
Languages and Compilers

Johan Jeuring, Doaitse Swierstra

November 16, 2025

Copyright c© 2001–2025 by Johan Jeuring and Doaitse Swierstra.

Contents

Preface ... iii

1. Goals 1
1.1. History . 2
1.2. Grammar analysis of context-free grammars 3
1.3. Compositionality . 3
1.4. Abstraction mechanisms . 4

2. Context-Free Grammars 5
2.1. Languages . 6
2.2. Grammars . 9

2.2.1. Notational conventions . 12
2.3. The language of a grammar . 14

2.3.1. Examples of basic languages . 16
2.4. Parse trees . 17
2.5. Grammar transformations . 20

2.5.1. Removing duplicate productions 21
2.5.2. Substituting right hand sides for nonterminals 22
2.5.3. Removing unreachable productions 22
2.5.4. Left factoring . 22
2.5.5. Removing left recursion . 23
2.5.6. Associative separator . 24
2.5.7. Introduction of priorities . 25
2.5.8. Discussion . 26

2.6. Concrete and abstract syntax . 27
2.7. Constructions on grammars . 30

2.7.1. SL: an example . 32
2.8. Parsing . 34
2.9. Exercises . 36

3. Parser combinators 41
3.1. The type of parsers . 43
3.2. Elementary parsers . 45
3.3. Parser combinators . 49

3.3.1. Matching parentheses: an example 55
3.3.2. Combinator variants . 57

i

Contents

3.4. More parser combinators . 58
3.4.1. Parser combinators for EBNF 59
3.4.2. Separators . 60

3.5. Combinator parsers are monads and more 63
3.6. Arithmetical expressions . 65
3.7. Generalised expressions . 68
3.8. Exercises . 69

4. Grammar and Parser design 71
4.1. Decomposing grammar and parser design 71
4.2. Step 1: Example sentences for the language 72
4.3. Step 2: A grammar for the language 72
4.4. Step 3: Testing the grammar . 73
4.5. Step 4: Analysing the grammar . 73
4.6. Step 5: Transforming the grammar . 74
4.7. Step 6: Deciding on the types . 74
4.8. Step 7: Constructing the basic parser 76

4.8.1. Basic parsers from strings . 76
4.8.2. A basic parser from tokens . 77

4.9. Step 8: Adding semantic functions . 78
4.10. Step 9: Did you get what you expected 80
4.11. Exercises . 80

A. Answers to exercises 85

ii

Preface ...

... for the 2025 version

I am updating the lecture notes of the course on “Languages and Compilers” to reflect
the current contents of the course. After being away from the course for many years,
I plan to teach it again in the coming years, and to produce an updated version of
the lecture notes.

I will gradually process the chapters, and publish them on the course website in
installments.

As ever, all comments are welcome, and I will acknowledge your contributions in the
updated preface of these notes.

Johan Jeuring

November 2025

... for the 2009 version

This is a work in progress. These lecture notes are in large parts identical with
the old lecture notes for “Grammars and Parsing” by Johan Jeuring and Doaitse
Swierstra.

The lecture notes have not only been used at Utrecht University, but also at the Open
University. Some modifications made by Manuela Witsiers have been reintegrated.

I have also started to make some modifications to style and content – mainly trying to
adapt the Haskell code contained in the lecture notes to currently established coding
guidelines. I also rearranged some of the material because I think they connect better
in the new order.

However, this work is not quite finished, and this means that some of the later
chapters look a bit different from the earlier chapters. I apologize in advance for any
inconsistencies or mistakes I may have introduced.

Please feel free to point out any mistakes you find in these lecture notes to me – any
other feedback is also welcome.

iii

Preface ...

I hope to be able to update the online version of the lecture notes regularly.

Andres Löh

October 2009

... for the first version

Het hiervolgende dictaat is gebaseerd op teksten uit vorige jaren, die onder andere
geschreven zijn in het kader van het project Kwaliteit en Studeerbaarheid.

Het dictaat is de afgelopen jaren verbeterd, maar we houden ons van harte aanbevolen
voor suggesties voor verdere verbetering, met name daar waar het het aangeven van
verbanden met andere vakken betreft.

Veel mensen hebben een bijgedrage geleverd aan de totstandkoming van dit dictaat
door een gedeelte te schrijven, of (een gedeelte van) het dictaat te becommentariëren.
Speciale vermelding verdienen Jeroen Fokker, Rik van Geldrop, en Luc Duponcheel,
die mee hebben geholpen door het schrijven van (een) hoofdstuk(ken) van het dictaat.
Commentaar is onder andere geleverd door: Arthur Baars, Arnoud Berendsen, Gijs-
bert Bol, Breght Boschker, Martin Bravenboer, Pieter Eendebak, Alexander Elyasov,
Matthias Felleisen, Rijk-Jan van Haaften, Graham Hutton, Daan Leijen, Andres Löh,
Erik Meijer, en Vincent Oostindië.

Tenslotte willen we van de gelegenheid gebruik maken enige studeeraanwijzingen te
geven:

• Het is onze eigen ervaring dat het uitleggen van de stof aan iemand anders vaak
pas duidelijk maakt welke onderdelen je zelf nog niet goed beheerst. Als je dus
van mening bent dat je een hoofdstuk goed begrijpt, probeer dan eens in eigen
woorden uiteen te zetten.

• Oefening baart kunst. Naarmate er meer aandacht wordt besteed aan de pre-
sentatie van de stof, en naarmate er meer voorbeelden gegeven worden, is het
verleidelijker om, na lezing van een hoofdstuk, de conclusie te trekken dat je
een en ander daadwerkelijk beheerst. “Begrijpen is echter niet hetzelfde als
“kennen”, “kennen” is iets anders dan “beheersen” en “beheersen” is weer iets
anders dan “er iets mee kunnen”. Maak dus de opgaven die in het dictaat
opgenomen zijn zelf, en doe dat niet door te kijken of je de oplossingen die
anderen gevonden hebben, begrijpt. Probeer voor jezelf bij te houden welk
stadium je bereikt hebt met betrekking tot alle genoemde leerdoelen. In het
ideale geval zou je in staat moeten zijn een mooi tentamen in elkaar te zetten
voor je mede-studenten!

iv

• Zorg dat je up-to-date bent. In tegenstelling tot sommige andere vakken is het
bij dit vak gemakkelijk de vaste grond onder je voeten kwijt te raken. Het is
niet “elke week nieuwe kansen”. We hebben geprobeerd door de indeling van
de stof hier wel iets aan te doen, maar de totale opbouw laat hier niet heel
veel vrijheid toe. Als je een week gemist hebt is het vrijwel onmogelijk de
nieuwe stof van de week daarop te begrijpen. De tijd die je dan op college en
werkcollege doorbrengt is dan weinig effectief, met als gevolg dat je vaak voor
het tentamen heel veel tijd (die er dan niet is) kwijt bent om in je uppie alles
te bestuderen.

• We maken gebruik van de taal Haskell om veel concepten en algoritmen te
presenteren. Als je nog moeilijkheden hebt met de taal Haskell aarzel dan niet
direct hier wat aan te doen, en zonodig hulp te vragen. Anders maak je jezelf
het leven heel moeilijk. Goed gereedschap is het halve werk, en Haskell is hier
ons gereedschap.

Veel sterkte, en hopelijk ook veel plezier,

Johan Jeuring en Doaitse Swierstra

v

1. Goals

Introduction

A course on Grammars, Parsing and Compilation of programming languages has
always been one of the core components of a computer science curriculum. The main
reason for this is that these concepts are at the core of the technology we develop using
computers: programming languages allow us to express our computational ideas, and
compilers help us with creating software that runs on a computer. From the very
beginning of these curricula it has been one of the few areas where the development
of formal methods and the application of formal techniques in program construction
come together. For a long time the construction of compilers has been one of the
few areas where we had a methodology available, where we had tools for generating
parts of compilers out of formal descriptions of the tasks to be performed, and where
such program generators were indeed generating programs which would have been
impossible or extremely hard to create by hand.

Goals

The goals of these lecture notes can be split into primary goals, which are associated
with the specific subject studied, and secondary – but not less important – goals
which have to do with developing skills which one would expect every computer
scientist to have. The primary, somewhat more traditional, goals are:

• to describe structures (i.e., “formulas”) using grammars;
• to parse, i.e., to recognise (build) such structures in (from) a sequence of sym-

bols;
• to analyse grammars to determine whether or not specific properties hold;
• to compose components such as parsers, analysers, and code generators
• to apply these techniques in the construction of all kinds of programs;
• to explain and prove why certain problems can or cannot be described by means

of formalisms such as context-free grammars or finite-state automata.

The secondary, more far reaching, goals are:

• to develop the capability to abstract ;
• to understand the concepts of abstract interpretation and partial evaluation;
• to understand the concept of domain specific languages;
• to show how proper formalisations can be used as a starting point for the

construction of useful tools;

1

1. Goals

• to improve general programming skills;
• to show a wide variety of useful programming techniques;
• to show how to develop programs in a calculational style.

1.1. History

When at the end of the fifties the use of computers became widespread, and their
reliability had increased enough to justify applying them to a wide range of problems,
it was no longer the actual hardware which posed most of the problems. Writing
larger programs by more people sparked the development of the first more or less
machine-independent programming language FORTRAN (FORmula TRANslator),
which was soon to be followed by ALGOL-60 and COBOL.

For the developers of the FORTRAN language, of which John Backus was the prime
architect, the problem of how to describe the language was not a hot issue: much
more important problems were to be solved, such as, what should be in the language
and what not, how to construct a compiler for the language that would fit into the
small memories which were available at that time (kilobytes instead of gigabytes),
and how to generate machine code that would not be ridiculed by programmers who
had thus far written such code by hand. As a result the language was very much
implicitly defined by what was accepted by the compiler and what not.

Soon after the development of FORTRAN an international working group started to
work on the design of a machine independent high-level programming language, to
become known under the name ALGOL-60. As a remarkable side-effect of this under-
taking, and probably caused by the need to exchange proposals in writing, not only
a language standard was produced, but also a notation for describing programming
languages was proposed by Naur and used to describe the language in the famous
Algol-60 report. Ever since it was introduced, this notation, which soon became to
be known as the Backus-Naur formalism (BNF), has been used as the primary tool
for describing the basic structure of programming languages.

It was not for long that computer scientists, and especially people writing compilers,
discovered that the formalism was not only useful to express what language should be
accepted by their compilers, but could also be used as a guideline for structuring their
compilers. Once this relationship between a piece of BNF and a compiler became
well understood, programs emerged which take such a piece of language description
as input, and produce a skeleton of the desired compiler. Such programs are now
known under the name parser generators.

Besides these very mundane goals, i.e., the construction of compilers, the BNF-
formalism also became soon a subject of study for the more theoretically oriented. It
appeared that the BNF-formalism actually was a member of a hierarchy of grammar
classes which had been formulated a number of years before by the linguist Noam

2

1.2. Grammar analysis of context-free grammars

Chomsky in an attempt to capture the concept of a “language”. Questions arose
about the expressibility of BNF, i.e., which classes of languages can be expressed
by means of BNF and which not, and consequently how to express restrictions and
properties of languages for which the BNF-formalism is not powerful enough. In the
lectures we will see many examples of this.

1.2. Grammar analysis of context-free grammars

Nowadays the use of the word Backus-Naur is gradually diminishing, and, inspired
by the Chomsky hierarchy, we most often speak of context-free grammars. For the
construction of everyday compilers for everyday languages it appears that this class
is still a bit too large. If we use the full power of the context-free languages we
get compilers which in general are inefficient, and probably not so good in handling
erroneous input. This latter fact may not be so important from a theoretical point of
view, but it is from a pragmatical point of view. Most invocations of compilers still
have as their primary goal to discover mistakes made when typing the program, and
not so much generating actual code. This aspect is even stronger present in strongly
typed languages, such as Java and Haskell, where the type checking performed by
the compilers is one of the main contributions to the increase in efficiency in the
programming process.

When constructing a recogniser for a language described by a context-free grammar
one often wants to check whether or not the grammar has specific desirable properties.
Unfortunately, for a human being it is not always easy, and quite often practically
impossible, to determine whether or not a particular property holds. Furthermore, it
may be very expensive to check whether or not such a property holds. This has led to
a whole hierarchy of context-free grammars classes, some of which are more powerful,
some are easy to check by machine, and some are easily checked by a simple human
inspection. In this course we will see many examples of such classes. The general
observation is that the more precise the answer to a specific question one wants to
have, the more computational effort is needed and the sooner this question cannot
be answered by a human being anymore.

1.3. Compositionality

As we will see the structure of many compilers follows directly from the grammar
that describes the language to be compiled. Once this phenomenon was recognised it
went under the name syntax directed compilation. Under closer scrutiny, and under
the influence of the more functional oriented style of programming, it was recognised
that actually compilers are a special form of homomorphisms, a concept thus far only

3

1. Goals

familiar to mathematicians and more theoretically oriented computer scientist that
study the description of the meaning of a programming language.

This should not come as a surprise since this recognition is a direct consequence of the
tendency that ever greater parts of compilers are more or less automatically generated
from a formal description of some aspect of a programming language; e.g. by making
use of a description of their outer appearance or by making use of a description of the
semantics (meaning) of a language. We will see many examples of such mappings.
As a side effect you will acquire a special form of writing functional programs, which
makes it often surprisingly simple to solve at first sight rather complicated program-
ming assignments. We will see that the concept of lazy evaluation plays an important
rôle in making these efficient and straightforward implementations possible.

1.4. Abstraction mechanisms

One of the main reasons for that what used to be an endeavour for a large team in
the past can now easily be done by a couple of first year’s students in a matter of
days or weeks, is that over the last thirty years we have discovered the right kind of
abstractions to be used, and an efficient way of partitioning a problem into smaller
components. Unfortunately there is no simple way to teach the techniques which
have led us thus far. The only way we see is to take a historians view and to compare
the old and the new situations.

Fortunately however there have also been some developments in programming lan-
guage design, of which we want to mention the developments in the area of functional
programming in particular. We claim that the combination of a modern, albeit quite
elaborate, type system, combined with the concept of lazy evaluation, provides an
ideal platform to develop and practice ones abstraction skills. There does not exist
another readily executable formalism which may serve as an equally powerful tool.
We hope that by presenting many algorithms, and fragments thereof, in a modern
functional language, we can show the real power of abstraction, and even find some
inspiration for further developments in language design: i.e., find clues about how to
extend such languages to enable us to make common patterns, which thus far have
only been demonstrated by giving examples, explicit.

4

2. Context-Free Grammars

Introduction

We often want to recognise a particular structure hidden in a sequence of symbols.
For example, when reading this sentence, you automatically structure it by means of
your understanding of the English language. Of course, not any sequence of symbols
is an English sentence. So how do we characterise English sentences? This is an old
question, which was posed long before computers were widely used; in the area of
natural language research the question has often been posed what actually constitutes
a “language”. The simplest definition one can come up with is to say that the English
language equals the set of all grammatically correct English sentences, and that a
sentence consists of a sequence of English words. This terminology has been carried
over to computer science: the programming language Java can be seen as the set of
all correct Java programs, whereas a Java program can be seen as a sequence of Java
symbols, such as identifiers, reserved words, specific operators etc.

This chapter introduces two of the most important notions of this course: the concept
of a language and a grammar. A language is a, possibly infinite, set of sentences
and sentences are sequences of symbols taken from a finite set (e. g., sequences of
characters, which are referred to as strings). Just as we say that the fact whether or
not a sentence belongs to the English language is determined by the English grammar
(remember that before we have used the phrase “grammatically correct”), we have a
grammatical formalism for describing artificial languages.

A difference with grammars for natural languages is that the grammatical formalism
we will use is precisely defined, and doesn’t allow for deviations. This enables us
to mathematically prove that a sentence belongs to some language, and often such
proofs can be constructed automatically by a computer in a process called parsing.
This is rather different from grammars for natural languages, where people regularly
disagree about whether something is correct English or not. However, this formal
approach also comes with a disadvantage; the expressiveness of the class of grammars
we are going to describe in this chapter is a bit limited, and there are many languages
one might want to describe but which cannot be described, given the limitations of
the formalism. But the formalism is powerful enough to be used for almost all
programming languages.

5

2. Context-Free Grammars

Goals

The main goal of this chapter is to introduce and show the relation between the
main concepts for describing the parsing problem: languages and sentences, and
grammars.

In particular, after you have studied this chapter you will be able to:

• describe the concepts of language and sentence;
• describe a language by means of a context-free grammar ;
• describe the difference between a terminal symbol and a nonterminal symbol;
• read and interpret the BNF notation;
• derive a sentence of a language using a context-free grammar;
• construct a parse tree;
• construct a datatype corresponding to a context-free grammar;
• read and interpret the EBNF notation;
• describe the relation between concrete and abstract syntax ;
• convert a grammar from EBNF-notation into BNF-notation by hand;
• construct a simple context-free grammar in EBNF notation;
• verify whether or not a simple grammar is ambiguous;
• transform a grammar, for example for removing left recursion.

2.1. Languages

This section introduces the concepts of language and sentence.

In conventional texts about mathematics it is not uncommon to encounter a definition
of sequences that looks as follows:

Definition 2.1 (Sequence). Let X be a set. The set of sequences over X , called X ∗,sequence
is defined as follows:

• ε is a sequence, called the empty sequence, and
• if z is a sequence and a is an element of X , then az is also a sequence.

The above definition is an instance of a very common definition pattern: it is a
definition by induction, i. e., the definition of the concept refers to the concept itself.

induction
It is implicitly understood that nothing that cannot be formed by repeated, but finite
application of one of the two given rules is a sequence over X .

Furthermore, the definition corresponds almost exactly to the definition of the type
[a] of lists with elements of type a in Haskell. The one difference is that Haskell lists
can be infinite, whereas sequences are always finite.

In the following, we will introduce several concepts based on sequences. They can be
implemented easily in Haskell using lists.

6

2.1. Languages

Functions that operate on an inductively defined structure such as sequences are
typically structurally recursive, i. e., such definitions often follow a recursion pattern
which is similar to the definition of the structure itself. The function foldr which
‘folds’ over a list is a typical example.

Note that the Haskell notation for lists is generally more precise than the mathemat-
ical notation for sequences. When talking about languages and grammars, we often
leave the distinction between single symbols and sequences implicit.

We use letters from the beginning of the alphabet to represent single symbols, and
letters from the end of the alphabet to represent sequences. We write a to denote
both the single symbol a or the sequence aε, depending on context. We typically use
ε only when we want to explicitly emphasize that we are talking about the empty
sequence.

Furthermore, we denote concatenation of sequences and symbols in the same way,
i. e., az should be understood as the symbol a followed by the sequence z , whereas
xy is the concatenation of sequences x and y .

In Haskell, all the differences between these constructions are explicit. Elements are
distinguished from lists by their type; there is a clear difference between a and [a].
Concatenation of lists is handled by the operator (++), whereas a single element can
be added to the front of a list using (:). Also, Haskell identifiers often have longer
names, so ab in Haskell is to be understood as a single identifier with name ab, not
as a combination of two symbols a and b.

Now we move from individual sequences to finite or infinite sets of sequences. We
start with some terminology:

Definition 2.2 (Alphabet, Language, Sentence).

• An alphabet is a finite set of symbols.
alphabet• A language is a subset of T ∗, for some alphabet T .
language• A sentence (often also called word) is an element of a language.
sentence

Note that ‘word’ and ‘sentence’ in formal languages are used as synonyms.

Some examples of alphabets are:

• the conventional Roman alphabet: {a, b, c, . . . , z};
• the binary alphabet {0, 1};
• sets of reserved words {if, then, else};
• a set of characters l = {a, b, c, d, e, i, k, l, m, n, o, p, r, s, t, u, w, x};
• a set of English words {course, practical, exercise, exam}.

Examples of languages are:

• T ∗, ∅ (the empty set), {ε} and T are languages over alphabet T ;

7

2. Context-Free Grammars

• the set {course, practical, exercise, exam} is a language over the alphabet
of characters and exam is a sentence in it.

The question that now arises is how to specify a language. Since a language is a set
we immediately see three different approaches:

• enumerate all the elements of the set explicitly;
• characterise the elements of the set by means of a predicate;
• define which elements belong to the set by means of induction.

We have just seen some examples of the first (the Roman alphabet) and third (the set
of sequences over an alphabet) approach. Examples of the second approach are:

• the even natural numbers {n | n ∈ {0, 1, . . . , 9}∗,n mod 2 = 0};
• the language DNA-palindromes of palindromes in DNA sequences, sequences

which read the same forward as backward, over the alphabet {A, C, T, G}: {s |s ∈
{A, C, T, G}∗, s = sR}, where sR denotes the reverse of sequence s. CRISPR-
CAS, the defense mechanism against viruses of DNA makes fundamental use of
DNA-palindromes. CRISPR is an abbreviation for Clustered Regularly Inter-
spaced Palindromic Repeats. The reverse function on DNA sequences is slightly
different from the usual reverse function, but we will ignore that for now.

One of the fundamental differences between the predicative and the inductive ap-
proach to defining a language is that the latter approach is constructive, i. e., it
provides us with a way to enumerate all elements of a language. If we define a lan-
guage by means of a predicate we only have a means to decide whether or not an
element belongs to a language. A famous example of a language which is easily de-
fined in a predicative way, but for which the membership test is very hard, is the set
of prime numbers.

Since languages are sets the usual set operators such as union, intersection and dif-
ference can be used to construct new languages from existing ones. The complement
of a language L over alphabet T is defined by L = {x | x ∈ T ∗, x /∈ L}.

In addition to these set operators, there are more specific operators, which apply only
to sets of sequences. We will use these operators mainly in the chapter on regular
languages, Chapter ??. Note that ∪ denotes set union, so {1, 2}∪{1, 3}={1, 2, 3}.

Definition 2.3 (Language operations). Let L and M be languages over the same
alphabet T , then

L = T ∗ − L complement of L
LR = {sR | s ∈ L} reverse of L
LM = {st | s ∈ L, t ∈ M } concatenation of L and M

L0 = {ε} 0th power of L
Ln+1 = LLn n + 1st power of L
L∗ =

⋃
i∈N Li = L0 ∪ L1 ∪ L2 ∪ . . . star-closure of L

L+ =
⋃

i∈N,i>0 Li = L1 ∪ L2 ∪ . . . positive closure of L

8

2.2. Grammars

The following equations follow immediately from the above definitions.

