
Parser Design

common pitfalls, and how to avoid them

Announcements

Lab 1: Group registration
Ask Johan.

Lab 1: base == 4.19.2.0
The autograder uses this.
Bump at your own risk.

Werkcollege today: 5cp bonus
Work on lab 1 or exercises.

•

•
•

•

Today: last parsing lecture before Lab 1

Previously…

String
e.g.

 Groningen 8:37
10:15 Utrecht 10:21
11:05 Den Haag 11:23
11:34 Leiden

Previously…

Language
e.g.

“the set of all well-formed travel
schedules”

Previously…

Grammar
e.g.

S -> Start Wait* End
Start -> StationName Time
Wait -> Time StationName Time
End -> Time StationName

Previously…

Abstract Syntax
e.g.

data TSched = TSched
 { start :: (String, Time)
 , waits :: [(Time, String, Time)]
 , end :: (Time, String)
 }

Previously…

Parsers
e.g.

parseTSched :: String
-> [(TSched, String)]

Quiz: parser for travel schedules?
 Groningen 8:37
10:15 Utrecht 10:21
11:05 Den Haag 11.23
11:34 Leiden

wooclap.com PEQPEH

{- 1 -} many (pStart <|> pWait <|> pEnd)
{- 2 -} TSched <$> (many (pStart <|> pWait <|> pEnd))
{- 3 -} TSched <$> pStart <*> pWaits <*> pEnd
{- 4 -} TSched <$> pStart <*> many pWait <*> pEnd
{- 5 -} TSched <$> pStart <$> many pWait <$> pEnd
{- 6 -} TSched <*> pStart <$ many pWait <* pEnd

Not 1

many :: ... -> Parser c [a]

-- many (pStart <|> pWait <|> pEnd)
{- 2 -} TSched <$> (many (pStart <|> pWait <|> pEnd))
{- 3 -} TSched <$> pStart <*> pWaits <*> pEnd
{- 4 -} TSched <$> pStart <*> many pWait <*> pEnd
{- 5 -} TSched <$> pStart <$> many pWait <$> pEnd
{- 6 -} TSched <*> pStart <$ many pWait <* pEnd

Not 2

TSched :: ... -> ... -> ... -> TSched
many :: ... -> Parser c [a]

-- many (pStart <|> pWait <|> pEnd)
-- TSched <$> (many (pStart <|> pWait <|> pEnd))
{- 3 -} TSched <$> pStart <*> pWaits <*> pEnd
{- 4 -} TSched <$> pStart <*> many pWait <*> pEnd
{- 5 -} TSched <$> pStart <$> many pWait <$> pEnd
{- 6 -} TSched <*> pStart <$ many pWait <$ pEnd

Yes 3,4

TSched :: ... -> ... -> ... -> TSched
many :: ... -> Parser c [a]

-- many (pStart <|> pWait <|> pEnd)
-- TSched <$> (many (pStart <|> pWait <|> pEnd))
{- C -} TSched <$> pStart <*> pWaits <*> pEnd
{- D -} TSched <$> pStart <*> many pWait <*> pEnd
{- E -} TSched <$> pStart <$> many pWait <$> pEnd
{- F -} TSched <*> pStart <$ many pWait <$ pEnd

Not 5,6

TSched :: ... -> ... -> ... -> TSched
infixl (<$>) :: (a -> b) -> Parser c a -> Parser c b
infixl (<*>) :: Parser c (a -> b) -> Parser c a -> Parser c b
infixl (<$) :: a -> Parser c b -> Parser c a
infixl (<*) :: Parser c a -> Parser c b -> Parser c a

-- many (pTStart <|> pTEnd <|> pTLine)
-- TSched <$> (many (pTStart <|> pTEnd <|> pTLine))
{- 3 -} TSched <$> pStart <*> pTLine <*> pWaits <*> pEnd
{- 4 -} TSched <$> pStart <*> pTLine <*> many pWait <*> pEnd
-- TSched <$> pStart <$> pTLine <$> many pWait <$> pEnd
-- TSched <*> pStart <$ pTLine <*> many pWait <$ pEnd

Combinator zoo

 (<$>) :: (a -> b) -> Parser c a -> Parser c b
 (<*>) :: Parser c (a -> b) -> Parser c a -> Parser c b
 (<$) :: a -> Parser c b -> Parser c a
 (<*) :: Parser c a -> Parser c b -> Parser c a

Combinator zoo, abbreviated

 (<$>) :: (a -> b) -> f a -> f b
 (<*>) :: f (a -> b) -> f a -> f b
 (<$) :: a -> f b -> f a
 (<*) :: f a -> f b -> f a

