(Vp)
S
Q
> 8
= &
“ESe
Dq.aC
R&
S (e
Q
(qo]
_I

§;W%: Utrecht University Th e 2 n d I a b

N

AN

Uses Happy, a parser that internally makes use of LR parsing;
LALR(1) to be precise

N

E=IN % Utrecht University TO d ay

KN\

LR parsing

Lecture notes: 9.2-3

N -
§U% Utrecht University Lea rn I n g goa I S

KNy
Learning goals:

- Parse a sentence bottom-up using a stack and an LR(O)

automaton
- Recognize and explain the different kinds of conflicts that

can occur in LR parsing

N

N . l
%T § Utrecht University Pa rS I n g

Nondeterministic using parser combinators:
[s] » [(r,[s])]

Deterministic using a stack:

[s] » Bool

together with a single derivation/ AST/ result

SU2 Gerecht University Deterministic parsing

YN

LL parsing:

- Left-to-right input processing
- Leftmost derivation

- Top-down

LR parsing:

- Left-to-right input processing
- Rightmost derivation

- Bottom-up

§ Zl% Utrecht University L R p a rS i n g i d e a

YN

LR parsing state:
- A stack consisting of symbols

- The unprocessed part of the input

To parse a string x with a CFG with startsymbol S:
- Start with (g,x)

- n]c/lpve/reptl)?ce symboI:, .tlendmg with (S,€) Donald Knuth
- Itimpossible, parsing talls LR: 1965

N

%T§ Utrecht University An exa m p | e

Grammar: S -»>aS | cS | b Input: aab

€ aab Shift

<y An example

EN § Utrecht University

KN\

Grammar: S -»>aS | cS | b Input: aab
€ aab Shift
ab Shift

A.W.
e An example

£ U= Utrecht University

N

Grammar: S -»>aS | cS | b Input: aab
€ aab Shift
a ab Shift
b Shift

dd

N
§\U% Utrecht University An exa m p | e

N

Grammar: S > aS | ¢S | b Input:
€ aab Shift
a ab Shift
aa b Shift

aab € Reduce

aab

N
%T§ Utrecht University An exa m p | e

Grammar: S -»>aS | cS | b Input: aab
€ aab Shift
a ab Shift
aa b Shift
aab € Reduce

aasS € Reduce

N

N

= ¥ F Utrecht University

N

Grammar:

An example

S>aS | cS| b Input:
€ aab Shift
a ab Shift
aa b Shift
aab € Reduce
aasS € Reduce

as

€ Reduce

aab

N

N

= ¥ F Utrecht University

N

Grammar:

An example

S>aS | cS| b

aa
aab
aasS
asS

aab
ab

m mMm M M O

Input: aab

Shift

Shift

Shift

Reduce

Reduce

Reduce

Parse successful

A

G Urnecht Universicy Moving or replacing symbols

Shift:
- The first symbol in the input moves to the stack

- (v,ax) I:> (va,x)

Reduce:
- top symbols of the stack match a production right-hand side

- (va,x)) (WNX)if N = a

NI

%T § Utrecht University AC Ce pta n Ce

An LR machine accepts a word if there exists a sequence of choices
that leads to success.

- It is not always clear when to shift or reduce

- LR parsing is nondeterministic

A

%T@\\\% Utrecht University A Seco n d exa m p I e

£ ccccba Shift
S>cA|Db
A > cBC | bSA | a
B » ccC Cb
C » aS ba

Input: ccccba

N

NN

%T@\\\% Utrecht University A Seco n d exa m p I e

£ ccccba Shift
<5 cal b C cccba Shift
A > cBC | bSA | a
B » cc Cb
C » aSsS ba

Input: ccccba

A

%T@\\\% Utrecht University A Seco n d exa m p I e

€ ccccba Shift
S > cA | b C cccba Shift
A > cBC | bSA | a oo ccba Try reduce
B » cc Cb
C » aS ba