L∗ = {ε} ∪ LL∗

L+ = LL∗

Exercise 2.1. Let L={ab, aa, baa}, where a and b are the terminals. Which of the following
strings are in L∗: abaabaaabaa, aaaabaaaa, baaaaabaaaab, baaaaabaa?

Exercise 2.2. What are the elements of ∅∗?

Exercise 2.3. For any language, prove

1. ∅L = L∅= ∅

2. {ε}L = L{ε}= L

Exercise 2.4. In this section we defined two “star” operators: one for arbitrary sets (Defini-
tion 2.1) and one for languages (Definition 2.3). Is there a difference between these operators?

2.2. Grammars

This section introduces the concept of context-free grammars.

Manipulating sets, and proving properties about them, is often challenging. For these
purposes we introduce syntactical definitions, called grammars, of sets. This section
will only discuss so-called context-free grammars, a kind of grammars that are conve-
nient for automatic processing, and that can describe a large class of languages. But
the class of languages that can be described by context-free grammars is limited.

In the previous section we defined DNA-palindromes, the language of palindromes
over the alphabet of DNA symbols, by means of a predicate. Although this definition
defines the language we want, it is hard to use in proofs and programs. An important
observation is the fact that the set of palindromes can be defined inductively as
follows.

Definition 2.4 (DNA-palindromes by induction).

• The empty string, ε, is a DNA-palindrome;
• the strings consisting of just one character, A, C, T, and G, are DNA-palindromes;
• if P is a DNA-palindrome, then the strings obtained by prepending and ap-

pending the same character, A, C, T, and G, to it are also DNA-palindromes,
that is, the strings

APA

CPC

TPT

GPG

are DNA-palindromes.

9

2. Context-Free Grammars

The first two parts of the definition cover the basic cases. The last part of the
definition covers the inductive cases. All strings which belong to the language
DNA-palindromes inductively defined using the above definition read the same for-
wards and backwards. Therefore this definition is said to be sound (every string

sound
in DNA-palindromes is a DNA-palindrome). Conversely, if a string consisting of
A’s, C’s, T’s, and G’s reads the same forwards and backwards then it belongs to the
language DNA-palindromes. Therefore this definition is said to be complete (every

complete
DNA-palindrome is in DNA-palindromes).

Finding an inductive definition for a language which is described by a predicate (like
the one for DNA-palindromes) is often a nontrivial task. Very often it is relatively
easy to find a definition that is sound, but you also have to convince yourself that
the definition is complete. A typical method for proving soundness and completeness
of an inductive definition is mathematical induction.

Now that we have an inductive definition for DNA-palindromes, we can proceed by
giving a formal representation of this inductive definition.

Inductive definitions like the one above can be represented formally by making use
of deduction rules which look like:

a1, a2, . . . , an ` a or ` a

The first kind of deduction rule has to be read as follows:

if a1, a2, . . . and an are true,
then a is true.

The second kind of deduction rule, called an axiom, has to be read as follows:

a is true.

Using these deduction rules we can now write down the inductive definition for
DNA-palindromes, which we will call P , as follows:

` ε ∈ P
` A ∈ P
` C ∈ P
` T ∈ P
` G ∈ P

p ∈ P ` ApA ∈ P
p ∈ P ` CpC ∈ P
p ∈ P ` TpT ∈ P
p ∈ P ` GpG ∈ P

Although the definition of P is completely formal, it is still laborious to write. Since in
computer science we use many definitions which follow such a pattern, we introduce a
shorthand for it, called a grammar . A grammar consists of production rules. We cangrammar

10

2.2. Grammars

give a grammar for P by translating the deduction rules given above into production
rules. The rule with which the empty string is constructed is:

P → ε

This rule corresponds to the axiom that states that the empty string ε is a palindrome.
A rule of the form s → α, where s is symbol and α is a sequence of symbols, is called
a production rule, or production for short. A production rule can be considered as

production rule
a possible way to rewrite the symbol s. The symbol P to the left of the arrow
is a symbol which denotes DNA-palindromes. Such a symbol is an example of a
nonterminal symbol , or nonterminal for short. Nonterminal symbols are also called

nonterminal
auxiliary symbols: their only purpose is to denote structure, they are not part of
the alphabet of the language. Three other basic production rules are the rules for
constructing DNA-palindromes consisting of just one character. Each of the one
element strings A, C, T, and G is a DNA-palindrome, and gives rise to a production:

P → A

P → C

P → T

P → G

These production rules correspond to the axioms that state that the one element
strings A, C, T, and G are DNA-palindromes. If a string α is a DNA-palindrome,
then we obtain a new DNA-palindrome by prepending and appending an A, C, T, or
G to it, that is, AαA, CαC, TαT, and GαG are also DNA-palindromes. To obtain these
DNA-palindromes we use the following recursive productions:

P → APA

P → CPC

P → TPT

P → GPG

These production rules correspond to the deduction rules that state that, if P is a
DNA-palindrome, then one can deduce that APA, CPC, TPT, and GPG are also DNA-
palindromes. The grammar we have presented so far consists of three components:

• the set of terminals {A, C, T, G};
terminal• the set of nonterminals {P };

• and the set of productions (the nine productions that we have introduced so
far).

Note that the intersection of the set of terminals and the set of nonterminals is
empty. We complete the description of the grammar by adding a fourth component:
the nonterminal start symbol P . In this case we have only one choice for a start

start symbol
symbol, but a grammar may have many nonterminal symbols, and we always have
to select one to start with.

11

2. Context-Free Grammars

To summarize, we obtain the following grammar for DNA-palindromes:

P → ε
P → A

P → C

P → T

P → G

P → APA

P → CPC

P → TPT

P → GPG

The definition of the set of terminals, {A, C, T, G}, and the set of nonterminals, {P },
is often implicit. Also the start-symbol is implicitly defined here since there is only
one nonterminal.

We conclude this example with the formal definition of a context-free grammar.

Definition 2.5 (Context-Free Grammar). A context-free grammar G is a four-tuple
context-free
grammar

(T ,N ,R,S) where

• T is a finite set of terminal symbols;
• N is a finite set of nonterminal symbols (T and N are disjunct);
• R is a finite set of production rules. Each production has the form A → α,

where A is a nonterminal and α is a sequence of terminals and nonterminals;
• S is the start symbol, S ∈ N .

The adjective “context-free” in the above definition comes from the specific produc-
tion rules that are considered: exactly one nonterminal on the left hand side. Not
every language can be described via a context-free grammar. The standard example
here is {anbncn |n ∈ N}. We will encounter this example again later in these lecture
notes.

2.2.1. Notational conventions

In the definition of the grammar for DNA − palindromes we have written every
production on a single line. Since this takes up a lot of space, and since the production
rules form the heart of every grammar, we introduce the following shorthand. Instead
of writing

S → α
S → β

we combine the two productions for S in one line as using the symbol |:

S → α | β

12

2.2. Grammars

We may rewrite any number of rewrite rules for one nonterminal in this fashion, so
the grammar for PAL may also be written as follows:

P → ε | A | C | T | G | APA | CPC | TPT | GPG

The notation we use for grammars is known as BNF – Backus Naur Form – after
BNF

Backus and Naur, who first used this notation for defining grammars, in particular
for the language ALGOL 60.

Another notational convention concerns names of productions. Sometimes we want to
give names to production rules. The names will be written in front of the production.
So, for example,

Alpha rule: S → α
Beta rule: S → β

Finally, if we give a context-free grammar just by means of its productions, the start-
symbol is usually the nonterminal in the left hand side of the first production, and
the start-symbol is usually called S .

Exercise 2.5. Give a context free grammar for the set of sentences over alphabet X where

1. X = {a},

2. X = {a, b}.

Exercise 2.6. Give a context free grammar for the language

L = {anbn | n ∈ N}

Exercise 2.7. Give a grammar for palindromes over the alphabet {a, b}.

Exercise 2.8. Give a grammar for the language

L = {s sR | s ∈ {a, b}∗}

This language is known as the language of mirror palindromes.

Exercise 2.9. A parity sequence is a sequence consisting of 0’s and 1’s that has an even
number of ones. Give a grammar for parity sequences.

Exercise 2.10. Give a grammar for the language

L = {w | w ∈ {a, b}∗ ∧ #(a,w) = #(b,w)}

where #(c,w) is the number of c-occurrences in w .

13

2. Context-Free Grammars

2.3. The language of a grammar

The goal of this section is to describe the relation between grammars and languages:
to show how to derive sentences of a language, given its grammar.

In the previous section, we have given an example of how to construct a grammar for
a particular language. Now we consider the reverse question: how can we obtain a
language from a given grammar? Before we can answer this question we first have to
show what we can do with a grammar. The answer is simple: we can derive sequences
with it.

How do we construct a DNA-palindrome? A DNA-palindrome is a sequence of ter-
minals, in our case the characters A, C, T and G, that can be derived in zero or more
direct derivation steps from the start symbol P using the productions of the grammar
for DNA-palindromes given before.

For example, the sequence CATAC can be derived using the grammar for palindromes
as follows:

P
⇒

CPC

⇒
CAPAC

⇒
CATAC

Such a construction is called a derivation. In the first step of this derivation pro-
derivation

duction P → CPC is used to rewrite P into CPC. In the second step production
P → APA is used to rewrite CPC into CAPAC. Finally, in the last step production
P → T is used to rewrite CAPAC into CATAC. Constructing a derivation can be seen
as a constructive proof that the string CATAC is a DNA-palindrome.

We will now describe derivation steps formally.

Definition 2.6 (Derivation). Suppose X → β is a production of a grammar, where
X is a nonterminal symbol and β is a sequence of (nonterminal or terminal) symbols.
Let αX γ be a sequence of (nonterminal or terminal) symbols. We say that αX γ
directly derives the sequence αβγ, which is obtained by replacing the left hand side

direct derivation
X of the production by the corresponding right hand side β. We write αX γ ⇒ αβγ
and we also say that αX γ rewrites to αβγ in one step. A sequence ϕn is derived

derivation
from a sequence ϕ0, written ϕ0 ⇒∗ ϕn , if there exist sequences ϕ0, . . . , ϕn such that

∀i , 0 6 i < n : ϕi ⇒ ϕi+1

If n = 0, this statement is trivially true, and it follows that we can derive each
sentence ϕ from itself in zero steps:

14

2.3. The language of a grammar

ϕ⇒∗ ϕ

A partial derivation is a derivation of a sequence that still contains nonterminals.
partial derivation

Finding a derivation ϕ0 ⇒∗ ϕn is, in general, a nontrivial task. A derivation is only
one branch of a whole search tree which contains many more branches. Each branch
represents a (successful or unsuccessful) direction in which a possible derivation may
proceed. Another important challenge is to arrange things in such a way that finding
a derivation can be done in an efficient way.

From the example derivation above it follows that

P ⇒∗ CATAC

Because this derivation begins with the start symbol of the grammar and results in
a sequence consisting of terminals only (a terminal string), we say that the string
CATAC belongs to the language generated by the grammar for DNA-palindromes. In
general, we define

language of a
grammarDefinition 2.7 (Language of a grammar). The language of a grammar G=(T ,N ,R,S),

usually denoted by L(G), is defined as

L(G) = {s | S ⇒∗ s, s ∈ T ∗}

The language L(G) is also called the language generated by the grammar G . We
sometimes also talk about the language of a nonterminal A, which is defined by

L(A) = {s |A⇒∗ s, s ∈ T ∗}

Different grammars may have the same language. For example, if we extend the gram-
mar for DNA-palindromes with the production P → CATAC, we obtain a grammar
with exactly the same language as DNA-palindromes. Two grammars that generate
the same language are called equivalent . So for a particular grammar there exists

equivalent
a unique language, but the reverse is not true: given a language we can construct
many grammars that generate the language. To phrase it more mathematically: the
mapping between a grammar and its language is not a bijection.

Definition 2.8 (Context-free language). A context-free language is a language that
context-free
language

is generated by a context-free grammar.

All DNA-palindromes can be derived from the start symbol P . Thus, the language of
our grammar for DNA-palindromes is DNA−palindromes, the set of all palindromes
over the alphabet {A, C, T, G}, and DNA-palindromes is context-free.

15

2. Context-Free Grammars

2.3.1. Examples of basic languages

Digits occur in a several programming languages and other languages, and so do
letters. In this subsection we will define some grammars that specify some basic
languages such as digits and letters. These grammars will be used frequently in later
sections.

• The language of single digits is specified by a grammar with ten production
rules for the nonterminal Dig .

Dig → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

• We obtain sequences of digits by means of the following grammar:

Digs → ε |Dig Digs

• Natural numbers are sequences of digits that start with a non-zero digit. So to
specify natural numbers, we first define the language of non-zero digits.

Dig-0 → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Now we can define the language of natural numbers as follows.

Nat → 0 |Dig-0 Digs

• Integers are natural numbers preceded by a sign. If a natural number is not
preceded by a sign, it is supposed to be a positive number.

Sign → + | -
Int → Sign Nat |Nat

• The languages of small letters and capital letters are each specified by a gram-
mar with 26 productions:

SLetter → a | b | . . . | z
CLetter → A | B | . . . | Z

In the real definitions of these grammars we have to write each of the 26 letters,
of course. A letter is now either a small or a capital letter.

Letter → SLetter | CLetter

16

2.4. Parse trees

• Variable names, function names, datatypes, etc., are all represented by identi-
fiers in programming languages. The following grammar for identifiers might
be used in a programming language:

Identifier → Letter AlphaNums
AlphaNums → ε | Letter AlphaNums |Dig AlphaNums

An identifier starts with a letter, and is followed by a sequence of alphanumeric
characters, i. e., letters and digits. We might want to allow more symbols, such
as for example underscores and dollar symbols, but then we have to adjust the
grammar, of course.

• Dutch zip codes consist of four digits, of which the first digit is non-zero, fol-
lowed by two capital letters. So

ZipCode → Dig-0 Dig Dig Dig CLetter CLetter

Exercise 2.11. A terminal string that belongs to the language of a grammar is always
derived in one or more steps from the start symbol of the grammar. Why?

Exercise 2.12. What language is generated by the grammar with the single production rule

S → ε

Exercise 2.13. What language does the grammar with the following productions generate?

S → Aa

A → B
B → Aa

Exercise 2.14. Give a simple description of the language generated by the grammar with
productions

S → aA
A→ bS
S → ε

Exercise 2.15. Is the language L defined in Exercise 2.1 context free ?

2.4. Parse trees

This section introduces parse trees, and shows how parse trees relate to derivations.
Furthermore, this section defines (non)ambiguous grammars.

17

2. Context-Free Grammars

For any partial derivation, i. e., a derivation that contains nonterminals in its right
hand side, there may be several productions of the grammar that can be used to pro-
ceed the partial derivation with. As a consequence, there may be different derivations
for the same sentence.

However, if only the order in which the derivation steps are chosen differs between
two derivations, then the derivations are considered to be equivalent. If, however,
different derivation steps have been chosen in two derivations, then these derivations
are considered to be different.

Here is a simple example. Consider the grammar SequenceOfBits with productions:

S → SS
S → 0 | 1

Using this grammar, we can derive the sentence 100 in at least the following two
ways (the nonterminal that is rewritten in each step appears underlined):

S ⇒ SS ⇒ SSS ⇒ S0S ⇒ 10S ⇒ 100

S ⇒ SS ⇒ 1S ⇒ 1SS ⇒ 1S0⇒ 100

These derivations are the same up to the order in which derivation steps are taken.
However, the following derivation does not use the same derivation steps:

S ⇒ SS ⇒ SSS ⇒ 1SS ⇒ 10S ⇒ 100

In both derivation sequences above, the first S was rewritten to 1. In this derivation,
however, the first S is rewritten to SS .

The set of all equivalent derivations can be represented by selecting a so-called canoni-
cal element . A good candidate for such a canonical element is the leftmost derivation.

leftmost derivation
In a leftmost derivation, the leftmost nonterminal is rewritten in each step. If there
exists a derivation of a sentence x using the productions of a grammar, then there
also exists a leftmost derivation of x . The last of the three derivation sequences for
the sentence 100 given above is a leftmost derivation. The two equivalent derivation
sequences before, however, are both not leftmost. The leftmost derivation corre-
sponding to these two sequences above is

S ⇒ SS ⇒ 1S ⇒ 1SS ⇒ 10S ⇒ 100

There exists another convenient way to represent equivalent derivations: they all
correspond to the same parse tree (or derivation tree). A parse tree is a representation

parse tree
of a derivation which abstracts from the order in which derivation steps are chosen.
The internal nodes of a parse tree are labelled with a nonterminal N , and the children
of such a node are the parse trees for symbols of the right hand side of a production for
N . The parse tree of a terminal symbol is a leaf labelled with the terminal symbol.

18

2.4. Parse trees

The resulting parse tree of the first two derivations of the sentence 100 looks as
follows:

S

S

1

S

S

0

S

0

The third derivation of the sentence 100 results in a different parse tree:

S

S

S

1

S

0

S

0

As another example, all derivations of the string abba using the productions of the
grammar

P → ε
P → APA
P → BPB
A → a

B → b

are represented by the following derivation tree:

P

A

a

P

B

b

P

ε

B

b

A

a

A derivation tree can be seen as a structural interpretation of the derived sentence.
Note that there might be more than one structural interpretation of a sentence with
respect to a given grammar. Such grammars are called ambiguous.

19

2. Context-Free Grammars

Definition 2.9 (ambiguous grammar, unambiguous grammar). A grammar is un-
ambiguous if every sentence has a unique leftmost derivation, or, equivalently, if every

unambiguous
sentence has a unique derivation tree. Otherwise it is called ambiguous.

ambiguous

The grammar SequenceOfBits for constructing sequences of bits is an example of an
ambiguous grammar, since there exist two parse trees for the sentence 100.

It is in general undecidable whether or not an arbitrary context-free grammar is
ambiguous. This means that it is impossible to write a program that determines for
an arbitrary context-free grammar whether or not it is ambiguous.

Translating languages with ambiguous grammars to machine code or another format
is often rather difficult. For this reason most grammars of programming languages
and other languages that are used in processing information are unambiguous.

Grammars have proved very successful in the specification of artificial languages such
as programming languages. They have proved less successful in the specification of
natural languages (such as English), partly because is extremely difficult to construct
an unambiguous grammar that specifies a nontrivial part of the language. Take for
example the sentence ‘They are flying planes’. This sentence can be read in two
ways, with different meanings: ‘They – are – flying planes’, and ‘They – are flying
– planes’. While ambiguity of natural languages may perhaps be considered as an
advantage for their users (some politicians make frequent use of it), it certainly is
considered a disadvantage for language translators, because it is usually impossible
to maintain an ambiguous meaning in a translation.

2.5. Grammar transformations

This section studies properties of grammars, and means by which we can systemati-
cally transform a grammar into another grammar that describes the same language
and satisfies particular properties.

Some examples of properties that are worth considering for a particular grammar
are:

• a grammar may be unambiguous, that is, every sentence of its language has a
unique parse tree;

• a grammar may have the property that only the start symbol can derive the
empty string; no other nonterminal can derive the empty string;

• a grammar may have the property that every production either has a single
terminal, or two nonterminals in its right hand side. Such a grammar is said
to be in Chomsky normal form.

20

2.5. Grammar transformations

Why are we interested in such properties? Some of these properties imply that it is
possible to build parse trees for sentences of the language of the grammar in only
one way. Some other properties imply that we can build these parse trees very fast.
Other properties are used to prove facts about grammars. Yet other properties are
used to efficiently compute certain information from parse trees of a grammar.

Properties are particularly interesting in combination with grammar transformations.
A grammar transformationis a procedure to obtain a grammar G ′ from a grammar grammar

transformationG such that L(G ′) = L(G).

Suppose, for example, that we have a program that builds parse trees for sentences
of grammars in Chomsky normal form, and that we can prove that every grammar
can be transformed in a grammar in Chomsky normal form. Then we can use this
program for building parse trees for any grammar.

Since it is sometimes convenient to have a grammar that satisfies a particular property
for a language, we would like to be able to transform grammars into other grammars
that generate the same language, but that possibly satisfy different properties. In
the following, we describe a number of grammar transformations:

• Removing duplicate productions.
• Substituting right hand sides for nonterminals.
• Removing unreachable productions.
• Left factoring.
• Removing left recursion.
• Associative separator.
• Introduction of priorities.

There are many more transformations than we describe here; we will only show a
small but useful set of grammar transformations. In the following, we will assume
that N is the set of nonterminals, T is the set of terminals, and that u, v , w , x , y and
z denote sequences of terminals and nonterminals, i. e., are elements of (N ∪ T)∗.

2.5.1. Removing duplicate productions

This grammar transformation is a transformation that can be applied to any grammar
of the correct form. If a grammar contains two occurrences of the same production
rule, one of these occurrences can be removed. For example,

A→ u | u | v

can be transformed into

A→ u | v

21

2. Context-Free Grammars

2.5.2. Substituting right hand sides for nonterminals

If a nonterminal X occurs in a right hand side of a production, the production may
be replaced by just as many productions as there exist productions for X , in which
X has been replaced by its right hand sides. For example, we can substitute B in
the right hand side of the first production in the following grammar:

A → uBv | z
B → x | w

The resulting grammar is:

A → uxv | uwv | z
B → x | w

2.5.3. Removing unreachable productions

Consider the result of the transformation above:

A → uxv | uwv | z
B → x | w

If A is the start symbol and B does not occur in any of the symbol sequences u, v ,
w , x , z , then the second production can never occur in the derivation of a sentence
starting from A. In such a case, the unreachable production can be dropped:

A→ uxv | uwv | z

2.5.4. Left factoring

Left factoring is a grammar transformation that is applicable when two productions
left factoring

for the same nonterminal start with the same sequence of (terminal and/or nonter-
minal) symbols. These two productions can then be replaced by a single production,
that ends with a new nonterminal, replacing the part of the sequence after the com-
mon start sequence. Two productions for the new nonterminal are added: one for
each of the two different end sequences of the two productions. For example:

A→ xy | xz | v

may be transformed into

A→ xZ | v
Z → y | z

where Z is a new nonterminal. As we will see in Chapter 3, parsers can be constructed
systematically from a grammar, and left factoring the grammar before constructing
a parser can dramatically improve the performance of the resulting parser.

