Parser Design

;;!ﬁ>’i

common pitfalls, and how to avoid them

Announcements

Lab 1: Group registration
e Ask Johan.

Lab 1: base = 4.19.2.0

e [he autograder uses this.
e Bump at your own risk.
Werkcollege today: 5Scp bonus
e Work on lab 1 or exercises.

Today: last parsing lecture before Lab 1

Previously...
String

e.g.
Groningen §&:3/7
18:15 Utrecht 18:21

11:85 Den Haag 11:23
11:34 Letiden

Previously...
Language

e.g.
“the set of all well-formed travel
schedules”

Previously...

Grammar
e.g.
S — Start Wait™ End
Start — StationName Time

Wait — Time StationName T[ime
End — Time StationName

e.g.

Previously...
Abstract Syntax

data TSched = TSched
{ start ::

, Walts
, end

5

o [(Tir

(String, Time)

le, Strir

(Tir

1e, Strir

g, Time)]
9)

Previously...
Parsers
e.g.

parselSched :: String
— [(TSched, String)]

ON O N O DN —

(A A A A A A
l
N N N N

Quiz: parser for travel schedules?

Groningen 8:37
18:15 Utrecht 18:21 wooclap.com PEQPEH

11:85 Den Haag 11.23
11:34 Letiden

many (pStart <[> pWait <[> pEnd)
TSched <$> (many (pStart <> pWait <> pEnd))
TSched <$> pStart <*> pWaits <*> pEnc
TSched <$> pStart <*> many pWait <*> pEnd
TSched <$> pStart <$> many pWait <$> pEnc
TSched <*> pStart <$ many pWait <* pEnd

Not 1

many :: ... —> Parser ¢ [a]

—- many (pStart <> pWait <> pEnd)
TSched <$> (many (pStart <> pWait <> pEnd))
TSched <$> pStart <*> pWaits <*> pEnc
TSched <$> pStart <*> many pWait <*> pEnd
TSched <$> pStart <$> many pWait <$> pEnc
TSched <*> pStart <$ many pWait <* pEnd

R Eae Eane S
oON O N LW DM
v e e o
w
o

Not 2

TSched :: ... => ... = ... = TISched
many :: ... —> Parser ¢ [a]

—- many (pStart <> pWait <> pEnd)

- TSched <$> (many (pStart <> pWait <> pEnd))
TSched <$> pStart <> pWaits <*> pEnc
TSched <$> pStart <*> many pWait <*> pEnd
TSched <$> pStart <$> many pWait <$> pEnd
TSched <*> pStart <$ many pWait <$ pEnd

I\N-\I\M\I\’I&-\f\‘\—‘

oON O AN W
l

N N

Yes 3,4

TSched :: ... => ... = ... = TISched
many :: ... —> Parser ¢ [a]

—- many (pStart <> pWait <> pEnd)
—- TSched <$> (many (pStart <> pWait <> pEnd))

[~ C -} TSched <$> pStart <> pWaits <*> pEnd
{- D -} TSched <$> pStart <*> many pWait <*> pEnc
{- E -} TSched <$> pStart <$> many pWait <$> pEnc
{- F -} TSched <*> pStart <§ many pWait <$ pEnoc

Not 5,6

ISched :: ... =»> ... = ... = ISched

infixl (<$>) :: (a = b) = Parser ¢ a = Parser c b
infixl (<*>) :: Parser ¢ (a = b) — Parser ¢ a = Parser ¢ b
infixl (<$) :: a —> Parser ¢ b = Parser ¢ a

infixl (<*) :: Parser ¢ a = Parser ¢ b = Parser ¢ a

—- many (pTStart <> pTEnd <[> pTLine)
- TSched <$> (many (pTStart <> pTEnd <> pTlLine))
{- 3 -} TSched <$> pStart <*> pTLine <> pWaits <*> pEnd
{- 4 -} TSched <$> pStart <*> pTLine <*> many pWait <*> pEnd
- TSched <$> pStart <$> pTLine <$> many pWait <$> pEnd
- TSched <*> pStart <§ pTlLine <*> many pWait <§ pEnd

Combinator zoo

(<$>) :: (a = b) = Parser ¢ a = Parser ¢ b
(<%>) :: Parser ¢ (a = b) — Parser ¢ a = Parser ¢ b
(<$) :: a —> Parser ¢ b = Parser c a

(<x) :: Parser ¢ a = Parser ¢ b — Parser ¢ a

Combinator zoo, abbreviated

(<$>) :: (a > b) = fa—
(<x>) & f(a—>bh) — fa—>
(<$) :: a — fb—>fa
(<*) fa-— fbh—>fa

-H b
o O

Combinator zoo, grouped

(<$>) :: (a = bh) = fa—
(<x>) :: f (a—>bh) — fa—
(<$) :: a — fb—>fa
(<x) & fa— fb—>fa