Input: ccccba

N

N2

ESIN f Utrecht University A Seco n d exa m p I e

N

S - cA
A -» cBC
B » CcC
C » aS

Input:

b
| bSA | a
Cb
ba

ccccba

CC

ccccba Shift
cccba Shift
ccba Try reduce
ccba Shift

A

%T§ Utrecht University A Seco n d exa m p I e

S » cA b

A > cBC | bSA | a
B » cc Cb

C » aS ba

Input: ccccba

CC

Bc

ccccba Shift
cccba Shift
ccba Try reduce
ccba Shift
cba Shift

N

NN

%T§ Utrecht University A Seco n d exa m p I e

S » cA b

A > cBC | bSA | a
B » cc Cb

C » aS ba

Input: ccccba

CC

Bc
Bcc

ccccba Shift
cccba Shift
ccba Try reduce
ccba Shift
cba Shift
ba Try reduce

N

N2

ESIN f Utrecht University A Seco n d exa m p I e

W\

AN

cA

cBC
CcC

S
A
B
C asS

L 2R R

Input:

b
| bSA | a
Cb
ba

ccccba

CC

Bc
Bcc
BB

ccccba
cccba
ccba
ccba
cba

ba

ba

Shift
Shift
Try reduce
Shift
Shift
Try reduce
Shift

N

NN

%T§ Utrecht University A Seco n d exa m p I e

S » cA b

A > cBC | bSA | a
B » cc Cb

C » aS ba

Input: ccccba

CC

Bc
Bcc
BB
BBb

ccccba Shift
cccba Shift
ccba Try reduce
ccba Shift
cba Shift
ba Try reduce
ba Shift
a Tryreduce

N

N2

ESIN f Utrecht University A Seco n d exa m p I e

W\

AN

cA

cBC
CcC

S
A
B
C asS

L 2R R

Input:

b
| bSA | a
Cb
ba

ccccba

CC

Bc
Bcc
BB
BBb
BBS

ccccba
cccba
ccba
ccba
cba

ba

ba

Shift
Shift
Try reduce
Shift
Shift
Try reduce
Shift
Try reduce
Shift

N

N2

ESIN f Utrecht University A Seco n d exa m p I e

W\

AN

cA

cBC
CcC

S
A
B
C asS

L 2R R

Input:

b
| bSA | a
Cb
ba

ccccba

CC

Bc
Bcc
BB
BBb
BBS
BBSa

ccccba
cccba
ccba
ccba
cba

ba

ba

Shift

Shift

Try reduce
Shift

Shift

Try reduce
Shift

Try reduce
Shift
Reduce

N

N2

ESIN f Utrecht University A Seco n d exa m p I e

W\

AN

cA

cBC
CcC

S
A
B
C asS

L 2R R

Input:

b
| bSA | a
Cb
ba

ccccba

CC

Bc
Bcc
BB
BBb
BBS
BBSa
BBSA

ccccba
cccba
ccba
ccba
cba

ba

ba

m m o o

Shift

Shift

Try reduce
Shift

Shift

Try reduce
Shift

Try reduce
Shift
Reduce
Stuck

NI

NN

%T“\% Utrecht University A N Ot h er St rategy

£ ccccba Shift
S > CcA b
A -> cBC | bSA | a
B » cc Cb
C » aSsS ba

|nput; ccccba

NI

NN

%T“\% Utrecht University A N Ot h er St rategy

€ ccccba Shift
S 5 ca |l b C cccba Shift
A > cBC | bSA | a
B » ccC Cb
C » aS ba

|nput; ccccba

N

N

%T“\% Utrecht University A N Ot h er St rategy

€ ccccba Shift
S > cA | b C cccba Shift
A > cBC | bSA | a cc ccba Shift
B » cc Cb
C » aS ba

|nput; ccccba

N

N

%T“\% Utrecht University A N Ot h er St rategy

€ ccccba Shift
S > cA | b C cccba Shift
A > cBC | bSA | a cc ccba Shift
B > cc | Cb ccc cba Shift
C » aS ba

|nput; ccccba

NI

NN

=N f Utrecht University A N Ot h e I St rategy

S

AN

S > CcA
A -» cBC
B » ccC
C » aS

Input:

b
| bSA | a
Cb
ba

ccccba

CC
CCC
CCCC

ccccba Shift
cccba Shift
ccba Shift
cba Shift

ba Reduce

NI

NN

=N f Utrecht University A N Ot h e I St rategy

S

AN

S > CcA
A -» cBC
B » ccC
C » aS

Input:

b
| bSA | a
Cb
ba

ccccba

cC
ccc
CCCC
ccB

ccccba Shift
cccba Shift
ccba Shift
cba Shift

ba Reduce
ba Shift

A

=N f Utrecht University A N Ot h e I St rategy

S

AN

cA

cBC
CcC

S
A
B
C asS

L 2R R

Input:

b
| bSA | a
Cb
ba

ccccba

CC
CCC
cccc
ccB
ccBb

ccccba
cccba
ccba
cba

ba

ba

Shift
Shift
Shift
Shift
Reduce
Shift
Shift

N

N

%T§ Utrecht University A N Ot h er St rategy

€ ccccba Shift
S > cA | b C cccba Shift
A > cBC | bSA | a cc ccba Shift
E > Cg Eb ccc cba Shift
M . cccc ba Reduce
ccB ba Shift
Input: ccccba
ccBb a Shift

ccBba € Reduce (how?)

NI

NN

=N f Utrecht University A N Ot h e I St rategy

S

AN

cA

cBC
CcC

S
A
B
C asS

L 2R R

Input:

b
| bSA | a
Cb
ba

ccccba

e
ccc
cccc
ccB
ccBb
ccBba
ccBC

ccccba
cccba
ccba
cba

ba

ba

Shift

Shift

Shift

Shift

Reduce

Shift

Shift

Reduce (how?)

Reduce

NI

NN

=N f Utrecht University A N Ot h e I St rategy

S

AN

cA

cBC
CcC

S
A
B
C asS

L 2R R

Input:

b
| bSA | a
Cb
ba

ccccba

e
ccc
cccc
ccB
ccBb
ccBba
ccBC
CcA

ccccba
cccba
ccba
cba

ba

ba

m m M Q

Shift

Shift

Shift

Shift

Reduce

Shift

Shift

Reduce (how?)
Reduce
Reduce

NI

NN

%T§ Utrecht University A N Ot h er St rategy

S » cA b

A > cBC | bSA | a
B » ccC Cb

C » aS ba

Input: ccccba

e
ccc
cccc
ccB
ccBb
ccBba
ccBC
CcA

ccccba
cccba
ccba
cba

ba

ba

m M M M Q

Shift
Shift
Shift
Shift
Reduce
Shift
Shift
Reduce (how?)
Reduce
Reduce
Parse

N

%T§ Utrecht University D e r i Va t i O n

S => cA => ccBC => ccBba => ccccba S > cA b

A > cBC | bSA | a
This is a rightmost derivation B » cc | Cb

C » aS ba

A leftmost derivation:

S => cA => ccBC => ccccC => ccccha

cannot be constructed with LR parsing (LL parsing!)

g;% Utrecht University Se I e Ct a n a Ct i O n

YN

During the parse process:
- we can only shift if there are symbols left in the input

- we should only shift if there is an option of a later reduction
- we can only reduce if the top of the stack matches a right-hand

side

Keep track of where in the productions we might currently be
while recognizing the input

NI

%T § Utrecht University I te m S

An item (also called LR(0) item) is a production together with
a marked position on the right-hand side. The position can be
either at the beginning, between two symbols, or at the end

A » cBC

leads to the following items

A - ecBC
A - ceB(C
A > cBeC
A - cBCe

N

G Urnecht Universicy Introducing end of file symbol

S’> S§%
S>cA| Db

A > cBC | bSA | a
B> cc | Cb

C > aS | ba

N

Tz iversi I .
G Vet Universty Constructing item sets

When we start parsing, we want
to recognize the start symbol

S’-»> S%
| N A > cBC | bSA | a
Which amounts to recognizing B> cc | Cb
the right-hand side of S C » aS | ba
S’> eS%
S > ecCA
S > eb

Keep on doing this until nothing can be done anymore: a fixed
point, the closure of the item set.