22

2.5. Grammar transformations

2.5.5. Removing left recursion

A production is called left-recursive if the right-hand side starts with the nonterminal
left recursion

of the left-hand side. For example, the production

A→ Az

is left-recursive. A grammar is left-recursive if we can derive A ⇒+ Az for some
nonterminal A of the grammar (i.e., if we can derive Az from A in one or more
steps).

Left-recursive grammars are sometimes undesirable – we will, for instance, see in
Chapter 3 that a parser constructed systematically from a left-recursive grammar
may loop. Fortunately, left recursion can be removed by transforming the grammar.
The following transformation removes left-recursive productions.

To remove the left-recursive productions of a nonterminal A, we divide the produc-
tions for A in sets of left-recursive and non left-recursive productions. We can thus
factorize the productions for A as follows:

A→ Ax1 |Ax2 | . . . |Axn
A→ y1 | y2 | . . . | ym

where none of the symbol sequences y1, . . . , ym starts with A. We now add a new
nonterminal Z , and replace the productions for A by:

A→ y1 | y1Z | . . . | ym | ymZ
Z → x1 | x1Z | . . . | xn | xnZ

Note that this procedure only works for a grammar that is directly left-recursive, i. e.,
a grammar that contains a left-recursive production of the form A→ Ax .

Grammars can also be indirectly left recursive. An example is

A → Bx
B → Ay

None of the two productions is left recursive, but we can still derive A ⇒∗ Ayx .
Removing left recursion in an indirectly left-recursive grammar is also possible, but
a bit more complicated [1].

Here is an example of how to apply the procedure described above to a grammar
that is directly left recursive, namely the grammar SequenceOfBits that we have
introduced in Section 2.4:

S → SS
S → 0 | 1

23

2. Context-Free Grammars

The first production is left-recursive. The second is not. We can thus directly apply
the procedure for left recursion removal, and obtain the following productions:

S → 0 | 1 | 0Z | 1Z
Z → S | SZ

2.5.6. Associative separator

The following grammar fragment generates a list of declarations, separated by a
semicolon ‘;’:

Decls → Decls ; Decls
Decls → Decl

The productions for Decl , which generates a single declaration, have been omitted.
This grammar is ambiguous, for the same reason as SequenceOfBits is ambiguous.
The operator ; is an associative separator in the generated language, that is, it does
not matter how we group the declarations; given three declarations d1, d2, and d3,
the meaning of d1 ; (d2 ; d3) and (d1 ; d2) ; d3 is the same. Therefore, we may use
the following unambiguous grammar for generating a language of declarations:

Decls → Decl ; Decls
Decls → Decl

Note that in this case, the transformed grammar is also no longer left-recursive.

An alternative unambiguous (but still left-recursive) grammar for the same language
is

Decls → Decls ; Decl
Decls → Decl

The grammar transformation just described should be handled with care: if the
separator is associative in the generated language, like the semicolon in this case,
applying the transformation is fine. However, if the separator is not associative, then
removing the ambiguity in favour of a particular nesting is dangerous.

This grammar transformation is often useful for expressions that are separated by
associative operators, such as for example natural numbers and addition.

24

2.5. Grammar transformations

2.5.7. Introduction of priorities

Another form of ambiguity often arises in the part of a grammar for a programming
language which describes expressions. For example, the following grammar generates
arithmetic expressions:

E → E + E
E → E * E
E → (E)

E → Digs

where Digs generates a list of digits as described in Section 2.3.1.

This grammar is ambiguous: for example, the sentence 2+4*6 has two parse trees: one
corresponding to (2+4)*6, and one corresponding to 2+(4*6). If we make the usual
assumption that * has higher priority than +, the latter expression is the intended
reading of the sentence 2+4*6. To obtain parse trees that respect these priorities, we
transform the grammar as follows:

E → T
E → E + T

T → F
T → T * F

F → (E)

F → Digs

This grammar generates the same language as the previous grammar for expressions,
but it respects the priorities of the operators.

In practice, often more than two levels of priority are used. Then, instead of writing
a large number of nearly identically formed production rules, we can abbreviate the
grammar by using parameterised nonterminals. For 1 6 i < n, we get productions

Ei → Ei+1

Ei → Ei Opi Ei+1

The nonterminal Opi is parameterised and generates operators of priority i . In
addition to the above productions, there should also be a production for expressions
of the highest priority, for example:

En → (E1) |Digs

25

2. Context-Free Grammars

2.5.8. Discussion

We have presented several examples of grammar transformations. A grammar trans-
formation transforms a grammar into another grammar that generates the same
language. For each of the above transformations we should therefore prove that the
generated language remains the same. Since the proofs are too complicated at this
point, they are omitted. Proofs can be found in any of the theoretical books on
language and parsing theory [11].

There exist many other grammar transformations, but the ones given in this section
suffice for now. Note that everywhere we use ‘left’ (left-recursion, left factoring), we
can replace it by ‘right’, and obtain a dual grammar transformation. We will discuss
a larger example of a grammar transformation after the following section.

Exercise 2.16. Consider the following ambiguous grammar with start symbol A:

A→ AaA
A→ b | c

Transform the grammar by applying the rule for associative separators. Choose the trans-
formation such that the resulting grammar is also no longer left-recursive.

Exercise 2.17. The standard example of ambiguity in programming languages is the dan-
gling else. Let G be a grammar with terminal set {if, b, then, else, a} and the following
productions:

S → if b then S else S
S → if b then S
S → a

1. Give two parse trees for the sentence if b then if b then a else a.
2. Give an unambiguous grammar that generates the same language as G .
3. How does Java prevent this dangling else problem?

Exercise 2.18. A bit list is a nonempty list of bits separated by commas. A grammar for
bit lists is given by

L → B
L → L , L
B → 0 | 1

Remove the left recursion from this grammar.

Exercise 2.19. Consider the follwing grammar with start symbol S :

S → AB
A → ε | aaA
B → ε | Bb

1. What language does this grammar generate?
2. Give an equivalent non left recursive grammar.

26

2.6. Concrete and abstract syntax

2.6. Concrete and abstract syntax

This section describes how we can represent context-free grammars using Haskell
datatypes. To this end, we introduce the notion of abstract syntax, and show how
to obtain an abstract syntax from a concrete syntax.

For each context-free grammar we can define a corresponding datatype in Haskell.
Values of these datatypes represent parse trees of the context-free grammar. As an
example we take the grammar SequenceOfBits:

S → SS
S → 0 | 1

First, we give each of the productions of this grammar a name:

Beside: S → SS
Zero: S → 0

One: S → 1

Now we interpret the start symbol of the grammar S as a datatype, using the names
of the productions as constructors:

data S = Beside S S
| Zero
| One

Note that the nonterminals on the right hand side of Beside reappear as arguments
of the constructor Beside. On the other hand, the terminal symbol 0 (or 1) in the
production Zero (or One) is omitted in the definition of the constructor Zero (or
One.

One might be tempted to create the following definition instead:

data S ′ = Beside ′ S ′ S ′

| Zero′ Char — too general
| One ′ Char — too general

However, this datatype is too general for the given grammar. An argument of type
Char can be instantiated to any single character, but we know that this character
always has to be 0 or 1. Since there is no choice anyway, there is no extra value in
storing that 0 or 1, and the first datatype S serves the purpose of encoding the parse
trees of the grammar SequenceOfBits just fine.

For example, the parse tree that corresponds to the first two derivations of the se-
quence 100 is represented by the following value of the datatype S :

Beside One (Beside Zero Zero)

27

2. Context-Free Grammars

The third derivation of the sentence 100 produces the following parse tree:

Beside (Beside One Zero) Zero

To emphasize that these representations contain sufficient information to reproduce
the original strings, we can write a function that performs this conversion:

sToString :: S → String
sToString (Beside l r) = sToString l ++ sToString r
sToString Zero = "0"

sToString One = "1"

Applying the function sToString to either Beside One (Beside Zero Zero) or the
alternative Beside (One Single Zero) Zero yields the string "100".

By literally translating the nonterminal S to a datatype name we get a name without
a meaning. It would be better to call the datatype Bits. We chose to use S to show
that the translation process of a context-free grammar to a datatype follows a set of
standard rules, but improving names in the process is of course a good thing to do.

A concrete syntax of a language describes the appearance of the sentences of a lan-
concrete syntax

guage. So the concrete syntax of the language of nonterminal S is given by the
grammar SequenceOfBits.

On the other hand, an abstract syntax of a language describes the shapes of parse trees
abstract syntax

of the language, without the need to refer to concrete terminal symbols. Parse trees
are therefore often also called abstract syntax trees. The datatype S is an example
of an abstract syntax for the language of SequenceOfBits. The adjective ‘abstract’
indicates that values of the abstract syntax do not need to explicitly contain all
information about particular sentences, as long as that information is recoverable, as
for example by applying function sToString .

A function such as sToString is often called a semantic function. A semantic function
semantic function

is a function that is defined on an abstract syntax of a language. Semantic functions
are used to give semantics (meaning) to values. In this example, the meaning of a
more abstract representation is expressed in terms of a concrete representation.

Using the removing left recursion grammar transformation, the grammar SequenceOfBits
can be transformed into the grammar with the following productions:

S → 0Z | 1Z | 0 | 1
Z → SZ | S

An abstract syntax of this grammar may be given by

data SA = ConsZero Z | ConsOne Z | ZeroS |OneS
data Z = ConsZ SA Z | SingleZ SA

28

2.6. Concrete and abstract syntax

For each nonterminal in the original grammar, we have introduced a corresponding
datatype. For each production for a particular nonterminal (expanding all the alter-
natives into separate productions), we have introduced a constructor and invented a
name for the constructor. The nonterminals on the right hand side of the production
rules appear as arguments of the constructors, but the terminals disappear, because
that information can be recovered from the constructors.

We obtained the abstract syntax datatype definitions by mechanically applying trans-
formation rules to the context-free grammar for SequenceOfBits. Since we know that
the grammar describes sequences of bits, we can also use a less precise abstract syn-
tax such as the type of lists of integers [Int], where we assume that the Int-values
are either 0 or 1. But just as the S ′ datatype, this abstract syntax definition also
includes values that are not representations of sentences of the grammar, such as
sequences that contain the integer 2.

The SequenceOfBits example shows that one may choose between many different
abstract syntaxes for a given grammar. The choice of an abstract syntax over another
should therefore be determined by the demands of the application, i.e., by what we
ultimately want to compute.

Exercise 2.20. The following Haskell datatype represents a limited form of arithmetic ex-
pressions

data Expr = Add Expr Expr
| Mul Expr Expr
| Con Int

Give a grammar for a suitable concrete syntax corresponding to this datatype.

Exercise 2.21. Consider the grammar for palindromes that you have constructed in Exer-
cise 2.7. Give parse trees for the palindromes pal1 = "abaaba" and pal2 = "baaab". Define a
datatype Pal corresponding to the grammar and represent the parse trees for pal1 and pal2
as values of Pal .

Exercise 2.22. Consider your answers to Exercises 2.7 and 2.21 where we have given a
grammar for palindromes over the alphabet {a, b} and a Haskell datatype describing the
abstract syntax of such palindromes.

1. Write a semantic function that transforms an abstract representation of a palindrome
into a concrete one. Test your function with the palindromes pal1 and pal2 from
Exercise 2.21.

2. Write a semantic function that counts the number of a’s occurring in a palindrome.
Test your function with the palindromes pal1 and pal2 from Exercise 2.21.

Exercise 2.23. Consider your answer to Exercise 2.8, which describes the concrete syntax
for mirror palindromes.

1. Define a datatype Mir that describes the abstract syntax corresponding to your gram-
mar. Give the two abstract mirror palindromes aMir1 and aMir2 that correspond to
the concrete mirror palindromes cMir1 = "abaaba" and cMir2 = "abbbba".

29

2. Context-Free Grammars

2. Write a semantic function that transforms an abstract representation of a mirror
palindrome into a concrete one. Test your function with the abstract mirror palin-
dromes aMir1 and aMir2.

3. Write a function that transforms an abstract representation of a mirror palindrome
into the corresponding abstract representation of a palindrome (using the datatype
from Exercise 2.21). Test your function with the abstract mirror palindromes aMir1

and aMir2.

Exercise 2.24. Consider your answer to Exercise 2.9, which describes the concrete syntax
for parity sequences.

1. Define a datatype Parity describing the abstract syntax corresponding to your gram-
mar. Give the two abstract parity sequences aEven1 and aEven2 that correspond to
the concrete parity sequences cEven1 = "00101" and cEven2 = "01010".

2. Write a semantic function that transforms an abstract representation of a parity se-
quence into a concrete one. Test your function with the abstract parity sequences aEven1

and aEven2.

Exercise 2.25. Consider your answer to Exercise 2.18, which describes the concrete syntax
for bit lists by means of a grammar that is not left-recursive.

1. Define a datatype BitList that describes the abstract syntax corresponding to your
grammar. Give the two abstract bit-lists aBitList1 and aBitList2 that correspond to
the concrete bit-lists cBitList1 = "0,1,0" and cBitList2 = "0,0,1".

2. Write a semantic function that transforms an abstract representation of a bit list into
a concrete one. Test your function with the abstract bit lists aBitList1 and aBitList2.

3. Write a function that concatenates two abstract representations of a bit lists into a bit
list. Test your function with the abstract bit lists aBitList1 and aBitList2.

2.7. Constructions on grammars

This section introduces some constructions on grammars that are useful when spec-
ifying larger grammars, for example for programming languages. Furthermore, it
gives an example of a larger grammar that is transformed in several steps.

The BNF notation, introduced in Section 2.2.1, was first used in the early sixties
when the programming language ALGOL 60 was defined and until now it is the
standard way of defining the syntax of programming languages (see, for instance,
the Java Language Grammar). The Java grammar contains a bit more “syntactical
sugar” than the grammars that we considered thus far (and to be honest, this also
holds for the ALGOL 60 grammar): it contains nonterminals with postfixes ‘?’, ‘+’
and ‘∗’.

This extended BNF notation, EBNF , helps abbreviating a number of standard con-
EBNF

structions that occur quite often in the syntax of a programming language:

• one or zero occurrences of nonterminal P , abbreviated P?,
• one or more occurrences of nonterminal P , abbreviated P+,

30

2.7. Constructions on grammars

• and zero or more occurrences of nonterminal P , abbreviated P∗.

We could easily express these constructions by adding additional nonterminals, but
that decreases the readability of the grammar. The notation for the EBNF con-
structions is not entirely standardized. In some texts, you will for instance find the
notation [P] instead of P?, and {P } for P∗. The same notation can be used for
languages, grammars, and sequences of terminal and nonterminal symbols instead of
just single nonterminals. In this section, we define the meaning of these constructs.

We introduced grammars as an alternative for the description of languages. Designing
a grammar for a specific language may not be a trivial task. One approach is to
decompose the language and to find grammars for each of its constituent parts.

In Definition 2.3, we have defined a number of operations on languages using op-
erations on sets. We now show that these operations can be expressed in terms of
operations on context-free grammars.

Theorem 2.10 (Language operations). Suppose we have grammars for the languages
L and M , say GL = (T ,NL,RL,SL) and GM = (T ,NM ,RM ,SM). We assume that
the nonterminal sets NL and NM are disjoint. Then

• the language L∪M is generated by the grammar (T ,N ,R,S) where S is a fresh
nonterminal, N = NL ∪NM ∪ {S } and R = RL ∪ RM ∪ {S → SL,S → SM };

• the language L M is generated by the grammar (T ,N ,R,S) where S is a fresh
nonterminal, N = NL ∪NM ∪ {S } and R = RL ∪ RM ∪ {S → SL SM };

• the language L∗ is generated by the grammar (T ,N ,R,S) where S is a fresh
nonterminal, N = NL ∪ {S } and R = RL ∪ {S → ε,S → SL S };

• the language L+ is generated by the grammar (T ,N ,R,S) where S is a fresh
nonterminal, N = NL ∪ {S } and R = RL ∪ {S → SL,S → SL S }.

The theorem above establishes that the set-theoretic operations at the level of lan-
guages (i. e., sets of sentences) have a direct counterpart at the level of grammatical
descriptions. A straightforward question to ask is now: can we also define languages
as the difference between two languages or as the intersection of two languages, and
translate these operations to operations on grammars? Unfortunately, the answer
is negative – there are no operations on grammars that correspond to the language
intersection and difference operators.

Two of the above constructions are important enough to define them as grammar
operations. Furthermore, we add a new grammar construction for an “optional gram-
mar”.

Definition 2.11 (Grammar operations). Let G = (T ,N ,R,S) be a context-free
grammar and let S ′ be a fresh nonterminal. Then

G∗ = (T ,N ∪ {S ′},R ∪ {S ′ → ε, S ′ → S S ′},S ′)

31

2. Context-Free Grammars

G+ = (T ,N ∪ {S ′},R ∪ {S ′ → S ,S ′ → S S ′},S ′)
G? = (T ,N ∪ {S ′},R ∪ {S ′ → ε, S ′ → S },S ′)

The definition of P?, P+, and P∗ for a sequence of symbols P is very similar to the
definitions of the operations on grammars. For example, P∗ denotes zero or more
concatenations of string P , so Dig∗ denotes the language consisting of zero or more
digits.

Definition 2.12 (EBNF for sequences). Let P be a sequence of nonterminals and
terminals, then

L(P∗) = L(Z) with Z → ε | PZ
L(P+) = L(Z) with Z → P | PZ
L(P?) = L(Z) with Z → ε | P

where Z is a new nonterminal in each definition.

Because the concatenation operator for sequences is associative, the operators ·∗
and ·+ can also be defined symmetrically:

L(P∗) = L(Z) with Z → ε | ZP
L(P+) = L(Z) with Z → P | ZP

Many variations are possible on this theme:

L(P∗ Q) = L(Z) with Z → Q | PZ (2.1)

or also

L(P Q∗) = L(Z) with Z → P | ZQ (2.2)

2.7.1. SL: an example

To illustrate EBNF and some of the grammar transformations given in the previous
section, we give a larger example. The following grammar generates expressions in a
very small programming language, called SL.

Expr → if Expr then Expr else Expr
Expr → Expr where Decls
Expr → AppExpr

AppExpr → AppExpr Atomic |Atomic

Atomic → Var |Number | Bool | (Expr)

Decls → Decl
Decls → Decls ; Decls

32

2.7. Constructions on grammars

Decl → Var = Expr

where the nonterminals Var , Number , and Bool generate variables, number expres-
sions, and boolean expressions, respectively. Note that the brackets around the Expr
in the production for Atomic, and the semicolon in between the Decls in the second
production for Decls are also terminal symbols. The following ‘program’ is a sentence
of this language:

if true then funny true else false where funny = 7

It is clear that this is not a very convenient language to write programs in.

The above grammar is ambiguous (why?), and we introduce priorities to resolve
some of the ambiguities. Application binds stronger than if, and both application
and if bind stronger then where. Using the “introduction of priorities” grammar
transformation, we obtain:

Expr → Expr1

Expr → Expr1 where Decls

Expr1 → Expr2

Expr1 → if Expr1 then Expr1 else Expr1

Expr2 → Atomic
Expr2 → Expr2 Atomic

where Atomic and Decls have the same productions as before.

The nonterminal Expr2 is left-recursive. Removing left recursion gives the following
productions for Expr2:

Expr2 → Atomic |Atomic Expr ′2
Expr ′2 → Atomic |Atomic Expr ′2

Since the new nonterminal Expr ′2 has exactly the same productions as Expr2, these
productions can be replaced by

Expr2 → Atomic |Atomic Expr2

So Expr2 generates a nonempty sequence of atomics. Using the ·+-notation intro-
duced before, we can replace Expr2 by Atomic+.

Another source of ambiguity are the productions for Decls. The nonterminal Decls
generates a nonempty list of declarations, and the separator ; is assumed to be asso-
ciative. Hence we can apply the “associative separator” transformation to obtain

Decls → Decl |Decls ; Decl

or, according to (2.2),

33

2. Context-Free Grammars

Decls → Decl (; Decl)∗

The last grammar transformation we apply is “left factoring”. This transformation
is applied to the productions for Expr , and yields

Expr → Expr1 Expr ′1
Expr ′1 → ε | where Decls

Since nonterminal Expr ′1 generates either nothing or a where clause, we can replace
Expr ′1 by an optional where clause in the production for Expr :

Expr → Expr1 (where Decls)?

After all these grammar transformations, we obtain the following grammar.

Expr → Expr1 (where Decls)?
Expr1 → Atomic+

Expr1 → if Expr1 then Expr1 else Expr1

Atomic → Var |Number | Bool | (Expr)

Decls → Decl (; Decl)∗

Exercise 2.26. Give the EBNF notation for each of the basic languages defined in Sec-
tion 2.3.1.

Exercise 2.27. Let G be a grammar G . Give the language that is generated by G? (i.e.,
the ·? operation applied to G).

Exercise 2.28. Let

L1 = {ambmcn |m,n ∈ N}
L2 = {ambn cn |m,n ∈ N}

1. Give grammars for L1 and L2.
2. Is L1 ∩ L2 context-free, i. e., can you give a context-free grammar for this language?

2.8. Parsing

This section formulates the parsing problem, and discusses some of the future topics
of the course.

Definition 2.13 (Parsing problem). Given the grammar G and a string s, the
parsing problem answers the question whether or not s ∈ L(G). If s ∈ L(G), the

parsing problem
answer to this question may be either a parse tree or a derivation.

34

2.8. Parsing

This question may not be easy to answer given an arbitrary grammar. Until now we
have only seen simple grammars for which it is relatively easy to determine whether
or not a string is a sentence of the grammar. For more complicated grammars this
may be more difficult. However, in the first part of this course we will show how –
given a grammar with certain reasonable properties – we can easily construct parsers
by hand. At the same time we will show how the parsing process can quite often be
combined with the algorithm we actually want to perform on the recognized object
(the semantic function). The techniques we describe comprise a simple, although
surprisingly efficient, introduction into the area of compiler construction.