Combinator zoo, grouped

 (<$>) :: (a -> b) -> f a -> f b
 (<*>) :: f (a -> b) -> f a -> f b

 (<$) :: a -> f b -> f a
 (<*) :: f a -> f b -> f a

Combinator zoo, expanded

 ($) :: (a -> b) -> a -> b
 (<$>) :: (a -> b) -> f a -> f b
 (<*>) :: f (a -> b) -> f a -> f b

 (<$) :: a -> f b -> f a
 (<*) :: f a -> f b -> f a

Combinator zoo, expanded

 ($) :: (a -> b) -> a -> b
 (<$>) :: (a -> b) -> f a -> f b
 (<*>) :: f (a -> b) -> f a -> f b

 const :: a -> b -> a
 (<$) :: a -> f b -> f a
 (<*) :: f a -> f b -> f a

Combinator zoo, classified

-- Application-like
 ($) :: (a -> b) -> a -> b
 (<$>) :: (a -> b) -> f a -> f b
 (<*>) :: f (a -> b) -> f a -> f b

-- Const-like
 const :: a -> b -> a
 (<$) :: a -> f b -> f a
 (<*) :: f a -> f b -> f a

More combinators?

-- Application-like
 ($) :: (a -> b) -> a -> b
 (<$>) :: (a -> b) -> f a -> f b
 (<*>) :: f (a -> b) -> f a -> f b

More combinators.

-- Application-like
 ($) :: (a -> b) -> a -> b
 (<$>) :: (a -> b) -> f a -> f b
 (<*>) :: f (a -> b) -> f a -> f b
 flap :: f (a -> b) -> a -> f b

More combinators.

-- Application-like
 ($) :: (a -> b) -> a -> b
 (<$>) :: (a -> b) -> f a -> f b
 (<*>) :: f (a -> b) -> f a -> f b
 flap :: f (a -> b) -> a -> f b
 (=<<) :: (a -> f b) -> f a -> f b

Flipped combinators.

-- Application-like
 ($) :: (a -> b) -> a -> b
 (<$>) :: (a -> b) -> f a -> f b
 (<*>) :: f (a -> b) -> f a -> f b
 flap :: f (a -> b) -> a -> f b
 (=<<) :: (a -> f b) -> f a -> f b
-- Application-like, arguments flipped
 (&) :: a -> (a -> b) -> b
 (<&>) :: f a -> (a -> b) -> f b
 (<**>) :: f a -> f (a -> b) -> f b
 (??) :: a -> f (a -> b) -> f b
 (>>=) :: f a -> (a -> f b) -> f b

(>>=) allows more flexible parsing

Example: matrices
3 3
5 7
7 2

6 3
1 8 7
2 6

9 8 3 2
8 4 5 4
2 9 6 3

5 9 4 9
8 2 2
8 7 2

7 6
9 8

Numer of columns constant but not known in
advance.

parseMatrix :: Parser Char [[Int]]
parseMatrix = parseRowOfAnyLength >>= \r ->
 (r :) <$> parseRowsOfFixedLength (length r)

Example: IPv4 packets
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Version| IHL |Type of Service| Total Length |
 +-+
 | Identification |Flags| Fragment Offset |
 +-+
 | Time to Live | Protocol | Header Checksum |
 +-+
 | Source Address |
 +-+
 | Destination Address |
 +-+
 | Options | Padding |
 +-+

Payload length not known in advance.

parseIpPacket : Parser Byte IpPacket
parseIpPacket = parseIpHeader >>= \h ->
 (IpPacket h) <$> parseIpPayload (h .totalLength)

Example: nestable markdown divs
::::::::::: columns

::::: bold
It quacks like a duck...
:::::

:::::::::::

parseMarkdown :: Int -> Parser Line MarkdownBlock
parseMarkdown d = text <|> image <|> (parseDivHeaderShorterThan d >>= \h ->

Div h <$> many (parseMarkdown (h .length))
<*> parseDivFooter (h .length))

Haskell has special syntax for (>>=)

-- You write
do
 a <- foo
 b <- bar
 baz

-- Equivalent to
foo >>= (\a ->
bar >>= (\b ->
baz))

Quiz: grammar of well-formed matrices?
3 3
5 7
7 2

6 3
1 8 7
2 6

9 8 3 2
8 4 5 4
2 9 6 3

5 9 4 9
8 2 2
8 7 2

7 6
9 8

Matrix -> Int**
Matrix -> Int* Int**
Matrix -> Int*
Matrix -> Row Row*
Row -> Int Int*

wooclap.com PEQPEH1.
2.
3.
4.

Answer: none of the above!

The matrix language is not
context-free.
(>>=) can parse it anyway.

