b Shift
aab € Reduce
aasS € Reduce

as

€ Reduce

aab
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Grammar:

An example

S>aS | cS| b

aa
aab
aasS
asS

aab
ab

m mMm M M O

Input: aab

Shift

Shift

Shift

Reduce

Reduce

Reduce

Parse successful
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Shift:
- The first symbol in the input moves to the stack

- (v,ax) I:> (va,x)

Reduce:
- top symbols of the stack match a production right-hand side

- (va,x) ) (WNX)if N = a
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An LR machine accepts a word if there exists a sequence of choices
that leads to success.

- It is not always clear when to shift or reduce

- LR parsing is nondeterministic
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£ ccccba Shift
S>cA|Db
A > cBC | bSA | a
B » ccC Cb
C » aS ba

Input: ccccba
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£ ccccba Shift
<5 cal b C cccba Shift
A > cBC | bSA | a
B » cc Cb
C » aSsS ba

Input: ccccba
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€ ccccba Shift
S > cA | b C cccba Shift
A > cBC | bSA | a oo ccba Try reduce
B » cc Cb
C » aS ba

Input: ccccba
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S - cA
A -» cBC
B » CcC
C » aS

Input:

b
| bSA | a
Cb
ba

ccccba

CC

ccccba Shift
cccba Shift
ccba Try reduce
ccba Shift
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S » cA b

A > cBC | bSA | a
B » cc Cb

C » aS ba

Input: ccccba

CC

Bc

ccccba Shift
cccba Shift
ccba Try reduce
ccba Shift
cba Shift
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S » cA b

A > cBC | bSA | a
B » cc Cb

C » aS ba

Input: ccccba

CC

Bc
Bcc

ccccba Shift
cccba Shift
ccba Try reduce
ccba Shift
cba Shift
ba Try reduce
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cA

cBC
CcC

S
A
B
C asS

L 2R R

Input:

b
| bSA | a
Cb
ba

ccccba

CC

Bc
Bcc
BB

ccccba
cccba
ccba
ccba
cba

ba

ba

Shift
Shift
Try reduce
Shift
Shift
Try reduce
Shift
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S » cA b

A > cBC | bSA | a
B » cc Cb

C » aS ba

Input: ccccba

CC

Bc
Bcc
BB
BBb

ccccba Shift
cccba Shift
ccba Try reduce
ccba Shift
cba Shift
ba Try reduce
ba Shift
a Tryreduce
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cA

cBC
CcC

S
A
B
C asS

L 2R R

Input:

b
| bSA | a
Cb
ba

ccccba

CC

Bc
Bcc
BB
BBb
BBS

ccccba
cccba
ccba
ccba
cba

ba

ba

Shift
Shift
Try reduce
Shift
Shift
Try reduce
Shift
Try reduce
Shift



N

N2

ESIN f Utrecht University A Seco n d exa m p I e

W\

AN

cA

cBC
CcC

S
A
B
C asS

L 2R R

Input:

b
| bSA | a
Cb
ba

ccccba

CC

Bc
Bcc
BB
BBb
BBS
BBSa

ccccba
cccba
ccba
ccba
cba

ba

ba

Shift

Shift

Try reduce
Shift

Shift

Try reduce
Shift

Try reduce
Shift
Reduce
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cA

cBC
CcC

S
A
B
C asS

L 2R R

Input:

b
| bSA | a
Cb
ba

ccccba

CC

Bc
Bcc
BB
BBb
BBS
BBSa
BBSA

ccccba
cccba
ccba
ccba
cba

ba

ba

m m o o

Shift

Shift

Try reduce
Shift

Shift

Try reduce
Shift

Try reduce
Shift
Reduce
Stuck
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£ ccccba Shift
S > CcA b
A -> cBC | bSA | a
B » cc Cb
C » aSsS ba

|nput; ccccba
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€ ccccba Shift
S 5 ca |l b C cccba Shift
A > cBC | bSA | a
B » ccC Cb
C » aS ba