A compiler for a programming language consists of several parts. Examples of such
parts are a scanner, a parser, a type checker, and a code generator. Usually, a parser
is preceded by a scanner (also called lexer), which splits an input sentence into a list scanner

lexerof so-called tokens. For example, given the sentence

if true then funny true else false where funny = 7

a scanner might return the following list of tokens:

["if", "true", "then", "funny", "true",
"else", "false", "where", "funny", "=", "7"]

So a token is a syntactical entity. A scanner usually performs the first step towards
token

an abstract syntax: it throws away layout information such as spacing and newlines.
In this course we will concentrate on parsers, but some of the concepts of scanners
will sometimes be used.

One of the problems we have not referred to yet in this rather formal chapter is of
a more practical nature. Quite often the sentence presented to the parser will not
be a sentence of the language since mistakes were made when typing the sentence.
This raises other interesting questions: Can we explain why a sentence is not in a
language, and What are the minimal changes that have to be made to the sentence to
convert it into a sentence of the language? It goes almost without saying that this is
an important question to be answered in practice; one would not be very happy with
a compiler that, given an erroneous input, would just reply that the “Input could
not be recognised”. One of the most important aspects here is to define a metric for
deciding about the minimality of a change; humans usually make certain mistakes
more often than others. A semicolon can easily be forgotten, but the chance that an
if symbol is missing is far less likely. This is where grammar engineering starts to
play a rôle.

Summary

Starting from a simple example, the language of DNA-palindromes, we have intro-
duced the concept of a context-free grammar. Associated concepts, such as deriva-
tions and parse trees were introduced.

35

2. Context-Free Grammars

2.9. Exercises

Exercise 2.29. Do there exist languages L such that (L∗) = (L)
∗
?

Exercise 2.30. Give a language L such that L = L∗.

Exercise 2.31. Under which circumstances is L+ = L∗ − {ε}?

Exercise 2.32. Let L be a language over alphabet {a, b, c} such that L=LR. Does L contain
only palindromes?

Exercise 2.33. Consider the grammar with productions

S → AA
A→ AAA
A→ a

A→ bA
A→ Ab

1. Which terminal strings can be produced by derivations of four or fewer steps?

2. Give at least two distinct derivations for the string babbab.

3. For any m,n, p > 0, describe a derivation of the string bmabnabp .

Exercise 2.34. Consider the grammar with productions

S → aaB

A → bBb

A → ε

B → Aa

Show that the string aabbaabba cannot be derived from S .

Exercise 2.35. Give a grammar for the language

L = {ωcωR | ω ∈ {a, b}∗}

This language is known as the center-marked palindromes language. Give a derivation of the
sentence abcba.

Exercise 2.36. Describe the language generated by the grammar:

S → ε
S → A
A→ aAb

A→ ab

Can you find another (preferably simpler) grammar for the same language?

36

2.9. Exercises

Exercise 2.37. Describe the languages generated by the grammars.

S → ε
S → A
A→ Aa

A→ a

and

S → ε
S → A
A→ AaA
A→ a

Can you find other (preferably simpler) grammars for the same languages?

Exercise 2.38. Show that the languages generated by the grammars G1, G2 en G3 are the
same.

G1 : G2 : G3 :

S → ε S → ε S → ε
S → aS S → Sa S → a

S → SS

Exercise 2.39. Consider the following property of grammars:

1. the start symbol is the only nonterminal which may have an empty production (a
production of the form X → ε),

2. the start symbol does not occur in any alternative.

A grammar having this property is called non-contracting . The grammar A → aAb | ε does
not have this property. Give a non-contracting grammar which describes the same language.

Exercise 2.40. Describe the language L of the grammar

A→ AaA | a

Give a grammar for L that has no left-recursive productions. Give a grammar for L that has
no right-recursive productions.

Exercise 2.41. Describe the language L of the grammar

X → a |X b

Give a grammar for L that has no left-recursive productions. Give a grammar for L that has
no left-recursive productions and is non-contracting.

Exercise 2.42. Consider the language L of the grammar

S → T |US
T → aSa |U a

U → S | SUT

Give a grammar for L which uses only productions with two or less symbols on the right
hand side. Give a grammar for L which uses only two nonterminals.

37

2. Context-Free Grammars

Exercise 2.43. Give a grammar for the language of all sequences of 0’s and 1’s which start
with a 1 and contain exactly one 0.

Exercise 2.44. Give a grammar for the language consisting of all nonempty sequences of
brackets,

{(,)}

in which the brackets match. An example sentence of the language is () (()) (). Give a
derivation for this sentence.

Exercise 2.45. Give a grammar for the language consisting of all nonempty sequences of
two kinds of brackets,

{(,), [,]}

in which the brackets match. An example sentence in this language is [()] ().

Exercise 2.46. This exercise shows an example (attributed to Noam Chomsky) of an am-
biguous English sentence. Consider the following grammar for a part of the English language:

Sentence → Subject Predicate .

Subject → they

Predicate → Verb NounPhrase
Predicate → AuxVerb Verb Noun
Verb → are

Verb → flying

AuxVerb → are

NounPhrase → Adjective Noun
Adjective → flying

Noun → planes

Give two different leftmost derivations for the sentence

they are flying planes.

Exercise 2.47. Try to find some ambiguous sentences in your own natural language. Here
are some ambiguous Dutch sentences seen in the newspapers:

Vliegen met hartafwijking niet gevaarlijk

Jessye Norman kan niet zingen

Alcohol is voor vrouwen schadelijker dan mannen

Exercise 2.48 (•). Is your grammar for Exercise 2.45 unambiguous? If not, find one which
is unambiguous.

Exercise 2.49. This exercise deals with a grammar that uses unusual terminal and non-
terminal symbols. Assume that �, ⊗, and ⊕ are nonterminals, and the other symbols are
terminals.

� → �4⊗
� → ⊗

38

2.9. Exercises

⊗ → ⊗3⊕
⊗ → ⊕
⊕ → ♣
⊕ → ♠

Find a derivation for the sentence ♣3♣4♠.

Exercise 2.50 (•). Prove, using induction, that the grammar G for palindromes in Sec-
tion 2.2 does indeed generate the language of palindromes.

Exercise 2.51 (••, no answer provided). Prove that the language generated by the grammar
of Exercise 2.33 contains all strings over {a, b} where the number of a’s is even and greater
than zero.

Exercise 2.52 (no answer provided). Consider the natural numbers in unary notation where
only the symbol I is used; thus 4 is represented as IIII. Write an algorithm that, given a
string w of I’s, determines whether or not w is divisible by 7.

Exercise 2.53 (no answer provided). Consider the natural numbers in reverse binary no-
tation; thus 4 is represented as 001. Write an algorithm that, given a string w of zeros and
ones, determines whether or not w is divisible by 7.

Exercise 2.54 (no answer provided). Let w be a string consisting of a’s and b’s only. Write
an algorithm that determines whether or not the number of a’s in w equals the number of
b’s in w .

39

2. Context-Free Grammars

40

3. Parser combinators

Introduction

This chapter is an informal introduction to writing parsers in a lazy functional lan-
guage using ‘parser combinators’. Parsers can be written using a small set of basic
parsing functions, and a number of functions that combine parsers into more com-
plicated parsers. The functions that combine parsers are called parser combinators.
The basic parsing functions do not combine parsers, and are therefore not parser
combinators in this sense, but they are usually also called parser combinators.

Parser combinators are used to write parsers that are very similar to the grammar of
a language. Thus writing a parser amounts to translating a grammar to a functional
program, which is often a simple task.

Parser combinators are built by means of standard functional language constructs
like higher-order functions, lists, and datatypes. List comprehensions are used in a
few places, but they are not essential, and could easily be rephrased using the map,
filter and concat functions. Type classes are only used for overloading the equality
and arithmetic operators.

We will start by motivating the definition of the type of parser functions. Using that
type, we can build parsers for the language of (possibly ambiguous) grammars. Next,
we will introduce some elementary parsers that can be used for parsing the terminal
symbols of a language.

In Section 3.3 the first parser combinators are introduced, which can be used for se-
quentially and alternatively combining parsers, and for calculating so-called semantic
functions during the parse. Semantic functions are used to give meaning to syntactic
structures. As an example, we construct a parser for strings of matching paren-
theses in Section 3.3.1. Different semantic values are calculated for the matching
parentheses: a tree describing the structure, and an integer indicating the nesting
depth.

In Section 3.4 we introduce some new parser combinators. Not only do these make life
easier later, but their definitions are also nice examples of using parser combinators.
A real application is given in Section 3.6, where a parser for arithmetical expressions
is developed. Finally, the expression parser is generalised to expressions with an
arbitrary number of precedence levels. This is done without coding the priorities of
operators as integers, and we will avoid using indices and ellipses.

41

3. Parser combinators

It is not always possible to directly construct a parser from a context-free grammar
using parser combinators. If the grammar is left-recursive, it has to be transformed
into a non left-recursive grammar before we can construct a combinator parser. An-
other limitation of the parser combinator technique as described in this chapter is
that it is not trivial to write parsers for complex grammars that perform reasonably
efficient. However, there do exist implementations of parser combinators that per-
form remarkably well, see [10, 12]. For example, there exist good parsers using parser
combinators for the Haskell language.

Most of the techniques introduced in this chapter have been described by Burge [4],
Wadler [13] and Hutton [7].

This chapter is a revised version of an article by Fokker [5].

Goals

This chapter introduces the first programs for parsing in these lecture notes. Parsers
are composed from simple parsers by means of parser combinators. Hence, important
primary goals of this chapter are:

• to parse, i. e., how to recognise structure in a sequence of symbols, by means of
parser combinators;
• to construct a parser when given a grammar;
• to define and use semantic functions.

Two secondary goals of this chapter are:

• to develop the capability to abstract;
• to understand the concept of domain specific language.

Required prior knowledge

As prerequisite knowledge for this chapter, you should be able to describe a language
using a context-free grammar, to parse a sentence using a context-free grammar, and
to formulate the parsing problem Furthermore, you should be familiar withable to
use functional programming concepts such as type, class, and higher-order functions
to develop programs.

42

3.1. The type of parsers

3.1. The type of parsers

The goals of this section are:

• develop a type Parser that is used to give the type of parsing functions;
• show how to obtain this type by means of several abstraction steps.

The parsing problem is (see Section 2.8): Given a grammar G and a string s, de-
termine whether or not s ∈ L(G). If s ∈ L(G), the answer to this question may
be either a parse tree or a derivation. For example, in Section 2.4 we have seen a
grammar for sequences of bits:

S → SS | 0 | 1

A parse tree of an expression of this language is a value of the datatype S (or a value
of several variants of that type, see Section 2.6, depending on what you want to do
with the result of the parser), which is defined by

data S = Beside S S | Zero |One

A parser for expressions could be implemented as a function of the following type:

type Parser = String → S — preliminary

For parsing substructures, a parser can call other parsers, or call itself recursively.
These calls do not only have to communicate their result, but also the part of the
input string that is left unprocessed. For example, when parsing the string 100, a
parser will first build a parse tree Beside One Zero for 10, and only then build a
complete parse tree

Beside (Beside One Zero) Zero

using the unprocessed part 0 of the input string. As this cannot be done using a global
variable, the unprocessed input string has to be part of the result of the parser. The
two results can be paired. A better definition for the type Parser is hence:

type Parser = String → (S ,String) — still preliminary

Any parser of type Parser returns an S and a String . However, for different grammars
we want to return different parse trees: the type of tree that is returned depends on
the grammar for which we want to parse sentences. Therefore it is better to abstract
from the type S , and to turn the parser type into a polymorphic type. The type
Parser is parametrised with a type a, which represents the type of parse trees.

type Parser a = String → (a,String) — still preliminary

For example, a parser that returns a structure of type Byte now has type Parser Byte.
A parser that parses sequences of 0’s and 1’s has type Parser S . We might also define

43

3. Parser combinators

a parser that does not return a value of type S , but instead the List of zeroes and
ones in the input sequence. This parser would have type Parser [Int]. Another
instance of a parser is a parse function that recognises a string of digits, and returns
the number represented by it as a parse ‘tree’. In this case the function is also of
type Parser Int . Finally, a recogniser that either accepts or rejects sentences of a
grammar returns a boolean value, and will have type Parser Bool .

Until now, we have assumed that every string can be parsed in exactly one way. In
general, this need not be the case: it may be that a single string can be parsed in
various ways, or that there is no way to parse a string. For example, the string "100"

has the following two parse trees:

Beside (Beside One Zero) Zero
Beside One (Beside Zero Zero)

As another refinement of the type Parser , instead of returning one parse tree (and
its associated rest string), we let a parser return a list of trees. Each element of the
result consists of a tree, paired with the rest string that was left unprocessed after
parsing. The type definition of Parser therefore becomes:

type Parser a = String → [(a,String)] — useful, but still suboptimal

If there is just one parse, the result of the parse function is a singleton list. If no
parse is possible, the result is an empty list. In case of an ambiguous grammar, the
result consists of all possible parses.

This method for parsing is called the list of successes method, described by Wadler [13].
list of successes

It can be used in situations where in other languages you would use so-called back-
tracking techniques. In the Bird and Wadler textbook it is used to solve combinatorial
problems like the eight queens problem [3]. If only one solution is required rather
than all possible solutions, you can take the head of the list of successes. Thanks
to lazy evaluation, not all elements of the list are computed if only the first value is

lazy evaluation
needed, so there will be no loss of efficiency. Lazy evaluation provides a backtracking
approach to finding the first solution.

Parsers with the type described so far operate on strings, that is lists of characters.
There is however no reason for not allowing parsing strings of elements other than
characters. You may imagine a situation in which a preprocessor prepares a list of
tokens (see Section 2.8), which is subsequently parsed. To cater for this situation we
refine the parser type once more: we let the type of the elements of the input string
be an argument of the parser type. Calling the type of symbols s, and as before the
result type a, the type of parsers becomes

type Parser s a = [s]→ [(a, [s])]

or, if you prefer meaningful identifiers over conciseness:

44

3.2. Elementary parsers

— The type of parsers

newtype Parser s r = Parser {runParser :: [s]→ [(r , [s])]}

Listing 3.1: ParserType.hs

type Parser symbol result = [symbol]→ [(result , [symbol])]

Since we want to make the type of parsers abstract, because we might want to change
it at a later time, and make the Parser type an instance of a number of classes later,
we turn it into the following newtype

newtype Parser s r = Parser {runParser :: [s]→ [(r , [s])]}

We will use this newtype definition in the rest of this chapter. This type is defined in
Listing 3.1, the first part of our parser library. If we have a parser p, and input xs, we
can apply the parser to the input by means of runParser p xs. The list of successes
appears in the result type of a parser. Each element of this list is a possible parsing
of (an initial part of) the input. We will hardly use the full generality provided by
the Parser type: the type of the input s (or symbol) will almost always be Char .

3.2. Elementary parsers

The goals of this section are:

• introduce some very simple parsers for parsing sentences of grammars with rules
of the form:

A→ ε
A→ a

A→ x

where x is a sequence of terminals;

• show how one can construct useful functions from simple, trivially correct func-
tions by means of generalisation and partial parametrisation.

This section defines parsers that can only be used to parse fixed sequences of terminal
symbols. For a grammar with a production that contains nonterminals in its right-
hand side we need techniques that will be introduced in the following section.

We will start with a very simple parse function that just ‘parses’ the empty string ε.
It does not consume any input, and hence always returns an empty parse tree and

45

3. Parser combinators

unmodified input. A zero-tuple can be used as a result value: () is the only value of
the type () – both the type and the value are pronounced unit .

unit type

epsilon :: Parser s ()
epsilon = Parser (λxs → [((), xs)])

A more useful variant of this parser is the function succeed , which also doesn’t con-
sume input, but always returns a given, fixed value (or ‘parse tree’, if you can call
the result of processing zero symbols a parse tree).

succeed :: a → Parser s a
succeed r = Parser (λxs → [(r , xs)])

the parser epsilon can be defined in terms of succeed by

epsilon = succeed ()

We will do this often in this section: define a parser in terms of one or more other
parsers. This also partially explains the title ‘parser combinators’ of this chapter.

Dual to the function succeed is the function failp, which fails to recognise any symbol
on the input string. As the result list of a parser is a ‘list of successes’, and in the
case of failure there are no successes, the result list should be empty. Therefore the
function failp always returns the empty list of successes. It is defined in Listing 3.2.
Note the difference with epsilon, which does have one element in its list of successes
(albeit an empty one).

Suppose we want to parse the terminal symbol a. The type of the input string
symbols is Char in this case, and as a parse ‘tree’ we also simply use a Char :

symbola :: Parser Char Char
symbola = Parser (λxs → case xs of

[] → []
(x : xs)→ if x = = ’a’ then [(’a’, xs)] else [])

The list of successes method pays off again, because now we can return an empty list
if no parsing is possible (because the input is empty, or does not start with an a).

Function symbola parses a character ’a’. We can generalise it in many ways. First,
we sometimes want to parse values from a different type, such as a particular kind of
tokens. The parser anySymbol parses any kind of symbols, and always succeeds with
the first symbol in the input, or fails if the input is empty:

anySymbol :: Parser s s
anySymbol = Parser (λxs → case xs of

(x : xs) → [(x , xs)]
[] → [])

46

3.2. Elementary parsers

Using the LambdaCase extension of Haskell, we can write this as

anySymbol :: Parser s s
anySymbol = Parser (λcase

(x : xs) → [(x , xs)]
[] → [])

We can use anySymbol to define the parser symbola by checking that the symbol
parsed is equal to the character ’a’. So an alternative definition of symbola is

symbola = satisfy (= = ’a’) anySymbol

where satisfy takes a condition, a function that returns a Bool , and returns a parser
that checks the parsed symbol for that condition:

satisfy :: (s → Bool)→ Parser s s
satisfy c = Parser (λcase

(x : xs)→ if c x then [(x , xs)] else []
[] → [])

In the same fashion, we can write parsers that recognise other symbols than the
character ’a’. As always, rather than defining a lot of closely related functions, it is
better to abstract from the symbol to be recognised by making it an extra argument
of the function. Furthermore, the function can operate on lists of characters, but also
on lists of symbols of other types, so that it can be used in other applications than
character oriented ones. The only prerequisite is that the symbols to be parsed can
be tested for equality. In Haskell, this is indicated by the Eq predicate in the type
of the function. Using these generalisations, we obtain the function symbol that is
given in Listing 3.2.

We will now define some elementary parsers that can do the work traditionally taken
care of by lexical analysers (see Section 2.8). For example, a useful parser is one
that recognises a fixed string of symbols, such as while or switch. We will call this
function token; it is defined in Listing 3.2. As in the case of the symbol function we
have parametrised this function with the string to be recognised, effectively making
it into a family of functions. Of course, this function is not confined to strings of
characters. However, we do need an equality test on the type of values in the input
string; the type of token is:

token :: Eq s ⇒ [s]→ Parser s [s]

The function token is a generalisation of the symbol function, in that it recognises
a list of symbols instead of a single symbol. Note that we cannot define symbol in
terms of token: the two functions have incompatible types.

The second elementary parser that typically appears in a lexical analyser is the digit
parser, which uses the parser combinator satisfy to parse digits (characters in between
’0’ and ’9’):

47

3. Parser combinators

— Elementary parsers

succeed :: a → Parser s a
succeed r = Parser (λxs → [(r , xs)])

failp :: Parser s a
failp xs = Parser (const [])

symbol :: Eq s ⇒ s → Parser s s
symbol a = satisfy (= = a)

satisfy :: (s → Bool)→ Parser s s
satisfy c = Parser (λcase

(x : xs)→ if c x then [(x , xs)] else []
[] → [])

token :: Eq s ⇒ [s]→ Parser s [s]
token k = Parser (λxs → if k = = take n xs then [(k , drop n xs)] else [])

where n = length k

— Applications of elementary parsers

digit :: Parser Char Char
digit = satisfy isDigit

Listing 3.2: Elementary parsers

48

3.3. Parser combinators

digit :: Parser Char Char
digit = satisfy isDigit

where the function isDigit is the standard predicate that tests whether or not a
character is a digit:

isDigit :: Char → Bool
isDigit x = ’0’ 6 x ∧ x 6 ’9’

Exercise 3.1. Define a function capital :: Parser Char Char that parses capital letters.

Exercise 3.2. Since satisfy is a generalisation of symbol , the function symbol can be defined
as an instance of satisfy . How can this be done?

Exercise 3.3. Define the function epsilon using succeed .

3.3. Parser combinators

Using the elementary parsers from the previous section, parsers can be constructed
for terminal symbols from a grammar. More interesting are parsers for nonterminal
symbols. It is convenient to construct these parsers by partially parametrising higher-
order functions.

The goals of this section are:

• show how parsers can be constructed directly from the productions of a gram-
mar. The kind of productions for which parsers will be constructed are

A→ x | y
A→ x y

where x and y are sequences of nonterminal or terminal symbols;

• show how we can construct a small, powerful combinator language (a domain
specific language) for the purpose of parsing;

• understand and use the concept of semantic functions in parsers.

Let us have a look at the grammar for expressions again, see also Section 2.5:

E → T + E | T
T → F * T | F
F → Digs | (E)

where Digs is a nonterminal that generates the language of sequences of digits, see
Section 2.3.1. An expression can be parsed according to any of the two rules for
E. This implies that we want to have a way to say that a parser consists of several

49

3. Parser combinators

alternative parsers. Furthermore, the first rule says that to parse an expression, we
should first parse a term, then a terminal symbol +, and then an expression. This
implies that we want to have a way to say that a parser consists of several parsers
that are applied sequentially.

So important operations on parsers are sequential and alternative composition: a
more complex construct can consist of a simple construct followed by another con-
struct (sequential composition), or by a choice between two constructs (alternative
composition). These operations correspond directly to their grammatical counter-
parts. We will develop two functions for this, which for notational convenience are
defined as operators: <∗> for sequential composition, and <|> for alternative com-
position. The names of these operators are chosen so that they can be easily remem-
bered: <∗> ‘multiplies’ two constructs together, and <|> can be pronounced as ‘or’.
Be careful, though, not to confuse the <|>-operator with Haskell’s built-in construct
|, which is used to distinguish cases in a function definition or as a separator for the
constructors of a datatype.

Priorities of these operators are defined so as to minimise parentheses in practical
situations:

infixl 6<∗>
infixr 4<|>

So <∗> has a higher priority – i. e., it binds stronger – than <|>.