Sometimes (>>=) can be avoided,
e.g.

parseMatrix = many (many integer)
Check row-length later

•

•

•

◦

◦

Back to (>>=)-free parsers

Quiz: parser for wait lines?
10:15 Utrecht 10:21 wooclap.com PEQPEH

(,,) :: a -> b -> c -> (a,b,c)
{- 1 -} (,,) <$> parseTime <$> parseString <$> parseTime
{- 2 -} (,,) <* parseTime <$> parseString <$> parseTime
{- 3 -} (,,) <*> parseTime <$> parseString <$> parseTime
{- 4 -} (,,) <*> parseTime <$ parseString <$ parseTime
{- 5 -} (,,) <$> parseTime <*> parseString <*> parseTime
{- 6 -} (,,) <$> parseTime <* parseString <* parseTime

“Applicative style”
10:15 Utrecht 10:21

(,,) :: a -> b -> c -> (a,b,c)
-- (,,) <$> parseTime <$> parseString <$> parseTime
-- (,,) <* parseTime <$> parseString <$> parseTime
-- (,,) <*> parseTime <$> parseString <$> parseTime
-- (,,) <*> parseTime <$ parseString <$ parseTime
{- 5 -} (,,) <$> parseTime <*> parseString <*> parseTime
-- (,,) <$> parseTime <* parseString <* parseTime

Easy enough?

"10:15 Utrecht 10:21"

(,,) <$> parseTime
<*> parseString
<*> parseTime

 :: Parser Char (Time,String,Time)

Whitespace trouble

"10:15 Utrecht 10:21"

(,,) <$> parseTime
<*> parseString
<*> parseTime

 :: Parser Char (Time,String,Time)

(AM 10 15, " Utrecht ", AM 10 21)

Whitespace lexed away

 ["10:15","Utrecht","10:21"]

(,,) <$> parseTime
<*> parseString
<*> parseTime

 :: Parser String (Time,String,Time)

(AM 10 15, "Utrecht" , AM 10 21)

Lexing can be inconvenient

No parse.

 ["10:15","Den","Haag","10:21"]

(,,) <$> parseTime
<*> parseString
<*> parseTime

 :: Parser String (Time,String,Time)

Whitespace parsing

"10:15 Utrecht 10:21"

(,,) <$> parseTime <* some space
<*> parseString <* some space
<*> parseTime

 :: Parser Char (Time,String,Time)

(AM 10 15, "Utrecht" , AM 10 21)

Demo time
wooclap.com PEQPEH

Quiz: what does GHCi return?
ghci> parse tline "10:15 Utrecht 10:21"

import ParseLib.Derived

time :: Parser Char Time
time = AM

<$> natural <* symbol ':'
<*> natural

space = symbol ' '
string = many anySymbol

tline :: Parser Char
(Time,String,Time)

tline = (,,)
<$> time <* some space
<*> string <* some space
<*> time <* eof

Too many results!
wooclap.com PEQPEH

Quiz: what does GHCi return?
ghci> parse tline "10:15 Utrecht 10:21"
[((AM 10 15,"Utrecht ",AM 10 21),"")
,((AM 10 15,"Utrecht ",AM 10 21),"")
,((AM 10 15,"Utrecht",AM 10 21),"")]
Quiz: why are too many parses returned?

time :: Parser Char Time
time = AM

<$> natural <* symbol ':'
<*> natural

space = symbol ' '
string = many anySymbol

tline :: Parser Char
(Time,String,Time)

tline = (,,)
<$> time <* some space
<*> string <* some space
<*> time <* eof

Definition of some

some :: Parser c a -> Parser c [a]
some p = (:) <$> p <*> many p

many :: Parser c a -> Parser c [a]
many p = some p <|> succeed []

Expanding some

some space
== (:) <$> space <*> many space
== (:) <$> space <*> (some space

<|> succeed [])
== (:) <$> space <*> ((:) <$> space <*> many space

<|> succeed [])
== (:) <$> space <*> ((:) <$> space <*> (some space

<|> succeed [])
<|> succeed [])

Expanding some

some space
== (:) <$> space <*> ((:) <$> space <*> ((:) <$> space <*> some space))
<|> (:) <$> space <*> ((:) <$> space <*> ((:) <$> space <*> succeed []))
<|> (:) <$> space <*> ((:) <$> space <*> succeed [])
<|> (:) <$> space <*> succeed []

<|> takes results from both parsers

But we only want the first result!

some space
== (:) <$> space <*> ((:) <$> space <*> ((:) <$> space <*> some space))
<|> (:) <$> space <*> ((:) <$> space <*> ((:) <$> space <*> succeed []))
<|> (:) <$> space <*> ((:) <$> space <*> succeed [])
<|> (:) <$> space <*> succeed []

(<|>) :: Parser s a -> Parser s a -> Parser s a
(p1 <|> p2) s = (p1 s) ++ (p2 s)

<<|> avoids calling second parser

some space
== (:) <$> space <*> ((:) <$> space <*> ((:) <$> space <*> some space))
<|> (:) <$> space <*> ((:) <$> space <*> ((:) <$> space <*> succeed []))
<|> (:) <$> space <*> ((:) <$> space <*> succeed [])
<|> (:) <$> space <*> succeed []