|nput; ccccba
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€ ccccba Shift
S > cA | b C cccba Shift
A > cBC | bSA | a cc ccba Shift
B » cc Cb
C » aS ba

|nput; ccccba
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€ ccccba Shift
S > cA | b C cccba Shift
A > cBC | bSA | a cc ccba Shift
B > cc | Cb ccc cba Shift
C » aS ba

|nput; ccccba



NI

NN

=N f Utrecht University A N Ot h e I St rategy

S

AN

S > CcA
A -» cBC
B » ccC
C » aS

Input:

b
| bSA | a
Cb
ba

ccccba

CC
CCC
CCCC

ccccba Shift
cccba Shift
ccba Shift
cba Shift

ba Reduce



NI

NN

=N f Utrecht University A N Ot h e I St rategy

S

AN

S > CcA
A -» cBC
B » ccC
C » aS

Input:

b
| bSA | a
Cb
ba

ccccba

cC
ccc
CCCC
ccB

ccccba Shift
cccba Shift
ccba Shift
cba Shift

ba Reduce
ba Shift
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cA

cBC
CcC

S
A
B
C asS

L 2R R

Input:

b
| bSA | a
Cb
ba

ccccba

CC
CCC
cccc
ccB
ccBb

ccccba
cccba
ccba
cba

ba

ba

Shift
Shift
Shift
Shift
Reduce
Shift
Shift
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€ ccccba Shift
S > cA | b C cccba Shift
A > cBC | bSA | a cc ccba Shift
E > Cg Eb ccc cba Shift
M . cccc ba Reduce
ccB ba Shift
Input: ccccba
ccBb a Shift

ccBba € Reduce (how?)
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cA

cBC
CcC

S
A
B
C asS

L 2R R

Input:

b
| bSA | a
Cb
ba

ccccba

e
ccc
cccc
ccB
ccBb
ccBba
ccBC

ccccba
cccba
ccba
cba

ba

ba

Shift

Shift

Shift

Shift

Reduce

Shift

Shift

Reduce (how?)

Reduce
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cA

cBC
CcC

S
A
B
C asS

L 2R R

Input:

b
| bSA | a
Cb
ba

ccccba

e
ccc
cccc
ccB
ccBb
ccBba
ccBC
CcA

ccccba
cccba
ccba
cba

ba

ba

m m M Q

Shift

Shift

Shift

Shift

Reduce

Shift

Shift

Reduce (how?)
Reduce
Reduce
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S » cA b

A > cBC | bSA | a
B » ccC Cb

C » aS ba

Input: ccccba

e
ccc
cccc
ccB
ccBb
ccBba
ccBC
CcA

ccccba
cccba
ccba
cba

ba

ba

m M M M Q

Shift
Shift
Shift
Shift
Reduce
Shift
Shift
Reduce (how?)
Reduce
Reduce
Parse
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S => cA => ccBC => ccBba => ccccba S > cA b

A > cBC | bSA | a
This is a rightmost derivation B » cc | Cb

C » aS ba

A leftmost derivation:

S => cA => ccBC => ccccC => ccccha

cannot be constructed with LR parsing (LL parsing!)
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During the parse process:
- we can only shift if there are symbols left in the input

- we should only shift if there is an option of a later reduction
- we can only reduce if the top of the stack matches a right-hand

side

Keep track of where in the productions we might currently be
while recognizing the input
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An item (also called LR(0) item) is a production together with
a marked position on the right-hand side. The position can be
either at the beginning, between two symbols, or at the end

A » cBC

leads to the following items

A - ecBC
A - ceB(C
A > cBeC
A - cBCe
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S’> S§%
S>cA| Db

A > cBC | bSA | a
B> cc | Cb

C > aS | ba
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When we start parsing, we want
to recognize the start symbol