Both operators take two parsers as argument, and return a parser as result. By
again combining the result with other parsers, you may construct even more involved
parsers.

In the definitions in Listing 3.3, the functions operate on parsers p and q . Apart
from the arguments p and q , the function operates on a string, which can be thought
of as the string that is parsed by the parser that is the result of combining p and
q .

We start with the definition of operator <∗>. For sequential composition, p must be
applied to the input first. After that, q is applied to the rest string of the result. The
first parser, p, returns a list of successes, each of which contains a value and a rest
string. The second parser, q , should be applied to the rest string, returning a second
value. Therefore we use a list comprehension, in which the second parser is applied
in all possible ways to the rest string of the first parser:

(p <∗> q) = Parser (λxs →
[(combine r1 r2, zs)
| (r1, ys)← runParser p xs
, (r2, zs) ← runParser q ys
])

50

3.3. Parser combinators

— Parser combinators

(<|>) :: Parser s a → Parser s a → Parser s a
(p <|> q) = Parser (λxs → runParser p xs ++ runParser q xs)

(<∗>) :: Parser s (b → a)→ Parser s b → Parser s a
(p <∗> q) = Parser (λxs →

[(f r , zs)
| (f , ys)← runParser p xs
, (r , zs) ← runParser q ys
])

(<$>) :: (a → b)→ Parser s a → Parser s b
(f <$> p) = Parser (λxs →

[(f y , ys)
| (y , ys)← runParser p xs
])

— Applications of parser combinators

newdigit :: Parser Char Int
newdigit = f <$> digit

where f c = ord c − ord ’0’

Listing 3.3: ParserCombinators.hs

51

3. Parser combinators

The rest string of the parser for the sequential composition of p and q is whatever
the second parser q leaves behind as rest string.

Now, how should the results of the two parsings be combined? We could, of course,
parametrise the whole parser with an operator that describes how to combine the
parts (as is done in the zipWith function). However, we choose a different approach,
which nicely exploits the ability of functional languages to manipulate functions. The
function combine should combine the results of the two parse trees recognised by p
and q . In the past, we have interpreted the word ‘tree’ liberally: simple values, like
characters, may also be used as a parse ‘tree’. We will now also accept functions as
parse trees. That is, the result type of a parser may be a function type.

If the first parser that is combined by <∗> would return a function of type b → a,
and the second parser a value of type b, a straightforward choice for the combine
function would be function application. That is exactly the approach taken in the
definition of <∗> in Listing 3.3. The first parser returns a function, the second parser
a value, and the combined parser returns the value that is obtained by applying the
function to the value.

Apart from ‘sequential composition’ we need a parser combinator for representing
‘choice’. For this, we have the parser combinator operator <|>. Thanks to the list
of successes method, both p1 and p2 return lists of possible parsings. To obtain all
possible parsings when applying p1 or p2, we only need to concatenate these two
lists.

By combining parsers with parser combinators we can construct new parsers. The
most important parser combinators are <∗> and <|>. The parser combinator <,>
in exercise 3.12 is just a variation of <∗>.

Sometimes we are not quite satisfied with the result value of a parser. The parser
might work well in that it consumes symbols from the input adequately (leaving the
unused symbols as rest-string in the tuples in the list of successes), but the result
value might need some postprocessing. For example, a parser that recognises one digit
is defined using the function satisfy : digit = satisfy isDigit . In some applications,
we may need a parser that recognises one digit character, but returns the result
as an integer, instead of a character. In a case like this, we can use a new parser
combinator: <$>. It takes a function and a parser as argument; the result is a parser
that recognises the same string as the original parser, but ‘postprocesses’ the result
using the function. We use the $ sign in the name of the combinator, because the
combinator resembles the operator that is used for normal function application in
Haskell: f $ x = f x . The definition of <$> is given in Listing 3.3. It is an infix
operator:

infixl 7<$>

Using this postprocessing parser combinator, we can modify the parser digit that was
defined above:

52

3.3. Parser combinators

newdigit :: Parser Char Int
newdigit = f <$> digit

where f c = ord c − ord ’0’

The auxiliary function f determines the ordinal number of a digit character; using
the parser combinator <$> it is applied to the result part of the digit parser.

In practice, the <$> operator is used to build a certain value during parsing (in the
case of parsing a computer program this value may be the generated code, or a list
of all variables with their types, etc.). Put more generally: using <$> we can add
semantic functions to parsers.

A parser for the SequenceOfBits grammar that returns the abstract syntax tree of
the input, i.e., a value of type S , see Section 2.6, is defined as follows:

sequenceOfBits :: Parser Char S
sequenceOfBits = Beside <$> sequenceOfBits <∗> sequenceOfBits

<|> const Zero <$> symbol ’0’
<|> const One <$> symbol ’1’

But if you try to run this function, you will get a stack overflow! If you apply
sequenceOfBits to a string, the first thing it does is to apply itself to the same string,
which loops. The problem stems from the fact that the underlying grammar is left-
recursive. For any left-recursive grammar, a systematically constructed parser using
parser combinators will exhibit the problem that it loops. However, in Section 2.5
we have shown how to remove the left recursion in the SequenceOfS grammar. The
resulting grammar is used to obtain the following parser:

sequenceOfBits ′ :: Parser Char SA
sequenceOfBits ′ =

const ConsZero <$> symbol ’0’<∗> parseZ
<|> const ConsOne <$> symbol ’1’<∗> parseZ
<|> const ZeroS <$> symbol ’0’
<|> const OneS <$> symbol ’1’
where parseZ = ConsZ <$> sequenceOfBits ′ <∗> parseZ

<|> SingleZ <$> sequenceOfBits ′

This example is a direct translation of the grammar obtained by using the remov-
ing left recursion grammar transformation. There exists a much simpler parser for
parsing sequences of 0’s and 1’s.

Exercise 3.4. Prove for all f :: a → b that

f <$> succeed a = succeed (f a)

In the sequel we will often use this rule for constant functions f , i. e., f = λ → c for some
term c.

53

3. Parser combinators

Exercise 3.5. Consider the parser (:) <$> symbol ’a’. Give its type and show its results
on inputs [] and x : xs.

Exercise 3.6. Consider the parser (:) <$> symbol ’a’ <∗> p. Give its type and show its
results on inputs [] and x : xs.

Exercise 3.7. Define a parser for Booleans.

Exercise 3.8 (no answer provided). Define parsers for each of the basic languages defined
in Section 2.3.1.

Exercise 3.9. Consider the grammar for palindromes that you have constructed in Exer-
cise 2.7.

1. Give the datatype Pal2 that corresponds to this grammar.

2. Define a parser palin2 that returns parse trees for palindromes. Test your function
with the palindromes cPal1 = "abaaba" and cPal2 = "baaab". Compare the results
with your answer to Exercise 2.21.

3. Define a parser palina that counts the number of a’s occurring in a palindrome.

Exercise 3.10. Consider the grammar for a part of the English language that is given in
Exercise 2.46.

1. Give the datatype English that corresponds to this grammar.

2. Define a parser english that returns parse trees for the English language. Test your
function with the sentence they are flying planes. Compare the result to your
answer of Exercise 2.46.

Exercise 3.11. When defining the priority of the <|> operator with the infixr keyword,
we also specified that the operator associates to the right. Why is this a better choice than
association to the left?

Exercise 3.12. Define a parser combinator <,> that combines two parsers. The value
returned by the combined parser is a tuple containing the results of the two component
parsers. What is the type of this parser combinator?

Exercise 3.13. The term ‘parser combinator’ is in fact not an adequate description for <$>.
Can you think of a better word?

Exercise 3.14. Compare the type of <$> with the type of the standard function map. Can
you describe your observations in an easy-to-remember, catchy phrase?

Exercise 3.15. Define <∗> in terms of <,> and <$>. Define <,> in terms of <∗> and <$>.

Exercise 3.16. If you examine the definitions of <∗> and <$> in Listing 3.3, you can observe
that <$> is in a sense a special case of <∗>. Can you define <$> in terms of <∗>?

54

3.3. Parser combinators

3.3.1. Matching parentheses: an example

Using parser combinators, it is often fairly straightforward to construct a parser for
a language for which you have a grammar. Consider, for example, the grammar that
you wrote in Exercise 2.44:

S → (S) S | ε

This grammar can be directly translated to a parser, using the parser combinators
<∗> and <|>. We use <∗> when symbols are written next to each other, and <|>
when | appears in a production (or when there is more than one production for a
nonterminal).

parens :: Parser Char ??? — ill-typed
parens = symbol ’(’<∗> parens <∗> symbol ’)’<∗> parens

<|> epsilon

However, this function is not correctly typed: the parsers in the first alternative
cannot be composed using <∗>, as for example symbol ’(’ is not a parser returning
a function.

But we can postprocess the parser symbol ’(’ so that, instead of a character, this
parser does return a function. So, what function should we use? This depends on the
kind of value that we want as a result of the parser. A nice result would be a tree-
like description of the parentheses that are parsed. For this purpose we introduce
an abstract syntax, see Section 2.6, for the parentheses grammar. We obtain the
following Haskell datatype:

data Parentheses = Match Parentheses Parentheses
| Empty

For example, the sentence ()() is represented by

Match Empty (Match Empty Empty)

Suppose we want to calculate the number of parentheses in a sentence. The number
of parentheses is calculated by the function nrofpars, which is defined by induction
on the datatype Parentheses.

nrofpars :: Parentheses → Int
nrofpars (Match pl pr) = 2 + nrofpars pl + nrofpars pr
nrofpars Empty = 0

Using the datatype Parentheses, we can add ‘semantic functions’ to the parser. We
then obtain the definition of parens in Listing 3.4.

By varying the function used as a first argument of <$> (the ‘semantic function’), we
can return other things than parse trees. As an example we construct a parser that

55

3. Parser combinators

data Parentheses = Match Parentheses Parentheses
| Empty

deriving Show

open = symbol ’(’
close = symbol ’)’

parens :: Parser Char Parentheses
parens = (λ x y → Match x y)

<$> open <∗> parens <∗> close <∗> parens
<|> succeed Empty

nesting :: Parser Char Int
nesting = (λ x y → max (1 + x) y)

<$> open <∗> nesting <∗> close <∗> nesting
<|> succeed 0

Listing 3.4: ParseParentheses.hs

calculates the nesting depth of nested parentheses, see the function nesting defined
in Listing 3.4.

A session in which nesting is used may look like this:

? runParser nesting "()(())()"

[(2,[]), (2,"()"), (1,"(())()"), (0,"()(())()")]

? runParser nesting "())"

[(1,")"), (0,"())")]

As you can see, when there is a syntax error in the argument, there are no solutions
with empty rest string. It is fairly simple to test whether a given string belongs to
the language that is parsed by a given parser.

It is maybe not easy to think of a good use of the matching parentheses language. But
formal languages often use open and close constructs: parentheses around function
arguments, an HTML document that starts with <html> and ends with </html>,
code in a while-block surrounded by an open brace { and a close brace}, etc.

Exercise 3.17. What is the type of the function f =λ x y → Match x y which appears in
function parens in Listing 3.4? What is the type of the parser open? Using the type of <$>,
what is the type of f <$> open? Can f <$> open be used as a left hand side of <∗>parens?
What is the type of the result?

Exercise 3.18. What is a convenient way for <∗> to associate? Does it?

Exercise 3.19. Write a function test that determines whether or not a given string belongs
to the language parsed by a given parser.

56

3.3. Parser combinators

(<$) :: a → Parser s b → Parser s a
(r <$ p) = const r <$> p

(<∗) :: Parser s a → Parser s b → Parser s a
(p <∗ q) = (λx → x)<$> p <∗> q

(∗>) :: Parser s a → Parser s b → Parser s b
(p ∗> q) = (\ y → y)<$> p <∗> q

Listing 3.5: ParserCombinatorVariants.hs

parens :: Parser Char Parentheses
parens = Match <$ open <∗> parens <∗ close <∗> parens

<|> succeed Empty

nesting :: Parser Char Int
nesting = (λx y → max (1 + x) y)<$ open <∗> nesting <∗ close <∗> nesting

<|> succeed 0

Listing 3.6: ParseParentheses2.hs

3.3.2. Combinator variants

Often we parse a symbol or sequence of symbols that we don’t need in calculating
the abstract syntax. For example, the parser parens for matching parentheses given
in Listing 3.4 checks that the matching parentheses appear in the input string, but
does not use them to create an abstract syntax tree. All arguments represented
by an underscore in the lambda function calculating the abstract syntax tree are
superfluous.

In Listing 3.5 we define variants of parser combinators that ignore one of their argu-
ments. Using these parser combinators in the code for parens gives a much cleaner
definition, see Listing 3.6

Another variant of the combinators we have defined so far is left-biased choice. As
its name says, left-biased choice takes two parsers, and returns the results from the
first (left) argument if it doesn’t fail, and only returns results from the second (right)
argument if the left argument fails. This parser combinator is not easily defined in
terms of existing parser combinators, and is a primitive.

infixr 3<<|>
(<<|>) :: Parser s a → Parser s a → Parser s a

57

3. Parser combinators

— EBNF parser combinators

option :: Parser s a → a → Parser s a
option p d = p <|> succeed d

many :: Parser s a → Parser s [a]
many p = (:)<$> p <∗>many p <|> succeed []

many1 :: Parser s a → Parser s [a]
many1 p = (:)<$> p <∗>many p

pack :: Parser s a → Parser s b → Parser s c → Parser s b
pack p r q = (λ x → x)<$> p <∗> r <∗> q

listOf :: Parser s a → Parser s b → Parser s [a]
listOf p s = (:)<$> p <∗>many ((λ x → x)<$> s <∗> p)

— Auxiliary functions

first :: Parser s b → Parser s b
first p xs | null r = []

| otherwise = [head r]
where r = p xs

greedy , greedy1 :: Parser s b → Parser s [b]
greedy = first .many
greedy1 = first .many1

Listing 3.7: EBNF.hs

p <<|> q = Parser (λxs → let r = runParser p xs in
if null r then runParser q xs else r)

3.4. More parser combinators

In principle you can build parsers for any context-free language using the combina-
tors <∗> and <|>, but in practice it is easier to have some more parser combinators
available. In traditional grammar formalisms, additional symbols are used to describe
for example optional or repeated constructions. Consider for example the BNF for-
malism, in which originally only sequential and alternative composition can be used
(denoted by juxtaposition and vertical bars, respectively), but which was later ex-
tended to EBNF to also allow for repetition, denoted by a star. The goal of this
section is to show how the set of parser combinators can be extended.

58

3.4. More parser combinators

3.4.1. Parser combinators for EBNF

It is very easy to make new parser combinators for EBNF. As a first example we
consider repetition. Given a parser p for a construction, many p constructs a parser
for zero or more occurrences of that construction:

many :: Parser s a → Parser s [a]
many p = (:)<$> p <∗>many p

<|> succeed []

So the EBNF expression P∗ is implemented by many P . The function (:) is just the
cons-operator for lists: it takes a head element and a tail list and combines them.

The order in which the alternatives are given only influences the order in which
solutions are placed in the list of successes.

For example, the many combinator can be used in parsing a natural number:

natural :: Parser Char Int
natural = foldl f 0<$>many newdigit

where f a b = a ∗ 10 + b

Defined in this way, the natural parser also accepts empty input as a number. If
this is not desired, we had better use the many1 parser combinator, which accepts
one or more occurrences of a construction, and corresponds to the EBNF expression
P+, see Section 2.7. It is defined in Listing 3.7. Another combinator from EBNF
is the option combinator P?. It takes a parser as argument, and returns a parser
that recognises the same construct, but which also succeeds if that construct is not
present in the input string. The definition is given in Listing 3.7. It has an additional
argument: the value that should be used as result in case the construct is not present.
It is a kind of ‘default’ value.

By the use of the option and many functions, a large amount of backtracking possi-
bilities are introduced. This is not always advantageous. For example, if we define a
parser for identifiers by

identifier = many1 (satisfy isAlpha)

a single word may also be parsed as two identifiers. Caused by the order of the
alternatives in the definition of many (succeed [] appears as the second alternative),
the ‘greedy’ parsing, which accumulates as many letters as possible in the identifier
is tried first, but if parsing fails elsewhere in the sentence, also less greedy parsings
of the identifier are tried – in vain. You will give a better definition of identifier in
Exercise 3.27.

In situations where from the way the grammar is built we can predict that it is
hopeless to try non-greedy results of many , we can define a parser transformer first ,

59

3. Parser combinators

that transforms a parser into a parser that only returns the first possible parsing. It
does so by taking the first element of the list of successes.

first :: Parser a b → Parser a b
first p xs | null r = []

| otherwise = [head r]
where r = p xs

Using this function, we can create a special ‘take all or nothing’ version of many :

greedy = first .many
greedy1 = first .many1

If we compose the first function with the option parser combinator:

obligatory p d = first (option p d)

we get a parser which must accept a construction if it is present, but which does not
fail if it is not present.

3.4.2. Separators

The combinators many , many1 and option are classical in compiler constructions
– there are notations for it in EBNF (·∗, ·+ and ·?, respectively) –, but there is no
need to leave it at that. For example, in many languages constructions are frequently
enclosed between two meaningless symbols, most often some sort of parentheses. For
this case we design a parser combinator pack . Given a parser for an opening token,
a body, and a closing token, it constructs a parser for the enclosed body, as defined
in Listing 3.7. Special cases of this combinator are:

parenthesised p = pack (symbol ’(’) p (symbol ’)’)
bracketed p = pack (symbol ’[’) p (symbol ’]’)
compound p = pack (token "begin") p (token "end")

Another frequently occurring construction is repetition of a certain construction,
where the elements are separated by some symbol. You may think of lists of ar-
guments (expressions separated by commas), or compound statements (statements
separated by semicolons). For the parse trees, the separators are of no importance.
The function listOf below generates a parser for a non-empty list, given a parser for
the items and a parser for the separators:

listOf :: Parser s a → Parser s b → Parser s [a]
listOf p s = (:)<$> p <∗>many ((λ x → x)<$> s <∗> p)

Useful instantiations are:

60

3.4. More parser combinators

— Chain expression combinators

chainr :: Parser s a → Parser s (a → a → a)→ Parser s a
chainr pe po = h <$>many (j <$> pe <∗> po)<∗> pe

where j x op = (x ‘op‘)
h fs x = foldr ($) x fs

chainl :: Parser s a → Parser s (a → a → a)→ Parser s a
chainl pe po = h <$> pe <∗>many (j <$> po <∗> pe)

where j op x = (‘op‘x)
h x fs = foldl (flip ($)) x fs

Listing 3.8: Chains.hs

commaList , semicList :: Parser Char a → Parser Char [a]
commaList p = listOf p (symbol ’,’)
semicList p = listOf p (symbol ’;’)

A somewhat more complicated variant of the function listOf is the case where the
separators carry a meaning themselves. For example, in arithmetical expressions,
where the operators that separate the subexpressions have to be part of the parse
tree. For this case we will develop the functions chainr and chainl . These functions
expect that the parser for the separators returns a function (!); that function is used
by chain to combine parse trees for the items. In the case of chainr the operator is
applied right-to-left, in the case of chainl it is applied left-to-right. The functions
chainr and chainl are defined in Listing 3.8 (remember that $ is function application:
f $ x = f x).

The definitions look quite complicated, but when you look at the underlying grammar
they are quite straightforward. Suppose we apply operator ⊕ (⊕ is an operator
variable, it denotes an arbitrary right-associative operator) from right to left, so

e1 ⊕ e2 ⊕ e3 ⊕ e4
=

e1 ⊕ (e2 ⊕ (e3 ⊕ e4))
=

((e1⊕) · (e2⊕) · (e3⊕)) e4

It follows that we can parse such expressions by parsing many pairs of expressions
and operators, turning them into functions, and applying all those functions to the
last expression. This is done by function chainr , see Listing 3.8.

If operator ⊕ is applied from left to right, then

61

3. Parser combinators

e1 ⊕ e2 ⊕ e3 ⊕ e4
=

((e1 ⊕ e2)⊕ e3)⊕ e4
=

((⊕e4) · (⊕e3) · (⊕e2)) e1

So such an expression can be parsed by first parsing a single expression (e1), and then
parsing many pairs of operators and expressions, turning them into functions, and
applying all those functions to the first expression. This is done by function chainl ,
see Listing 3.8.

Functions chainl and chainr can be made more efficient by avoiding the construction
of the intermediate list of functions. The resulting definitions can be found in the
article by Fokker [5].

Note that functions chainl and chainr are very similar, the only difference is that
everything is ‘turned around’: function j of chainr takes a value and an operator,
and returns the function obtained by ‘left’ applying the operator; function j of chainl
takes an operator and a value, and returns the function obtained by ‘right’ applying
the operator to the value. Such functions are sometimes called dual .

dual

Exercise 3.20.

1. Define a parser that analyses a string and recognises a list of digits separated by a
space character. The result is a list of integers.

2. Define a parser sumParser that recognises digits separated by the character ’+’ and
returns the sum of these integers.

3. Both parsers return a list of solutions. What should be changed in order to get only
one solution?

Exercise 3.21. What is the value of

many (symbol ’a’) xs

for xs ∈ {[], [’a’], [’b’], [’a’, ’b’], [’a’, ’a’, ’b’]}?

Exercise 3.22. Consider the application of the parser many (symbol ’a’) to the string aaa.
In what order do the four possible parsings appear in the list of successes?

Exercise 3.23 (no answer provided). Using the parser combinators option, many and many1

define parsers for each of the basic languages defined in Section 2.3.1.

Exercise 3.24. As another variation on the theme ‘repetition’, define a parser combinator
psequence that transforms a list of parsers for some type into a parser returning a list of
elements of that type. What is the type of psequence? Also define a combinator choice that
iterates the operator <|>.

Exercise 3.25. As an application of psequence, define the function token that was discussed
in Section 3.2.

62

3.5. Combinator parsers are monads and more

Exercise 3.26 (no answer provided). Carefully analyse the semantic functions in the defi-
nition of chainl in Listing 3.8.

Exercise 3.27. In real programming languages, identifiers follow rather flexible rules: the
first symbol must be a letter, but the symbols that follow (if any) may be a letter, digit, or
underscore symbol. Define a more realistic parser identifier .