(<|>) :: Parser s a -> Parser s a -> Parser s a
(p1 <|> p2) s = (p1 s) ++ (p2 s)

(<<|>) :: Parser s a -> Parser s a -> Parser s a
(p1 <<|> p2) s = if (p1 s) /= [] then (p1 s) else (p2 s)

Definition of greedy,greedy1

greedy1 :: Parser c a -> Parser c [a]
greedy1 p = (:) <$> p <*> greedy p

greedy :: Parser c a -> Parser c [a]
greedy p = greedy1 p <<|> succeed []

Quiz: which parsers always return
exactly 1 result?

wooclap.com PEQPEH{- 1 -} many space
{- 2 -} greedy space
{- 3 -} (greedy space <* greedy space)
{- 4 -} (greedy space <* many space)
{- 5 -} (many space <* greedy space)
{- 6 -} (many (greedy space))
{- 7 -} (greedy (greedy space))
{- 8 -} (greedy empty)
{- 9 -} (many empty)

These parsers always return exactly 1
result

-- many space
{- B -} greedy space
{- C -} (greedy space <* greedy space)
{- D -} (greedy space <* many space)
-- (many space <* greedy space)
-- (many (greedy space))
{- G -} (greedy (greedy space))
-- (greedy empty)
-- (many empty)

(many empty) recurses forever

(many empty)
== some empty <|> succeed []

(many empty) recurses forever

(many empty)
== some empty <|> succeed []
== ((:) <$> empty <*> many empty) <|> succeed []

(many empty) recurses forever

(many empty)
== some empty <|> succeed []
== ((:) <$> empty <*> many empty) <|> succeed []
== (map (():) (many empty)) <|> succeed []

(many empty) recurses forever

(many empty)
== some empty <|> succeed []
== ((:) <$> empty <*> many empty) <|> succeed []
== (map (():) (many empty)) <|> succeed []
== (map (():) (..........)) <|> succeed []

(many empty) recurses forever

Laziness was not enough!

(many empty)
== some empty <|> succeed []
== ((:) <$> empty <*> many empty) <|> succeed []
== (map (():) (many empty)) <|> succeed []
== (map (():) (..........)) <|> succeed []

•

(many empty) recurses forever

Laziness was not enough!
Beware left-recursion.

(many empty)
== some empty <|> succeed []
== ((:) <$> empty <*> many empty) <|> succeed []
== (map (():) (many empty)) <|> succeed []
== (map (():) (..........)) <|> succeed []

•
•

Summary (today)

(>>=), (<*>), (<$>), ($)

(<*), (<$), const
greedy, many
Excess results
Left-recursion

•

•

•
•
•

How to build parsers

Design grammar
Write parser
Discover bugs
Fix parser, transform grammar
GOTO 3

1.
2.
3.
4.
5.

	Parser Design
	common pitfalls, and how to avoid them

	Announcements
	Lab 1: Group registration
	Lab 1: base == 4.19.2.0
	Werkcollege today: 5cp bonus

	Today: last parsing lecture before Lab 1
	Previously…
	String

	Previously…
	Language

	Previously…
	Grammar

	Previously…
	Abstract Syntax

	Previously…
	Parsers

	Quiz: parser for travel schedules?
	Not 1
	Not 2
	Yes 3,4
	Not 5,6
	Combinator zoo
	Combinator zoo, abbreviated
	Combinator zoo, grouped
	Combinator zoo, expanded
	Combinator zoo, expanded
	Combinator zoo, classified
	More combinators?
	More combinators.
	More combinators.
	Flipped combinators.
	(>>=) allows more flexible parsing
	Example: matrices
	Example: IPv4 packets
	Example: nestable markdown divs
	Haskell has special syntax for (>>=)
	Quiz: grammar of well-formed matrices?
	Answer: none of the above!
	Back to (>>=)-free parsers
	Quiz: parser for wait lines?
	“Applicative style”
	Easy enough?
	Whitespace trouble
	Whitespace lexed away
	Lexing can be inconvenient
	Whitespace parsing
	Demo time
	Quiz: what does GHCi return?

	Too many results!
	Quiz: what does GHCi return?
	Quiz: why are too many parses returned?

	Definition of some
	Expanding some
	Expanding some
	<|> takes results from both parsers
	<<|> avoids calling second parser
	Definition of greedy,greedy1
	Quiz: which parsers always return exactly 1 result?
	These parsers always return exactly 1 result
	(many empty) recurses forever
	(many empty) recurses forever
	(many empty) recurses forever
	(many empty) recurses forever
	(many empty) recurses forever
	(many empty) recurses forever
	Summary (today)
	How to build parsers