A

G Vet Universty Constructing item sets

S’-> eS%
S » ecA
S - eb

We cannot reduce in this state: only when e appears at the end

of a right-hand side we have recognized the necessary symbols
for the non-terminal

We shift on seeingacorab

If the next symbol on the input is an a parsing fails

N

e o L. .
S Vet Universiey Transitioning between item sets

S’> eS$%
S > ecA S’> S$%
S »> eb S->cA | b
A > cBC | bSA | a
We shift on seeing a c B> cc | Cb
C > aS | ba
S > ceA
A -»> ecBC
A > ebSA
A > e3

This is another shift state

N

N

%T § Utrecht University Tra n S it i O n S

_—

S0 oS.‘l? C

?—)COA
S > ecA| | > A > ecBC
S > eb A -> ebSA
- o A > e3

P

Transitions are labelled with a symbol: a terminal or a non-terminal

In a transition we move the position marker, and compute the new
closure

NI

G et Universiy Transitions continued

_—

S > ceA c A > ceBC | S’-» S$
A > ecBC | :> B » ecc S > cA b
A > ebSA B > eCb A > cBC | bSA | a
A > e3 C » eaS B » cc Cb

o - C > ebA | C » aS ba

This is another shift state

N

e o . .
S Vet Universiey Transitions continued

- _ C

A > ceBC S’°» S$%

B » ecc | >>|:E i CiE] S > cA b

B > eCb A > cBC | bSA | a
C > eaS B » cc Cb
C > ebA C » aS ba

This is another shift state

N

S Vet Universiey Transitions continued

@»coﬂ I >@—>ccﬂ

This is a reduce state

N

N

= ¥ F Utrecht University

N

(mmww:b‘

L Z0R R

ceBC
®CC
oCb
®aS

What happens if we reduce?

° bA/

y

/A -> CBOF
C » eaS

i»obA

P

O™ >u0nnm

L 200 R R

S$
cA
cBC
CcC
asS

| bSA | a
Cb
ba

A

G Ut Uriversicy Part of an automaton

S0 osf c S 5 ceA c A > ceBC c
S » ecA :’> A > ecBC :> B » ecc
I::> B ceC
S -» eb A > ebSA B > eCb Eé j
L — i > @3) C -> ‘aS C
£ > QbA_/

¢ :
TS e) ~ _%A.j @B B > cce |

f,& > CBOF
C » eaS
C - obA_/

N

N -
G Urnecht Universicy The complete automaton

Such an automaton (an LR(0) automaton) can become rather large
In the example it has 20 states

Suitable for a generator, not really for manual construction

A
£ U= Utrecht University

N

° Go to wooclap.com Event code
(%)) FSHC

° Enter the event code in the top banner

£ Enable answers by SMS

g;% Utrecht University CO n fl i CtS

YN

If a state allows both shifting and reducing, there is a shift-reduce
conflict

If a state allows reducing by more than one production, there is a
reduce-reduce conflict

<

Z 3

&S Ureche Universic Shift-reduce conflict example

- _ c L S’» S$

S’> eS$ a : > 2033 S > aSa | a
S > easa|)| 2~ 2@° ;

S > e3 S - eaSa

— — S »> ea

4 s
_S7> S8 {’SJELaSoa]
@a

[:§ > aSaE]

N

£5% Uereoht Universicy Reduce-reduce conflict example

N
S’» S$

/g’—> .S$\ |:S>EJ_) S‘E S » Aa | Bb

S »> eAa A - a

A
L D (senea] ED[soae] 70
B—>

@‘a (5 sub] D5 - b

A
B

W

£52 Uurcche Universicy Solving the conflict

KN\

-~ s 157> S%
Sl | TlEess e
S b A 3
noea | EP[5eaa] B[])]
B a B b

_)@ |:>E > BQE |:>E > Bbj

A

B : ae ; Reduce 4 Reduce 5

N

Utrecht University

Q2

A

G Urnecht Universicy What to do with conflicts?

Solving the reduce-reduce conflict example is easy using the
lookahead symbols of a non-terminal: SLR(1)

Solving the shift-reduce conflict example is difficult: need infinite
lookahead

Had it been S » (S) instead it would have been easy again
Zoo of approaches: SLR(1), LR(1), LR(k), LALR(1), GLR....

Differences in size of automata, tables, parallel processes,
lookahead per non-terminal or item, ...

N
§U% Utrecht University S u m m a ry

N

Bottom-up parsing using LR uses a stack, an automaton, and
(often) a shift-reduce table

Probably the most used approach (at least in history) in parser
generators