S’-»> S%
| N A > cBC | bSA | a
Which amounts to recognizing B> cc | Cb
the right-hand side of S C » aS | ba
S’> eS%
S > ecCA
S > eb

Keep on doing this until nothing can be done anymore: a fixed
point, the closure of the item set.
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G Vet Universty Constructing item sets

S’-> eS%
S » ecA
S - eb

We cannot reduce in this state: only when e appears at the end

of a right-hand side we have recognized the necessary symbols
for the non-terminal

We shift on seeingacorab

If the next symbol on the input is an a parsing fails
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S’> eS$%
S > ecA S’> S$%
S »> eb S->cA | b
A > cBC | bSA | a
We shift on seeing a c B> cc | Cb
C > aS | ba
S > ceA
A -»> ecBC
A > ebSA
A > e3

This is another shift state
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S0 oS.‘l? C

?—)COA
S > ecA| | > A > ecBC
S > eb A -> ebSA
- o A > e3

P

Transitions are labelled with a symbol: a terminal or a non-terminal

In a transition we move the position marker, and compute the new
closure
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S > ceA c A > ceBC | S’-» S$
A > ecBC | :> B » ecc S > cA b
A > ebSA B > eCb A > cBC | bSA | a
A > e3 C » eaS B » cc Cb

o - C > ebA | C » aS ba

This is another shift state
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A > ceBC S’°» S$%

B » ecc | >>|:E i CiE] S > cA b

B > eCb A > cBC | bSA | a
C > eaS B » cc Cb
C > ebA C » aS ba

This is another shift state
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@»coﬂ I >@—>ccﬂ

This is a reduce state
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ceBC
®CC
oCb
®aS

What happens if we reduce?

° bA/

y

/A -> CBOF
C » eaS

i»obA

P

O™ >u0nnm

L 200 R R

S$
cA
cBC
CcC
asS

| bSA | a
Cb
ba
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S0 osf c S 5 ceA c A > ceBC c
S » ecA :’> A > ecBC :> B » ecc
I::> B ceC
S -» eb A > ebSA B > eCb Eé j
L — i > @3 ) C -> ‘aS C
£ > QbA_/

¢ :
TS e ) ~ _%A.j @B B > cce |

f,& > CBOF
C » eaS
C - obA_/
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Such an automaton (an LR(0) automaton) can become rather large
In the example it has 20 states

Suitable for a generator, not really for manual construction
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° Go to wooclap.com Event code
(%)) FSHC

° Enter the event code in the top banner

£ Enable answers by SMS
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If a state allows both shifting and reducing, there is a shift-reduce
conflict

If a state allows reducing by more than one production, there is a
reduce-reduce conflict
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- _ c L S’» S$

S’> eS$ a : > 2033 S > aSa | a
S > easa| )| 2~ 2@° ;

S > e3 S - eaSa

— — S »> ea

4 s
_S7> S8 {’SJELaSoa]
@a

[:§ > aSaE]
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S’» S$

/g’—> .S$\ |:S>EJ_) S‘E S » Aa | Bb

S »> eAa A - a

A
L D (senea] ED[soae] 70
B—>

@‘a (5 sub] D5 - b

A
B
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-~ s 157> S%
Sl | TlEess e
S b A 3
noea | EP[5eaa] B[] )]
B a B b

_)@ |:>E > BQE |:>E > Bbj

A

B : ae ; Reduce 4 Reduce 5
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Solving the reduce-reduce conflict example is easy using the
lookahead symbols of a non-terminal: SLR(1)

Solving the shift-reduce conflict example is difficult: need infinite
lookahead

Had it been S » (S) instead it would have been easy again
Zoo of approaches: SLR(1), LR(1), LR(k), LALR(1), GLR....

Differences in size of automata, tables, parallel processes,
lookahead per non-terminal or item, ...
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Bottom-up parsing using LR uses a stack, an automaton, and
(often) a shift-reduce table

Probably the most used approach (at least in history) in parser
generators