3.5. Combinator parsers are monads and more

This section gives a number of standard classes of which the type Parser s is an
instance. For an introduction of these classes we refer to the Haskell literature.

To create an instance of the class Functor for Parser s we need to define a function
fmap of type (a → b) → Parser s a → Parser s b. We have already defined such a
function, namely <$>.

instance Functor (Parser s) where
fmap f p = f <$> p

The operator <$> satisfies the laws required for a Functor , namely id <$> p = p,
and (f . g)<$> p = f <$> (g <$> p).

The type Parser is also an instance of the class Applicative. The class Applicative
specifies two functions: a function pure of type a → Parser s a, for which we can use
succeed , and an operator <∗> of type Parser s (a → b)→ Parser s a → Parser s b.
Luckily, our parser combinator <∗> has exactly the same type, and we can use it for
the Applicative instance:

instance Applicative (Parser s) where
pure = succeed
p <∗> q = p <∗> q
— the <∗> in the right-hand side is our parser combinator definition

The instance should satisfy four laws. We will look at the first of these: pure id <∗>
v = v . In parser combinator terms, the left-hand side is succeed id <∗> v . succeed
parses nothing, and returns the identity function, which is applied to the result of v .
It follows that this is indeed the same as parsing with only v .

Parser is a Monad . For the instance we need a function return of type a →
Parser s a, for which we can use succeed again, just as for Applicative, and we
need a bind operator. The instance of the bind operator >>= for Parser s has the
type Parser s a → (a → Parser s b) → Parser s b. The idea is to run the first
parser, and apply the function in the second argument to it to obtain a parser that
returns a b value.

instance Monad (Parser s) where
return = pure

63

3. Parser combinators

p >>= f = Parser (λxs → [(z , zs)
|(y , ys)← runParser p xs
, (z , zs)← runParser (f y) ys
])

A monad instance should satisfy the three Monad laws. We discuss the first of these:
return a >>= h = h a. Since runParser (succeed a) xs doesn’t consume input and
returns a single pair (a, xs), the instance for Parser s of the law return a >>= h
equals Parser (λxs → [(z , zs) | (z , zs) ← runParser (h a) xs]), which simplifies to
Parser (λxs → runParser (h a) xs), and then to h a.

The final instance we give for Parser s is for the class Alternative. An instance of the
class Alternative needs an empty element of type Parser s a, and a choice operator
<|> of type Parser s a → Parser s a → Parser s a. Not surprisingly, we can
use the choice parser combinator with the same name for the latter, and the failing
parser for the former.

instance Alternative (Parser s) where
empty = failp
p <|> q = p <|> q
— the <|> in the right-hand side is our parser combinator definition

According to the laws for Alternative, failp should be the neutral element for choice,
so failp <|> p = p <|> failp = p, and the choice operator should be associative. Both
laws are easily verified for our Parser s instance.

Now that we have an instance of Parser s for monads, it is easy to use the result of
a parser to affect the follow-up parsing process. For example, suppose we want to
parse a natural number n, and then parse n lines. So for the input

3

In

the

beginning

was

the parser would return ["In", "the", "beginning"]. The parser parseLine parses a
single line of characters:

parseLine :: Parser Char String
parseLine = many (satisfy (6≡ ’\n’))<∗ symbol ’\n’

We use it in parseNLines, which uses the do notation for monads, and the sequence
function to turn a list of parsers into a single parser.

parseNLines :: Parser Char [String]
parseNLines = do

64

3.6. Arithmetical expressions

n ← natural
← symbol ′\ n ′

sequence $ replicate n parseLine

Another example of the use of monads is in the definition of the guard parser combi-
nator. guard guards the results of a parser by a condition: only results that satisfy
the condition are returned.

guard :: (a → Bool)→ Parser s a → Parser s a
guard cond parser = parser >>= λa → if cond a then succeed a else empty

3.6. Arithmetical expressions

The goal of this section is to use parser combinators in a concrete application. We
will develop a parser for arithmetical expressions, which have the following concrete
syntax:

E → E + E
| E - E
| E / E
| (E)

| Digs

Besides these productions, we also have productions for identifiers and applications
of functions:

E → Identifier
| Identifier (Args)

Args → ε | E (, E)∗

The parse trees for this grammar are of type Expr :

data Expr = Con Int
| Var String
| Fun String [Expr]
| Expr :+: Expr
| Expr :−: Expr
| Expr :∗: Expr
| Expr :/: Expr

You can almost recognise the structure of the parser in this type definition. But
to account for the priorities of the operators, we will use a grammar with three
non-terminals ‘expression’, ‘term’ and ‘factor’: an expression is composed of terms

65

3. Parser combinators

— Type definition for parse tree

data Expr = Con Int
| Var String
| Fun String [Expr]
| Expr :+: Expr
| Expr :−: Expr
| Expr :∗: Expr
| Expr :/: Expr

— Parser for expressions with two priorities

fact :: Parser Char Expr
fact = Con <$> integer

<|> Var <$> identifier
<|> Fun <$> identifier <∗> parenthesised (commaList expr)
<|> parenthesised expr

integer :: Parser Char Int
integer = (const negate <$> (symbol ’-’)) ‘option‘ id <∗> natural

term :: Parser Char Expr
term = chainl fact

(const (:∗:) <$> symbol ’*’
<|> const (:/:) <$> symbol ’/’
)

expr :: Parser Char Expr
expr = chainl term

(const (:+:)<$> symbol ’+’
<|> const (:−:)<$> symbol ’-’
)

Listing 3.9: ExpressionParser.hs

66

3.6. Arithmetical expressions

separated by + or −; a term is composed of factors separated by ∗ or /, and a factor
is a constant, variable, function call, or expression between parentheses.

This grammar appears as a parser in the functions in Listing 3.9.

The first parser, fact , parses factors.

fact :: Parser Char Expr
fact = Con <$> integer

<|>Var <$> identifier
<|> Fun <$> identifier <∗> parenthesised (commaList expr)
<|> parenthesised expr

The first alternative is an integer parser which is postprocessed by the ‘semantic
function’ Con. The second and third alternative are a variable or function call,
depending on the presence of an argument list. In absence of the latter, the function
Var is applied, in presence the function Fun. For the fourth alternative there is no
semantic function, because the meaning of an expression between parentheses is the
meaning of the expression.

For the definition of a term as a list of factors separated by multiplicative operators
we use the function chainl . Recall that chainl repeatedly recognises its first argument
(fact), separated by its second argument (a ∗ or /). The parse trees for the individual
factors are joined by the constructor functions that appear before<$>. We use chainl
and not chainr because the operator ’/’ is considered to be left-associative.

The function expr is analogous to term, only with additive operators instead of
multiplicative operators, and with terms instead of factors.

This example clearly shows the strength of parsing with parser combinators. There is
no need for a separate formalism for grammars; the production rules of the grammar
are combined with higher-order functions. Also, there is no need for a separate
parser generator (like ‘yacc’); the functions can be viewed both as description of the
grammar and as an executable parser.

Exercise 3.28. 1. Give the parse tree for the expressions "abc", "(abc)", "a*b+1",
"a*(b+1)", "-1-a", and "a(1,b)"

2. Why is the parse tree for the expression "a(1,b)" not the first solution of the parser?
Modify the functions in Listing 3.9 in such way that it will be.

Exercise 3.29. A function with no arguments such as "f()" is not accepted by the parser.
Explain why and modify the parser in such way that it will be.

Exercise 3.30. Modify the functions in Listing 3.9, in such a way that + is parsed as a
right-associative operator, and - is parsed as a left-associative operator.

67

3. Parser combinators

3.7. Generalised expressions

This section generalises the parser in the previous section with respect to priorities.
Arithmetical expressions in which operators have more than two levels of priority can
be parsed by writing more auxiliary functions between term and expr . The function
chainl is used in each definition, with as first argument the function of one priority
level lower.

If there are nine levels of priority, we obtain nine copies of almost the same text. We
cn improve on this. Functions that resemble each other are an indication that we
should write a generalised function, where the differences are described using extra
arguments. Therefore, let us inspect the differences in the definitions of term and
expr again. These are:

• The operators and associated tree constructors that are used in the second
argument of chainl
• The parser that is used as first argument of chainl

The generalised function will take these two differences as extra arguments: the first
in the form of a list of pairs, the second in the form of a parse function:

type Op a = (Char , a → a → a)

gen :: [Op a]→ Parser Char a → Parser Char a
gen ops p = chainl p (choice (map f ops))

where f (s, c) = const c <$> symbol s

Here the parser combinator choice is the generalisation of <|> to lists of parsers, and
is defined in exercise 3.24. If furthermore we define as shorthand:

multis = [(’*’, (:∗:)), (’/’, (:/:))]
addis = [(’+’, (:+:)), (’-’, (:−:))]

then expr and term can be defined as partial parametrisations of gen:

expr = gen addis term
term = gen multis fact

By expanding the definition of term in that of expr we obtain:

expr = addis ‘gen‘ (multis ‘gen‘ fact)

which an experienced functional programmer immediately recognises as an applica-
tion of foldr :

expr = foldr gen fact [addis,multis]

From this definition a generalisation to more levels of priority is simply a matter of
extending the list of operator-lists.

68

3.8. Exercises

— Parser for expressions with aribitrary many priorities

type Op a = (Char , a → a → a)

fact ′ :: Parser Char Expr
fact ′ = Con <$> integer

<|>Var <$> identifier
<|> Fun <$> identifier <∗> parenthesised (commaList expr ′)
<|> parenthesised expr ′

gen :: [Op a]→ Parser Char a → Parser Char a
gen ops p = chainl p (choice (map f ops))

where f (s, c) = const c <$> symbol s

expr ′ :: Parser Char Expr
expr ′ = foldr gen fact ′ [addis,multis]

multis = [(’*’, (:∗:)), (’/’, (:/:))]
addis = [(’+’, (:+:)), (’-’, (:−:))]

Listing 3.10: GExpressionParser.hs

The very compact formulation of the parser for expressions with an arbitrary number
of priority levels is possible because the parser combinators can be used together with
the existing mechanisms for generalisation and partial parametrisation in Haskell.

Contrary to conventional approaches, the levels of priority need not be coded expli-
citly with integers. The only thing that matters is the relative position of an operator
in the list of ‘list with operators of the same priority’. Also, the insertion of new
priority levels is very easy. The definitions are summarised in Listing 3.10.

Summary

This chapter shows how to construct parsers from simple combinators. It shows
how a small parser combinator library can be a powerful tool in the construction of
parsers. Furthermore, this chapter gives a rather basic implementation of the parser
combinator library. More advanced implementations are discussed elsewhere.

3.8. Exercises

Exercise 3.31. How should the parser of Section 3.7 be adapted to also allow raising an
expression to the power of an expression?

69

3. Parser combinators

Exercise 3.32. Prove the following laws

h <$> (f <$> p) = (h . f)<$> p (3.1)

h <$> (p <|> q) = (h <$> p)<|> (h <$> q) (3.2)

h <$> (p <∗> q) = ((h.)<$> p)<∗> q (3.3)

Exercise 3.33. Consider your answer to Exercise 2.23. Define a combinator parser pMir
that transforms a concrete representation of a mirror-palindrome into an abstract one. Test
your function with the concrete mirror-palindromes cMir1 and cMir2.

Exercise 3.34. Consider your answer to Exercise 2.25. Assuming the comma is an associa-
tive operator, we can give the following abstract syntax for bit-lists:

data BitList = SingleB Bit | ConsB Bit BitList

Define a combinator parser pBitList that transforms a concrete representation of a bit-list
into an abstract one. Test your function with the concrete bit-lists cBitList1 and cBitList2.

Exercise 3.35. Define a parser for fixed-point numbers, that is numbers like 12.34 and
-123.456. Also integers are acceptable. Notice that the part following the decimal point
looks like an integer, but has a different semantics!

Exercise 3.36. Define a parser for floating point numbers, which are fixed point numbers
followed by an optional E and an (positive or negative, integer) exponent.

Exercise 3.37. Define a parser for Java assignments that consist of a variable, an = sign,
an expression and a semicolon.

Exercise 3.38 (no answer provided). Define a parser for (simplified) Java statements.

Exercise 3.39 (no answer provided). Outline the construction of a parser for Java programs.

70

4. Grammar and Parser design

The previous chapters have introduced many concepts related to grammars and
parsers. The goal of this chapter is to review these concepts, and to show how
they are used in the design of grammars and parsers.

Goals

After studying this chapter, solving the exercises, and applying the concepts in the
labs, you will have further developed your skills in

• designing a context-free grammar for a simple language;
• developing a parser that parses sentences of the language you have designed;
• transforming a grammar such that it satisfies a number of properties;
• defining a semantic function to obtain the required information;
• decomposing the problem of language and parser design into several steps.

4.1. Decomposing grammar and parser design

The design of a grammar and parser for a language consists of several steps: you
have to

1. give example sentences of the language for which you want to design a grammar
and a parser;

2. give a grammar for the language for which you want to have a parser;

3. test that the grammar can indeed describe the example sentences;

4. analyse this grammar to find out whether or not it has some desirable proper-
ties;

5. possibly transform the grammar to obtain some of these desirable properties;

6. decide on the type of the parser: Parser a b, that is, decide on both the input
type a of the parser (which may be the result type of a scanner), and the result
type b of the parser.

7. construct a basic parser;

8. add semantic functions;

71

4. Grammar and Parser design

9. test that the parser can parse the example sentences you have given in the first
step, and that the parser returns what you expect.

We will describe and exemplify each of these steps in detail in the rest of this sec-
tion.

As a running example we will construct a grammar and parser for travelling schemes
for day trips, of the following form:

Groningen 8:37 9:44 Zwolle 9:49 10:15 Utrecht 10:21 11:05 Den Haag

We might want to do several things with such a schema, for example:

1. compute the net travel time, i. e., the travel time minus the waiting time (2
hours and 17 minutes in the above example);

2. compute the total time one has to wait on the intermediate stations (11 min-
utes).

This chapter defines functions to perform these computations.

4.2. Step 1: Example sentences for the language

We have already given an example sentence above:

Groningen 8:37 9:44 Zwolle 9:49 10:15 Utrecht 10:21 11:05 Den Haag

Other example sentences are:

Utrecht Centraal 10:25 10:58 Amsterdam Centraal

Assen

4.3. Step 2: A grammar for the language

The starting point for designing a parser for your language is to define a grammar that
describes the language as precisely as possible. It is important to convince yourself
from the fact that the grammar you give really generates the desired language, since
the grammar will be the basis for grammar transformations, which might turn the
grammar into a set of incomprehensible productions.

For the language of travelling schemes, we can give several grammars. The following
grammar focuses on the fact that a trip consists of zero or more departures and
arrivals.

72

4.4. Step 3: Testing the grammar

TS → TS Departure Arrival TS | Station
Station → Identifier+

Departure → Time
Arrival → Time
Time → Nat : Nat

where Identifier and Nat have been defined in Section 2.3.1. So a travelling scheme is
a sequence of departure and arrival times, separated by stations. Note that a single
station is also a travelling scheme with this grammar.

Another grammar focuses on changing at a station:

TS → Station Departure (Arrival Station Departure)∗ Arrival Station
| Station

So each travelling scheme starts and ends at a station, and in between there is a list
of intermediate stations.

4.4. Step 3: Testing the grammar

Both grammars we have given in step 2 describe the example sentences given in
step 1. The derivation of these sentences using these grammars is easy.

4.5. Step 4: Analysing the grammar

To parse sentences of a language efficiently, we want to have a unambiguous grammar
that is left-factored and not left recursive. Depending on the parser we want to obtain,
we might desire other properties of our grammar. So a first step in designing a parser
is analysing the grammar, and determining which properties are (not) satisfied. We
have not yet developed tools for grammar analysis (we will do so in the chapter on
LL(1) parsing) but for some grammars it is easy to detect some properties.

The first example grammar is left and right recursive: the first production for TS
starts and ends with TS . Furthermore, the sequence Departure Arrival is an asso-
ciative separator in the generated language.

These properties may be used for transforming the grammar. Since we don’t mind
about right recursion, we will not make use of the fact that the grammar is right
recursive. The other properties will be used in grammar transformations in the
following subsection.

73

4. Grammar and Parser design

4.6. Step 5: Transforming the grammar

Since the sequence Departure Arrival is an associative separator in the generated
language, the productions for TS may be transformed into:

TS → Station | Station Departure Arrival TS (4.1)

Thus we have removed the left recursion in the grammar. Both productions for
TS start with the nonterminal Station, so TS can be left factored. The resulting
productions are:

TS → Station Z
Z → ε |Departure Arrival TS

We can also apply equivalence (2.1) to the two productions for TS from (4.1), and
obtain the following single production:

TS → (Station Departure Arrival)∗ Station (4.2)

So which productions do we take for TS? This depends on what we want to do with
the parsed sentences. We will show several choices in the next section.

4.7. Step 6: Deciding on the types

We want to write a parser for travel schemes, that is, we want to write a function ts
of type

ts :: Parser ? ?

The question marks should be replaced by the input type and the result type, respec-
tively. For the input type we can choose between at least two possibilities: characters,
Char or tokens Token. The type of tokens can be chosen as follows:

data Token = Station Token Station | Time Token Time

type Station = String
type Time = (Int , Int)

We will construct a parser for both input types in the next subsection. So ts has one
of the following two types.

ts :: Parser Char ?
ts :: Parser Token ?

For the result type we have many choices. If we just want to compute the total
travelling time, Int suffices for the result type. If we want to compute the total
travelling time, the total waiting time, and a nicely printed version of the travelling
scheme, we may do several things:

74

4.7. Step 6: Deciding on the types

• define three parsers, with Int (total travelling time), Int (total waiting time),
and String (nicely printed version) as result type, respectively;

• define a single parser with the triple (Int , Int ,String) as result type;

• define an abstract syntax for travelling schemes, say a datatype TS , and define
three functions on TS that compute the desired results.

The first alternative parses the input three times, and is rather inefficient compared
with the other alternatives. The second alternative is hard to extend if we want
to compute something extra, but in some cases it might be more efficient than the
third alternative. The third alternative needs an abstract syntax. There are several
ways to define an abstract syntax for travelling schemes. The first abstract syntax
corresponds to definition (4.1) of grammar TS .

data TS 1 = Single1 Station
| Cons1 Station Time Time TS 1

where Station and Time are defined above. A second abstract syntax corresponds
to the grammar for travelling schemes defined in (4.2).

type TS 2 = ([(Station,Time,Time)],Station)

So a travelling scheme is a tuple, the first component of which is a list of triples
consisting of a departure station, a departure time, and an arrival time, and the
second component of which is the final arrival station. A third abstract syntax
corresponds to the second grammar defined in Section 4.3:

data TS 3 = Single3 Station
| Cons3 (Station,Time, [(Time,Station,Time)],Time,Station)

Which abstract syntax should we take? Again, this depends on what we want to do
with the abstract syntax. Since TS 2 and TS 1 combine departure and arrival times
in a tuple, they are convenient to use when computing travelling times. TS 3 is useful
when we want to compute waiting times since it combines arrival and departure times
in one constructor. Often we want to exactly mimic the productions of the grammar
in the abstract syntax, so if we use grammar (4.1) for travelling schemes, we use TS 1

for the abstract syntax. Note that TS 1 is a datatype, whereas TS 2 is a type. TS 1

cannot be defined as a type because of the two alternative productions for TS . TS 2

can be defined as a datatype by adding a constructor. Types and datatypes each
have their advantages and disadvantages; the application determines which to use.
The result type of the parsing function ts may be one of types mentioned earlier (Int ,
etc.), or one of TS 1, TS 2, TS 3.

75

4. Grammar and Parser design

4.8. Step 7: Constructing the basic parser

Converting a grammar to a parser is a mechanical process that consists of a set
of simple replacement rules. Functional programming languages offer some extra
flexibility that we sometimes use, but usually writing a parser is a simple translation.
We use the following replacement rules.

grammar construct Haskell/parser construct

→ =
| <|>
(space) <∗>
·+ many1

·∗ many
·? option
terminal x symbol x
begin of sequence of symbols undefined<$>

Note that we start each sequence of symbols by undefined<$>. The undefined has
to be replaced by an appropriate semantic function in Step 6, but putting undefined
here ensures type correctness of the parser. Of course, running the parser will result
in an error.

We construct a basic parser for each of the input types Char and Token.

4.8.1. Basic parsers from strings

Applying these rules to the grammar (4.2) for travelling schemes, we obtain the
following basic parser.

station :: Parser Char Station
station = undefined <$>many1 identifier

time :: Parser Char Time
time = undefined <$> natural <∗> symbol ’:’<∗> natural

departure, arrival :: Parser Char Time
departure = undefined <$> time
arrival = undefined <$> time

tsstring :: Parser Char ?
tsstring = undefined

<$>many (undefined
<$> spaces
<∗> station

76

4.8. Step 7: Constructing the basic parser

<∗> spaces
<∗> departure
<∗> spaces
<∗> arrival

)
<∗> spaces
<∗> station

spaces :: Parser Char String
spaces = undefined <$>many (symbol ’ ’)

The only thing left to do is to add the semantic glue to the functions. The semantic
glue also determines the type of the function tsstring , which is denoted by ? for the
moment. For the other basic parsers we have chosen some reasonable return types.
The semantic functions are defined in the next and final step.

4.8.2. A basic parser from tokens

To obtain a basic parser from tokens, we first write a scanner that produces a list of
tokens from a string.

scanner :: String → [Token]
scanner = map mkToken . combine . words

combine :: [String]→ [String]
combine [] = []
combine [x] = [x]
combine (x : y : xs) = if isAlpha (head x) ∧ isAlpha (head y)

then combine ((x ++ " " ++ y) : xs)
else x : combine (y : xs)

mkToken :: String → Token
mkToken xs = if isDigit (head xs)

then Time Token (mkTime xs)
else Station Token xs

parse result :: [(a, b)]→ a
parse result xs
| null xs = error "parse_result: could not parse the input"

| otherwise = fst (head xs)

mkTime :: String → Time
mkTime = parse result . time

This is a basic scanner with very basic error messages, but it suffices for now. The
composition of the scanner with the function tstoken1 defined below gives the final
parser.

77

4. Grammar and Parser design

tstoken1 :: Parser Token ?
tstoken1 = undefined

<$>many (undefined
<$> tstation
<∗> tdeparture
<∗> tarrival

)
<∗> tstation

tstation :: Parser Token Station
tstation (Station Token s : xs) = [(s, xs)]
tstation = []

tdeparture, tarrival :: Parser Token Time
tdeparture (Time Token (h,m) : xs) = [((h,m), xs)]
tdeparture = []

tarrival (Time Token (h,m) : xs) = [((h,m), xs)]
tarrival = []

where again the semantic functions remain to be defined. Note that functions
tdeparture and tarrival are the same functions. Their presence reflects their pres-
ence in the grammar.

Another basic parser from tokens is based on the second grammar of Section 4.3.

tstoken2 :: Parser Token ?
tstoken2 = undefined

<$> tstation
<∗> tdeparture
<∗> many (undefined

<$> tarrival
<∗> tstation
<∗> tdeparture

)
<∗> tarrival
<∗> tstation

<|> undefined <$> tstation

4.9. Step 8: Adding semantic functions

Once we have the basic parsing functions, we need to add the semantic glue: the
functions that take the results of the elements in the right hand side of a production,
and convert them into the result of the left hand side. The basic rule is: Let the
types do the work!

78

4.9. Step 8: Adding semantic functions

First we add semantic functions to the basic parsing functions station, time, departure,
arrival , and spaces. Since function many1 identifier returns a list of strings, and we
want to obtain the concatenation of these strings for the station name, we can take
the concatenation function concat for undefined in function station. To obtain a
value of type Time from an integer, a character, and an integer, we have to combine
the two integers in a tuple. So we take the following function

λx y → (x , y)

for undefined in time. Now, since function time returns a value of type Time, we can
take the identity function for undefined in departure and arrival , and then we replace
id <$> time by just time. Finally, the result of many is a string, so for undefined in
spaces we can take the identity function too.

The first semantic function for the basic parser tsstring defined in Section 4.8.1
returns an abstract syntax tree of type TS 2. So the first undefined in tsstring should
return a tuple of a list of things of the correct type (the first component of the type
TS 2) and a Station. Since many returns a list of things, we can construct such a
tuple by means of the function

λx y → (x , y)

provided many returns a value of the desired type: [(Station,Time,Time)]. Note
that this semantic function basically only throws away the value returned by the
spaces parser: we are not interested in the spaces between the components of our
travelling scheme. The many parser returns a value of the correct type if we replace
the second occurrence of undefined in tsstring by the function

λ x y z → (x , y , z)

Again, the results of spaces are thrown away. This completes a parser for travelling
schemes. The next semantic functions we define compute the net travel time. To
compute the net travel time, we have to compute the travel time of each trip from
a station to a station, and to add the travel times of all of these trips. We obtain
the travel time of a single trip if we replace the second occurrence of undefined in
tsstring by:

λ (xh, xm) (zh, zm)→ (zh − xh) ∗ 60 + zm − xm

and Haskell’s prelude function sum sums these times, so for the first occurrence of
undefined we take:

λx → sum x

The final set of semantic functions we define are used for computing the total waiting
time. Since the second grammar of Section 4.3 combines arrival times and departure
times, we use a parser based on this grammar: the basic parser tstoken2. We have

79

4. Grammar and Parser design

to give definitions of the three undefined semantic functions. If a trip consists of a
single station, there is now waiting time, so the last occurrence of undefined is the
function const 0. The second occurrence of function undefined computes the waiting
time for one intermediate station:

λ(uh, um) (wh,wm)→ (wh − uh) ∗ 60 + wm − um

Finally, the first occurrence of undefined sums the list of waiting time obtained by
means of the function that replaces the second occurrence of undefined :

λ x → sum x

4.10. Step 9: Did you get what you expected

In the last step you test your parser(s) to see whether or not you have obtained what
you expected, and whether or not you have made errors in the above process.

Summary

This chapter describes the different steps that have to be considered in the design of
a grammar and a language.

4.11. Exercises

Exercise 4.1. Write a parser floatLiteral for Java float-literals. The EBNF grammar for
float-literals is given by:

FloatLiteral → IntPart . FractPart? ExponentPart? FloatSuffix?
| . FractPart ExponentPart? FloatSuffix?
| IntPart ExponentPart FloatSuffix?
| IntPart ExponentPart? FloatSuffix

IntPart → SignedInteger

FractPart → Digits

ExponentPart → ExponentIndicator SignedInteger

SignedInteger → Sign? Digits

Digits → Digits Digit |Digit

ExponentIndicator → e | E
Sign → + | -
FloatSuffix → f | F | d | D

To keep your parser simple, assume that all nonterminals, except for the nonterminal FloatLiteral ,
are represented by a String in the abstract syntax.

80

4.11. Exercises

Exercise 4.2. Write an evaluator signedFloat for Java float-literals (the float-suffix may be
ignored).

Exercise 4.3. Up to the definition of the semantic functions, parsers constructed on a (fixed)
abstract syntax have the same shape. Give this parsing scheme for Java float literals.

81

4. Grammar and Parser design

82

Bibliography

[1] A.V. Aho, Sethi R., and J.D. Ullman. Compilers — Principles, Techniques and
Tools. Addison-Wesley, 1986.

[2] R.S. Bird. Using circular programs to eliminate multiple traversals of data. Acta
Informatica, 21:239–250, 1984.

[3] R.S. Bird and P. Wadler. Introduction to Functional Programming. Prentice
Hall, 1988.

[4] W.H. Burge. Parsing. In Recursive Programming Techniques. Addison-Wesley,
1975.

[5] J. Fokker. Functional parsers. In J. Jeuring and E. Meijer, editors, Advanced
Functional Programming, volume 925 of Lecture Notes in Computer Science.
Springer-Verlag, 1995.

[6] R. Harper. Proof-directed debugging. Journal of Functional Programming, 1999.
To appear.

[7] G. Hutton. Higher-order functions for parsing. Journal of Functional Program-
ming, 2(3):323 – 343, 1992.

[8] B.W. Kernighan and R. Pike. Regular expressions — languages, algorithms, and
software. Dr. Dobb’s Journal, April:19 – 22, 1999.

[9] D.E. Knuth. Semantics of context-free languages. Math. Syst. Theory, 2(2):127–
145, 1968.

[10] Niklas Röjemo. Garbage collection and memory efficiency in lazy functional
languages. PhD thesis, Chalmers University of Technology, 1995.

[11] S. Sippu and E. Soisalon-Soininen. Parsing Theory, Vol. 1: Languages and
Parsing, volume 15 of EATCS Monographs on THeoretical Computer Science.
Springer-Verlag, 1988.

[12] S.D. Swierstra and P.R. Azero Alcocer. Fast, error correcting parser combinators:
a short tutorial. In SOFSEM’99, 1999.

[13] P. Wadler. How to replace failure by a list of successes: a method for excep-
tion handling, backtracking, and pattern matching in lazy functional languages.
In J.P. Jouannaud, editor, Functional Programming Languages and Computer
Architecture, pages 113 – 128. Springer, 1985. LNCS 201.

83

Bibliography

84

A. Answers to exercises

2.1 Three of the four strings are elements of L∗: abaabaaabaa, aaaabaaaa, baaaaabaa.

2.2 {ε}.

2.3

∅L
= { Definition of concatenation of languages }
{st | s ∈ ∅, t ∈ L}

= { s ∈ ∅ }
∅

The other equalities can be proved in a similar fashion.

2.4 The star operator on sets injects the elements of a set in a list; the star operator
on languages concatenates the sentences of the language. The former star operator
preserves more structure.

2.5 Section 2.1 contains an inductive definition of the set of sequences over an arbi-
trary set X . Syntactical definitions for such sets follow immediately from this.

1. A grammar for X = {a} is given by

S → ε
S → aS

2. A grammar for X = {a, b} is given by

S → ε
S → X S
X → a | b

2.6 A context free grammar for L is given by

S → ε
S → aSb

2.7 Analogous to the construction of the grammar for PAL.

85

A. Answers to exercises

P → ε
| a

| b

| aPa

| bPb

2.8 Analogous to the construction of PAL.

M → ε
| aM a

| bM b

2.9 First establish an inductive definition for parity sequences. An example of a
grammar that can be derived from the inductive definition is:

P → ε | 1P1 | 0P | P0

There are many other solutions.

2.10 Again, establish an inductive definition for L. An example of a grammar that
can be derived from the inductive definition is:

S → ε | aSb | bSa | SS

Again, there are many other solutions.

2.11 A sentence is a sentential form consisting only of terminals which can be de-
rived in zero or more derivation steps from the start symbol (to be more precise:
the sentential form consisting only of the start symbol). The start symbol is a non-
terminal. The nonterminals of a grammar do not belong to the alphabet (the set
of terminals) of the language we describe using the grammar. Therefore the start
symbol cannot be a sentence of the language. As a consequence we have to perform
at least one derivation step from the start symbol before we end up with a sentence
of the language.

2.12 The language consisting of the empty string only, i.e., {ε}.

2.13 This grammar generates the empty language, i.e., ∅. In general, grammars such
as this one that have no production rules without nonterminals on the right hand
side, cannot produce any sentences with only terminal symbols. Each derivation will
always contain nonterminals, so no sentences can be derived.

2.14 The sentences in this language consist of zero or more concatenations of ab, i.e.,
the language is the set {ab}∗.

2.15 Yes. Each finite language is context free. A context free grammar can be
obtained by taking one nonterminal and adding a production rule for each sentence
in the language. For the language in Exercise 2.1, this procedure yields

86

S → ab

S → aa

S → baa

2.16 To bring the grammar into the form where we can directly apply the rule for
associative separators, we introduce a new nonterminal:

A → AaA
A → B
B → b | c

Now we can remove the ambiguity:

A → BaA
A → B
B → b | c

It is now (optionally) possible to undo the auxiliary step of introducing the additional
nonterminal by applying the rules for substituting right hand sides for nonterminal
and removing unreachable productions. We then obtain:

A→ baA | caA
A→ b | c

2.17

1. Here are two parse trees for the sentence if b then if b then a else a:

S

if b then S

if b then S

a

else S

a

S

if b then S

if b then S

a

else S

a

87

A. Answers to exercises

2. The rule we apply is: match else with the closest previous unmatched else.
This means we prefer the second of the two parse trees above. The disam-
biguating rule is incorporated directly into the grammar:

S → MatchedS |UnmatchedS
MatchedS → if b then MatchedS else MatchedS

| a

UnmatchedS → if b then S
| if b then MatchedS else UnmatchedS

3. An else clause is always matched with the closest previous unmatched if.

2.18 An equivalent grammar for bit lists is

L → B Z | B
Z → , L Z | , L
B → 0 | 1

2.19

1. The grammar generates the language {a2nbm |m,n ∈ N}.
2. An equivalent non left recursive grammar is

S → AB
A → ε | aaA
B → ε | bB

2.20 Of course, we can choose how we want to represent the different operators in
concrete syntax. Choosing standard symbols, this is one possibility:

Expr → Expr + Expr
| Expr * Expr
| Int

where Int is a nonterminal that produces integers. Note that the grammar given
above is ambiguous. We could also give an unambiguous version, for example by
introducing operator priorities.

2.21 Recall the grammar for palindromes from Exercise 2.7, now with names for the
productions:

Empty: P → ε
A: P → a

B: P → b

A2: P → aPa

B2: P → bPb

88

We construct the datatype P by interpreting the nonterminal as datatype and the
names of the productions as names of the constructors:

data P = Empty |A | B |A2 P | B2 P

Note that once again we keep the nonterminals on the right hand sides as arguments
to the constructors, but omit all the terminal symbols.

The strings abaaba and baaab can be derived as follows:

P ⇒ aPa⇒ abPba⇒ abaPaba⇒ abaaba

P ⇒ bPb⇒ baPab⇒ baaab

The parse trees corresponding to the derivations are the following:

P

a P

b P

a P

ε

a

b

a

and

P

b P

a P

a

a

b

Consequently, the desired Haskell definitions are

pal1 = A2 (B2 (A2 Empty))
pal2 = B2 (A2 A)

2.22

1.

printPal :: P → String
printPal Empty = ""

printPal A = "a"

printPal B = "b"

printPal (A2 p) = "a" ++ printPal p ++ "a"

printPal (B2 p) = "b" ++ printPal p ++ "b"

Note how the function follows the structure of the datatype Pal closely, and
calls itself recursively wherever a recursive value of Pal occurs in the datatype.
Such a pattern is typical for semantic functions.

89

A. Answers to exercises

2.

aCountPal :: P → Int
aCountPal Empty = 0
aCountPal A = 1
aCountPal B = 0
aCountPal (A2 p) = aCountPal p + 2
aCountPal (B2 p) = aCountPal p

2.23 Recall the grammar from Exercise 2.8, this time with names for the produc-
tions:

MEmpty: M → ε
MA: M → aM a

MB: M → bM b

1. By systematically transforming the grammar, we obtain the following datatype:

data Mir = MEmpty |MA Mir |MB Mir

The concrete mirror palindromes cMir1 and cMir2 correspond to the following
terms of type Mir :

aMir1 = MA (MB (MA Empty))
aMir2 = MA (MB (MB Empty))

2.

printMir :: Mir → String
printMir MEmpty = ""

printMir (MA m) = "a" ++ printMir m ++ "a"

printMir (MB m) = "b" ++ printMir m ++ "b"

3.

mirToPal :: Mir → Pal
mirToPal MEmpty = Empty
mirToPal (MA m) = A2 (mirToPal m)
mirToPal (MB m) = B2 (mirToPal m)

2.24 Recall the grammar from Exercise 2.9, this time with names for the produc-
tions:

Stop: P → ε
POne: P → 1P1

PZeroL: P → 0P
PZeroR: P → P0

90

1.

data Parity = Stop | POne Parity | PZeroL Parity | PZeroR Parity

aEven1 = PZeroL (PZeroL (POne (PZeroL Stop)))
aEven2 = PZeroL (PZeroR (POne (PZeroL Stop)))

Note that the grammar is ambiguous, and other representations for cEven1 and
cEven2 are possible, for instance:

aEven ′1 = PZeroL (PZeroL (POne (PZeroR Stop)))
aEven ′2 = PZeroR (PZeroL (POne (PZeroL Stop)))

2.

printParity :: Parity → String
printParity Stop = ""

printParity (POne p) = "1" ++ printParity p ++ "1"

printParity (PZeroL p) = "0" ++ printParity p
printParity (PZeroR p) = printParity p ++ "0"

2.25 A grammar for bit lists that is not left-recursive is the following:

L → B Z | B
Z → , L Z | , L
B → 0 | 1

1.

data BitList = ConsBit Bit Z | SingleBit Bit
data Z = ConsBitList BitList Z | SingleBitList BitList
data Bit = Bit0 | Bit1

aBitList1 = ConsBit Bit0 (ConsBitList (SingleBit Bit1)
(SingleBitList (SingleBit Bit0)))

aBitList2 = ConsBit Bit0 (ConsBitList (SingleBit Bit0)
(SingleBitList (SingleBit Bit1)))

2.

printBitList :: BitList → String
printBitList (ConsBit b z) = printBit b ++ printZ z
printBitList (SingleBit b) = printBit b

printZ :: Z → String
printZ (ConsBitList bs z) = "," ++ printBitList bs ++ printZ z
printZ (SingleBitList bs) = "," ++ printBitList bs

91

A. Answers to exercises

printBit :: Bit → String
printBit Bit0 = "0"

printBit Bit1 = "1"

When multiple datatypes are involved, semantic functions typically still follow
the structure of the datatypes closely. We get one function per datatype, and
the functions call each other recursively where appropriate – we say they are
mutually recursive.

3. We can still make the concatenation function structurally recursive in the first
of the two bit lists. We never have to match on the second bit list:

concatBitList :: BitList → BitList → BitList
concatBitList (ConsBit b z) cs = ConsBit b (concatZ z cs)
concatBitList (SingleBit b) cs = ConsBit b (SingleBitList cs)

concatZ :: Z → BitList → Z
concatZ (ConsBitList bs z) cs = ConsBitList bs (concatZ z xs)
concatZ (SingleBitList bs) cs = ConsBitList bs (SingleBitList cs)

2.26 We only give the EBNF notation for the productions that change.

Digs → Dig∗

Int → Sign? Nat

AlphaNums → AlphaNum∗

AlphaNum → Letter |Dig

2.27 L(G?) = L(G) ∪ {ε}

2.28

1. L1 is generated by:

S → ZC
Z → aZb | ε
C → c∗

and L2 is generated by:

S → AZ
A→ a∗

Z → bZc | ε

2. We have that

L1 ∩ L2 = {anbncn | n ∈ N}

However, this language is not context-free, i. e., there is no context-free grammar
that generates this language. We will see in Chapter ?? how to prove such a
statement.

92

2.29 No. Furthermore, for any language L, since ε ∈ L∗, we have ε /∈ (L∗). On the
other hand, ε ∈ (L)

∗
. Thus (L∗) and (L)

∗
cannot be equal.

2.30 For example L = {xn | n ∈ N}. For any language L, it holds that

L∗ = (L∗)∗

so, given any language L, the language L∗ fulfills the desired property.

2.31 This is only the case when ε /∈ L.

2.32 No. the language L = {aab, baa} also satisfies L = LR.

2.33

1. The shortest derivation is three steps long and yields the sentence aa. The
sentences baa, aba, and aab can all be derived in four steps.

2. Several derivations are possible for the string babbab. Two of them are

S ⇒ AA⇒ bAA⇒ bAbA⇒ babA ⇒ babbA ⇒ babbAb⇒ babbab

S ⇒ AA⇒ AAb⇒ bAAb⇒ bAbAb⇒ bAbbAb⇒ babbAb⇒ babbab

3. A leftmost derivation is:

S ⇒ AA⇒∗ bmAA⇒∗ bmAbnA⇒ bmabnA⇒∗ bmabnAbp

⇒ bmabnabp

2.34 The grammar is equivalent to the grammar

S → aaB
B → bBba

B → a

This grammar generates the string aaa and the strings aabma(ba)m for m ∈ N,
m > 1. The string aabbaabba does not appear in this language.

2.35 The language L is generated by:

S → aSa | bSb | c

The derivation is:

S ⇒ aSa⇒ abSba⇒ abcba

2.36 The language generated by the grammar is

{anbn | n ∈ N}

93

A. Answers to exercises

The same language is also generated by the grammar

S → aAb | ε

2.37 The first language is

{an | n ∈ N}

This language is also generated by the grammar

S → aS | ε

The second language is

{ε} ∪ {a2n+1 | n ∈ N}

This language is also generated by the grammar

S → A | ε
A→ a | aAa

or using EBNF notation

S → (a(aa)∗)?

2.38 All three grammars generate the language

{an | n ∈ N}

2.39

S → A | ε
A→ aAb | ab

2.40 The language is

L = {a2n+1 | n ∈ N}

A grammar for L without left-recursive productions is

A→ aaA | a

And a grammar without right-recursive prodcutions is

A→ Aaa | a

2.41 The language is

94

{abn | n ∈ N}

A grammar for L without left-recursive productions is

X → aY
Y → bY | ε

A grammar for L without left-recursive productions that is also non-contracting is

X → aY | a
Y → bY | b

2.42 A grammar that uses only productions with two or less symbols on the right
hand side:

S → T |US
T → X a |U a

X → aS
U → S |YT
Y → SU

The sentential forms aS and SU have been abstracted to nonterminals X and Y .

A grammar for the same language with only two nonterminals:

S → aSa |U a |US
U → S | SU aSa | SUU a

The nonterminal T has been substituted for its alternatives aSa and U a.

2.43

S → 1O
O → 1O | 0N
N → 1∗

2.44 The language is generated by the grammar:

S → (A) | SS
A→ S | ε

A derivation for () (()) () is:

S ⇒ SS ⇒ SSS ⇒ (A)SS ⇒ ()SS ⇒ ()(A)S ⇒ ()(S)S ⇒ ()((A))S
⇒ ()(())S ⇒ ()(())(A)⇒ ()(())()

2.45 The language is generated by the grammar

95

A. Answers to exercises

S → (A) | [A] | SS
A→ S | ε

A derivation for [()] () is:

S ⇒ SS ⇒ [A]S ⇒ [S]S ⇒ [(A)]S ⇒ [()]S ⇒ [()](A)⇒ [()]()

2.46 First leftmost derivation:

Sentence
⇒ Subject Predicate

⇒ they Predicate
⇒ they Verb NounPhrase
⇒ they are NounPhrase
⇒ they are Adjective Noun

⇒ they are flying Noun
⇒ they are flying planes

Second leftmost derivation:

Sentence
⇒ Subject Predicate

⇒ they Predicate
⇒ they AuxVerb Verb Noun
⇒ they are Verb Noun
⇒ they are flying Noun
⇒ they are flying planes

2.48 Here is an unambiguous grammar for the language from Exercise 2.45:

S → (E)E | [E] E
E → ε | S

2.49 Here is a leftmost derivation for ♣3♣4♠.

� ⇒ �4⊗ ⇒ ⊗4⊗ ⇒ ⊗3⊕4⊗ ⇒ ⊕3⊕4⊗ ⇒ ♣3⊕4⊗
⇒ ♣3♣4⊗ ⇒ ♣3♣4⊕ ⇒ ♣3♣4♠

Notice that the grammar of this exercise is the same, up to renaming, as the gram-
mar

E → E + T | T
T → T * F | F
F → 0 | 1

96

2.50 The palindrome ε with length 0 can be generated by de grammar with the
derivation P ⇒ ε. The palindromes a, b, and b are the palindromes with length 1.
They can be derivated with P ⇒ a, P ⇒ b, P ⇒ c, respectively.

Suppose that the palindrome s with a length of 2 or more. Then s can be written as
ata or btb or ctc where the length of t is strictly smaller, and t also is a palindrome.
Thus, by induction hypothesis, there is a derivation P ⇒∗ t . But then, there is also
a derivation for s, for example P ⇒∗ t ⇒ ata in the first situation – the other two
cases are analogous.

We have now proved that any palindrome can be generated by the grammar – we
still have to prove that anything generated by the grammar is a palindrome, but this
is easy to see by induction over the length of derivations. Certainly ε, a, b, and c
are palindromes. And if s is a palindrome that can be derived, so are asa, bsb, and
csc.

3.1 Either we use the predefined predicate isUpper in module Data.Char ,

capital = satisfy isUpper

or we make use of the ordering defined characters,

capital = satisfy (λs → (’A’ 6 s) ∧ (s 6 ’Z’))

3.2 A symbol equal to a satisfies the predicate (= = a):

symbol a = satisfy (= = a)

3.3 The function epsilon is a special case of succeed :

epsilon :: Parser s ()
epsilon = succeed ()

3.4 Let xs :: [s]. Then

(f <$> succeed a) xs

= { definition of <$> }
[(f x , ys) | (x , ys)← succeed a xs]

= { definition of succeed }
[(f a, xs)]

= { definition of succeed }
succeed (f a) xs

3.5 The type and results of (:)<$> symbol ’a’ are (note that you cannot write this
as a definition in Haskell):

97

A. Answers to exercises

((:)<$> symbol ’a’) :: Parser Char (String → String)
((:)<$> symbol ’a’) [] = []
((:)<$> symbol ’a’) (x : xs) | x = = ’a’ = [((x :), xs)]

| otherwise = []

3.6 The type and results of (:)<$> symbol ’a’<∗> p are:

((:)<$> symbol ’a’<∗> p) :: Parser Char String
((:)<$> symbol ’a’<∗> p) [] = []
((:)<$> symbol ’a’<∗> p) (x : xs)
| x = = ’a’ = [(’a’ : x , ys) | (x , ys)← p xs]
| otherwise = []

3.7

pBool :: Parser Char Bool
pBool = const True <$> token "True"

<|> const False <$> token "False"

3.9

1.

data Pal2 = Nil | Leafa | Leafb | Twoa Pal2 | Twob Pal2

2.

palin2 :: Parser Char Pal2
palin2 = (\ y → Twoa y)<$>

symbol ’a’<∗> palin2 <∗> symbol ’a’
<|> (\ y → Twob y)<$>

symbol ’b’<∗> palin2 <∗> symbol ’b’
<|> const Leafa <$> symbol ’a’
<|> const Leafb <$> symbol ’b’
<|> succeed Nil

3.

palina :: Parser Char Int
palina = (λ y → y + 2)<$>

symbol ’a’<∗> palina <∗> symbol ’a’
<|> (λ y → y) <$>

symbol ’b’<∗> palina <∗> symbol ’b’
<|> const 1<$> symbol ’a’
<|> const 0<$> symbol ’b’
<|> succeed 0

98

3.10

1.

data English = E1 Subject Pred
data Subject = E2 String
data Pred = E3 Verb NounP | E4 AuxV Verb Noun
data Verb = E5 String | E6 String
data AuxV = E7 String
data NounP = E8 Adj Noun
data Adj = E9 String
data Noun = E10 String

2.

english :: Parser Char English
english = E1 <$> subject <∗> pred

subject = E2 <$> token "they"

pred = E3 <$> verb <∗> nounp
<|> E4 <$> auxv <∗> verb <∗> noun

verb = E5 <$> token "are"

<|> E6 <$> token "flying"

auxv = E7 <$> token "are"

nounp = E8 <$> adj <∗> noun
adj = E9 <$> token "flying"

noun = E10 <$> token "planes"

3.11 As <|> uses ++, it is more efficiently evaluated if right-associative.

3.12 The function is the same as <∗>, but instead of applying the result of the first
parser to that of the second, it pairs them together:

(<,>) :: Parser s a → Parser s b → Parser s (a, b)
(p <,> q) xs = [((x , y), zs)

|(x , ys)← p xs
, (y , zs) ← q ys
]

3.13 ‘Parser transformator’, or ‘parser modifier’ or ‘parser postprocessor’, etcetera.

3.14 The transformator <$> does to the result part of parsers what map does to
the elements of a list.

3.15 The parser combinators <∗> and <,> can be defined in terms of each other:

p <∗> q = uncurry ($)<$> (p <,> q)
p <,> q = (,)<$> p <∗> q

99

A. Answers to exercises

3.16 Yes. You can combine the parser parameter of <$> with a parser that consumes
no input and always yields the function parameter of <$>:

f <$> p = succeed f <∗> p

3.17

f ::
Char → Parentheses → Char → Parentheses → Parentheses

open ::
Parser Char Char

f <$> open ::
Parser Char (Parentheses → Char → Parentheses → Parentheses)

parens ::
Parser Char Parentheses

(f <$> open)<∗> parens ::
Parser Char (Char → Parentheses → Parentheses)

3.18 To the left. Yes.

3.19 The function has to check whether applying the parser p to input s returns at
least one result with an empty rest sequence:

test p s = not (null (filter (null . snd) (p s)))

3.20

1.

listofdigits :: Parser Char [Int]
listofdigits = listOf newdigit (symbol ’ ’)

?> listofdigits "1 2 3"

[([1,2,3],""),([1,2]," 3"),([1]," 2 3")]

?> listofdigits "1 2 a"

[([1,2]," a"),([1]," 2 a")]

2. In order to use the parser chainr we first define a parser plusParser that recog-
nises the character ’+’ and returns the function (+).

plusParser :: Num a ⇒ Parser Char (a → a → a)
plusParser [] = []
plusParser (x : xs) | x = = ’+’ = [((+), xs)]

| otherwise = []

100

The definiton of the parser sumParser is:

sumParser :: Parser Char Int
sumParser = chainr newdigit plusParser

?> sumParser "1+2+3"

[(6,""),(3,"+3"),(1,"+2+3")]

?> sumParser "1+2+a"

[(3,"+a"),(1,"+2+a")]

?> sumParser "1"

[(1,"")]

Note that the parser also recognises a single integer.

3. The parser many should be replaced by the parser greedy in de definition of
listOf .

3.21 We introduce the abbreviation

listOfa = (:)<$> symbol ’a’

and use the results of Exercises 3.5 and 3.6.

xs = []:

many (symbol ’a’) []

= { definition of many and listOfa }
(listOfa <∗>many (symbol ’a’)<|> succeed []) []

= { definition of <|> }
(listOfa <∗>many (symbol ’a’)) [] ++ succeed [] []

= { Exercise 3.6, definition of succeed }
[] ++ [([], [])]

= { definition of ++ }
[([], [])]

xs = [’a’]:

many (symbol ’a’) [’a’]

= { definition of many and listOfa }
(listOfa <∗>many (symbol ’a’)<|> succeed []) [’a’]

= { definition of <|> }
(listOfa <∗>many (symbol ’a’)) [’a’] ++ succeed [] [’a’]

= { Exercise 3.6, previous calculation }

101

A. Answers to exercises

[([’a’], []), ([], [’a’])]

xs = [’b’]:

many (symbol ’a’) [’b’]

= { as before }
(listOfa <∗>many (symbol ’a’)) [’b’] ++ succeed [] [’b’]

= { Exercise 3.6, previous calculation }
[([], [’b’])]

xs = [’a’, ’b’]:

many (symbol ’a’) [’a’, ’b’]

= { as before }
(listOfa <∗>many (symbol ’a’)) [’a’, ’b’] ++ succeed [] [’a’, ’b’]

= { Exercise 3.6, previous calculation }
[([’a’], [’b’]), ([], [’a’, ’b’])]

xs = [’a’, ’a’, ’b’]:

many (symbol ’a’) [’a’, ’a’, ’b’]

= { as before }
(listOfa <∗>many (symbol ’a’)) [’a’, ’a’, ’b’] ++ succeed [] [’a’, ’a’, ’b’]

= { Exercise 3.6, previous calculation }
[([’a’, ’a’], [’b’]), ([’a’], [’a’, ’b’]), ([], [’a’, ’a’, ’b’])]

3.22 The empty alternative is presented last, because the <|> combinator uses list
concatenation for concatenating lists of successes. This also holds for the recursive
calls; thus the ‘greedy’ parsing of all three a’s is presented first, then two a’s with a
singleton rest string, then one a, and finally the empty result with the original input
as rest string.

3.24

— Combinators for repetition

psequence :: [Parser s a]→ Parser s [a]
psequence [] = succeed []
psequence (p : ps) = (:)<$> p <∗> psequence ps

psequence ′ :: [Parser s a]→ Parser s [a]
psequence ′ = foldr f (succeed [])

where f p q = (:)<$> p <∗> q

102

choice :: [Parser s a]→ Parser s a
choice = foldr (<|>) failp

?> (psequence [digit, satisfy isUpper]) "1A"

[("1A","")]

?> (psequence [digit, satisfy isUpper]) "1Ab"

[("1A","b")]

?> (psequence [digit, satisfy isUpper]) "1ab"

[]

?> (choice [digit, satisfy isUpper]) "1ab"

[(’1’,"ab")]

?> (choice [digit, satisfy isUpper]) "Ab"

[(’A’,"b")]

?> (choice [digit, satisfy isUpper]) "ab"

[]

3.25

token :: Eq s ⇒ [s]→ Parser s [s]
token = psequence .map symbol

3.27

identifier :: Parser Char String
identifier = (:)<$> satisfy isAlpha <∗> greedy (satisfy isAlphaNum)

3.28

1. As Haskell terms:

"abc": Var "abc"

"(abc)": Var "abc"

"a*b+1": Var "a" :∗: Var "b" :+: Con 1
"a*(b+1)": Var "a" :∗: (Var "b" :+: Con 1)
"-1-a": Con (−1) :−: Var "a"

"a(1,b)": Fun "a" [Con 1,Var "b"]

2. The parser fact first tries to parse an integer, then a variable, then a function
application and finally a parenthesised expression. A function application is a
variable followed by an argument list. When the parser encounters a function
application, a variable will first be recognised. This first solution will however

103

A. Answers to exercises

not lead to a parse tree for the complete expression because the list of arguments
that comes after the variable cannot be parsed.

If we swap the second and the third line in the definition of the parser fact , the
parse tree for a function application will be the first solution of the parser:

fact :: Parser Char Expr
fact = Con <$> integer

<|> Fun <$> identifier <∗> parenthesised (commaList expr)
<|>Var <$> identifier
<|> parenthesised expr

?> expr "a(1,b)"

[(Fun "a" [Con 1,Var "b"],""),(Var "a","(1,b)")]

3.29 A function with no arguments is not accepted by the parser:

?> expr "f()"

[(Var "f","()")]

The parser parenthesised (commaList expr) that is used in the parser fact does not
accept an empty list of arguments because commaList does not. To accept an empty
list we modify the parser fact as follows:

fact :: Parser Char Expr
fact = Con <$> integer

<|> Fun <$> identifier
<∗> parenthesised (commaList expr <|> succeed [])

<|>Var <$> identifier
<|> parenthesised expr

?> expr "f()"

[(Fun "f" [],""),(Var "f","()")]

3.30

expr = chainr (chainl term (const (:−:)<$> symbol ’-’))
(const (:+:)<$> symbol ’+’)

3.31 The datatype Expr is extended as follows to allow raising an expression to the
power of an expression:

data Expr = Con Int
| Var String

104

| Fun String [Expr]
| Expr :+: Expr
| Expr :−: Expr
| Expr :∗: Expr
| Expr :/: Expr
| Expr : ˆ : Expr

deriving Show

Now the parser expr ′ of Listing 3.10 can be extended with a new level of priorities:

powis = [(’^’, (: ˆ :))]

expr ′ :: Parser Char Expr
expr ′ = foldr gen fact ′ [addis,multis, powis]

Note that because of the use of chainl all the operators listed in addis, multis and
powis are treated as left-associative.

3.32 The proofs can be given by using laws for list comprehension, but here we prefer
to exploit the following equation

(f <$> p) xs = map (f ∗∗∗ id) (p xs) (A.1)

where (∗∗∗) is defined by

(∗∗∗) :: (a → c)→ (b → d)→ (a, b)→ (c, d)
(f ∗∗∗ g) (a, b) = (f a, g b)

It has the following property:

(f ∗∗∗ g) . (h ∗∗∗ k) = (f . h) ∗∗∗ (g . k) (A.2)

Furthermore, we will use the following laws about map in our proof: map distributes
over composition, concatenation, and the function concat :

map f .map g = map (f . g) (A.3)

map f (x ++ y) = map f x ++ map f y (A.4)

map f . concat = concat .map (map f) (A.5)

1.

(h <$> (f <$> p)) xs

= { (A.1) }
map (h ∗∗∗ id) ((f <$> p) xs)

= { (A.1) }
map (h ∗∗∗ id) (map (f ∗∗∗ id) (p xs))

105

A. Answers to exercises

= { (A.3) }
map ((h ∗∗∗ id) . (f ∗∗∗ id)) (p xs)

= { (A.2) }
map ((h . f) ∗∗∗ id) (p xs)

= { (A.1) }
((h . f)<$> p) xs

2.

(h <$> (p <|> q)) xs

= { (A.1) }
map (h ∗∗∗ id) ((p <|> q) xs)

= { definition of <|> }
map (h ∗∗∗ id) (p xs ++ q xs)

= { (A.4) }
map (h ∗∗∗ id) (p xs) ++ map (h ∗∗∗ id) (q xs)

= { (A.1) }
(h <$> p) xs ++ (h <$> q) xs

= { definition of <|> }
((h <$> p)<|> (h <$> q)) xs

3. First note that (p <∗> q) xs can be written as

(p <∗> q) xs = concat (map (mc q) (p xs)) (A.6)

where

mc q (f , ys) = map (f ∗∗∗ id) (q ys)

Now we calculate

(((h.)<$> p)<∗> q) xs

= { (A.6) }
concat (map (mc q) (((h.)<$> p) xs))

= { (A.1) }
concat (map (mc q) (map ((h.) ∗∗∗ id) (p xs)))

= { (A.3) }
concat (map (map (h ∗∗∗ id) (map (mc q) (p xs))))

= { (A.7), see below }
concat (map ((map (h ∗∗∗ id)) .mc q) (p xs))

106

= { (A.3) }
concat (map (map (h ∗∗∗ id)) (map (mc q) (p xs)))

= { (A.5) }
map (h ∗∗∗ id) (concat (map (mc q) (p xs)))

= { (A.6) }
map (h ∗∗∗ id) ((p <∗> q) xs)

= { (A.1) }
(h <$> (p <∗> q)) xs

It remains to prove the claim

mc q . ((h.) ∗∗∗ id) = map (h ∗∗∗ id) .mc q (A.7)

This claim is also proved by calculation:

((map (h ∗∗∗ id)) .mc q) (f , ys)

= { definition of . }
map (h ∗∗∗ id) (mc q (f , ys))

= { definition of mc q }
map (h ∗∗∗ id) (map (f ∗∗∗ id) (q ys))

= { map and ∗∗∗ distribute over composition }
map ((h . f) ∗∗∗ id) (q y)

= { definition of mc q }
mc q (h . f , ys)

= { definition of ∗∗∗ }
(mc q . ((h.) ∗∗∗ id)) (f , ys)

3.33

pMir :: Parser Char Mir
pMir = (λ m → MB m)<$> symbol ’b’<∗> pMir <∗> symbol ’b’

<|> (λ m → MA m) <$> symbol ’a’<∗> pMir <∗> symbol ’a’
<|> succeed MEmpty

3.34

pBitList :: Parser Char BitList
pBitList = SingleB <$> pBit

<|> (λb bs → ConsB b bs)<$> pBit <∗> symbol ’,’<∗> pBitList

pBit = const Bit0 <$> symbol ’0’
<|> const Bit1 <$> symbol ’1’

107

A. Answers to exercises

3.35

— Parser for floating point numbers

fixed :: Parser Char Float
fixed = (+)<$> (fromIntegral <$> greedy integer)

<∗> (((λ y → y)<$> symbol ’.’<∗> fractpart) ‘option‘ 0.0)

fractpart :: Parser Char Float
fractpart = foldr f 0.0<$> greedy newdigit

where f d n = (n + fromIntegral d) / 10.0

3.36

float :: Parser Char Float
float = f <$> fixed

<∗> (((λ y → y)<$> symbol ’E’<∗> integer) ‘option‘ 0)
where f m e = m ∗ power e

power e | e < 0 = 1.0 / power (−e)
| otherwise = fromIntegral (10e)

3.37 Parse trees for Java assignments are of type:

data JavaAssign = JAssign String Expr
deriving Show

The parser is defined as follows:

assign :: Parser Char JavaAssign
assign = JAssign

<$> identifier
<∗> ((λ y → y)<$> symbol ’=’<∗> expr <∗> symbol ’;’)

?> assign "x1=(a+1)*2;"

[(JAssign "x1" (Var "a" :+: Con 1 :*: Con 2),"")]

?> assign "x=a+1"

[]

Note that the second example is not recognised as an assignment because the string
does not end with a semicolon.

4.1

data FloatLiteral = FL1 IntPart FractPart ExponentPart FloatSuffix
| FL2 FractPart ExponentPart FloatSuffix
| FL3 IntPart ExponentPart FloatSuffix

108

| FL4 IntPart ExponentPart FloatSuffix
deriving Show

type ExponentPart = String
type ExponentIndicator = String
type SignedInteger = String
type IntPart = String
type FractPart = String
type FloatSuffix = String

digit = satisfy isDigit
digits = many1 digit

floatLiteral = (λa b c d e → FL1 a c d e)
<$> intPart <∗> period <∗> optfract <∗> optexp <∗> optfloat

<|> (λa b c d → FL2 b c d)
<$> period <∗> fractPart <∗> optexp <∗> optfloat

<|> (λa b c → FL3 a b c)
<$> intPart <∗> exponentPart <∗> optfloat

<|> (λa b c → FL4 a b c)
<$> intPart <∗> optexp <∗> floatSuffix

intPart = signedInteger
fractPart = digits
exponentPart = (++)<$> exponentIndicator <∗> signedInteger
signedInteger = (++)<$> option sign ""<∗> digits
exponentIndicator = token "e"<|> token "E"

sign = token "+"<|> token "-"

floatSuffix = token "f"<|> token "F"

<|> token "d"<|> token "D"

period = token "."

optexp = option exponentPart ""
optfract = option fractPart ""
optfloat = option floatSuffix ""

4.2 The data and type definitions are the same as before, only the parsers return
another (semantic) result.

digit = f <$> satisfy isDigit

where f c = ord c - ord ’0’

digits = foldl f 0 <$> many1 digit

where f a b = 10*a + b

floatLiteral = (\a b c d e -> (fromIntegral a + c) * power d) <$>

intPart <*> period <*> optfract <*> optexp <*> optfloat

<|> (\a b c d -> b * power c) <$>

period <*> fractPart <*> optexp <*> optfloat

109

A. Answers to exercises

<|> (\a b c -> (fromIntegral a) * power b) <$>

intPart <*> exponentPart <*> optfloat

<|> (\a b c -> (fromIntegral a) * power b) <$>

intPart <*> optexp <*> floatSuffix

intPart = signedInteger

fractPart = foldr f 0.0 <$> many1 digit

where f a b = (fromIntegral a + b)/10

exponentPart = (\x y -> y) <$> exponentIndicator <*> signedInteger

signedInteger = (\ x y -> x y) <$> option sign id <*> digits

exponentIndicator = symbol ’e’ <|> symbol ’E’

sign = const id <$> symbol ’+’

<|> const negate <$> symbol ’-’

floatSuffix = symbol ’f’ <|> symbol ’F’<|> symbol ’d’ <|> symbol ’D’

period = symbol ’.’

optexp = option exponentPart 0

optfract = option fractPart 0.0

optfloat = option floatSuffix ’ ’

power e | e < 0 = 1 / power (-e)

| otherwise = fromIntegral (10^e)

4.3 The parsing scheme for Java floats is

digit = f <$> satisfy isDigit

where f c =

digits = f <$> many1 digit

where f ds = ..

floatLiteral = f1 <$>

intPart <*> period <*> optfract <*> optexp <*> optfloat

<|> f2 <$>

period <*> fractPart <*> optexp <*> optfloat

<|> f3 <$>

intPart <*> exponentPart <*> optfloat

<|> f4 <$>

intPart <*> optexp <*> floatSuffix

where

f1 a b c d e =

f2 a b c d =

f3 a b c =

f4 a b c =

intPart = signedInteger

fractPart = f <$> many1 digit

where f ds =

exponentPart = f <$> exponentIndicator <*> signedInteger

where f x y =

110

signedInteger = f <$> option sign ?? <*> digits

where f x y =

exponentIndicator = f1 <$> symbol ’e’ <|> f2 <$> symbol ’E’

where

f1 c =

f2 c = ..

sign = f1 <$> symbol ’+’ <|> f2 <$> symbol ’-’

where

f1 h =

f2 h =

floatSuffix = f1 <$> symbol ’f’

<|> f2 <$> symbol ’F’

<|> f3 <$> symbol ’d’

<|> f4 <$> symbol ’D’

where

f1 c =

f2 c =

f3 c =

f4 c =

period = symbol ’.’

optexp = option exponentPart ??

optfract = option fractPart ??

optfloat = option floatSuffix ??

111

	Preface ...
	Goals
	History
	Grammar analysis of context-free grammars
	Compositionality
	Abstraction mechanisms

	Context-Free Grammars
	Languages
	Grammars
	Notational conventions

	The language of a grammar
	Examples of basic languages

	Parse trees
	Grammar transformations
	Removing duplicate productions
	Substituting right hand sides for nonterminals
	Removing unreachable productions
	Left factoring
	Removing left recursion
	Associative separator
	Introduction of priorities
	Discussion

	Concrete and abstract syntax
	Constructions on grammars
	SL: an example

	Parsing
	Exercises

	Parser combinators
	The type of parsers
	Elementary parsers
	Parser combinators
	Matching parentheses: an example
	Combinator variants

	More parser combinators
	Parser combinators for EBNF
	Separators

	Combinator parsers are monads and more
	Arithmetical expressions
	Generalised expressions
	Exercises

	Grammar and Parser design
	Decomposing grammar and parser design
	Step 1: Example sentences for the language
	Step 2: A grammar for the language
	Step 3: Testing the grammar
	Step 4: Analysing the grammar
	Step 5: Transforming the grammar
	Step 6: Deciding on the types
	Step 7: Constructing the basic parser
	Basic parsers from strings
	A basic parser from tokens

	Step 8: Adding semantic functions
	Step 9: Did you get what you expected
	Exercises

	Answers to exercises