Combinator zoo, expanded

($) =
(<$>) ::
(<*>) ::

(<$)
(<)

(a =>b) =

(a—=>h) = f
f (a—>bh) — f
a —> fb—>f
fa— fb—>f

AR 2R

Combinator zoo, expanded

($) =
(<$>) ::
(<*>) ::

const
(<$)
(<x)

(a =
(a =
f (a =

q =
9 =
fa—

) =
) =

) =

H —>
0 > f

p > f

a —
a —
a —

Combinator zoo, classified

-- Application-Llike

($) :: (a > b) = a —
(<$>) :: (a = b)) = fa—
(<x>) :: f (a—>bh) - fa—
-— Const-Llike
const :: a — D —> a
(<$) :: a — fb—> fa
(<x) & fa— fb—>fa

($) =
(<$>) ::

(<x>) ::

More combinators?

(a =
(a =
f (a =

) =
) =

) =

a —
fa—
fa—

More combinators.

-- Application-Llike
($) ::
(<$>) ::
(<x>) ::
flap ::

(a =
(a =
f (a =
f (a =

) =
) =
) =

) =

a =
fa-—

fa—
q =

—H

O O O O

More combinators.

-- Application-Llike

($) :: (a = b) =
(<$>) :: (a > b) =
(<x>) f(a—>bh)—
flap :: f (a—=>h) -
(=) :: (a > fbh) -

2R 2R 2R 2R

Flipped combinators.

-- Application-Llike

($) :: (a = b) =

(<$>) :: (a > b) = f
(<x>) f (a—=>bh) = f
flap :: f (a—=>h) -

(=) :: (a —> fh) > f

-- Application-like, arguments flipped

(&) :: a — (a > b) =
(<&) :: fa— (a = b) =
(<x*x>) & f g > f (a—>h) —
(?77) = a — f (a—>b) >
(>=) :: fa— (a—> fbh) >

- —h —h b
Q O O O O

- —h —h —b

O O O O O

(>>=) allows more flexible parsing

Example: matrices

3 3 6 3 98 32 5 949 1 6
5 7 18 7 8 45 4 § 272 9 8
1 2 2 6 2963 8 1 2

Numer of columns constant but not known 1in
advance.

parseMatrix :: Parser Char [[Int]]
parseMatrix = parseRowOfAnyLength >= \r —
(r :) <$> parseRowsOfFixedLength (length r)

+
|
+
|
+
|
+
|
+

0

Example: IPv4 packets

1 2 3

8123456789012345678968123456728980°1

+—+—+—t—Ft—t—F—F—F—F—F—F—F+—F+—F—F—F—Ft—Ft—t—F—F—F—F—F—F—F—F—F—+—+—+—

|Version|
t—t—t—t—t—t—F—F—F—F—F—F—F—F—F—F =t —t—tb—t—b—f = —F—F—F—F—F—F—F —F—

Identification

IHL

| Type of Servicel| Total Length

|Flags| Fragment Offset

—+—+—+—+—-+—-+—-+—-+—-+—+—+—+—t+—+—F+—F+—+—+—F+—F+—+—+—F+—F+—+—+—F+—F+—+—+—+-
Time

e e

s s

- —

s ah

+

+

+

+

+

+

+

+

to Live |

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Protocol | Header Checksum
—+—+—+—-+—+—+—+—F+—+—F—+—+—F+—F—F+—+—t+—+—F+—F+—F+—+—+—+-—
Source Address
—+—+—+—-+—+—+—+—F+—+—F+—+—+—F+—F—F+—F+—+—+—F+—+—F+—+—+—+-—
Destination Address
—+—+—t+—+—+—t+—t+—F—t—F+—F—+—F+—F—t—t+—F—t—F+—F—+—+—+—+—
Options | Padding

—+—t—t—t—t—t—t—t—t—t—F—t—F -ttt -ttt -ttt —+—+—

+
|
+
|
+
|
+
|
+
|
+
|
+

Payload length not known 1n advance.

parselpPacket : Parser Byte IpPacket
parselpPacket = parselpHeader >= \h —
(IpPacket h) <$> parseIpPayload (h .totallength)

Example: nestable markdown divs
criiisiiis columns

[](duck.png)

;i1 bold

parseMarkdown :: Int — Parser Line MarkdownBlock
parseMarkdown d = text <[> image <I> (parseDivHeaderShorterThan d >= \h —
Div h <$> many (parseMarkdown (h .length))
<*> parseDivFooter (h .length))

Haskell has special syntax for (>>=)

do foo >»>= (\a =
a < foo bar >= (\b —

b < bar baz))
baz

Quiz: grammar of well-formed matrices?

3 3 6 3 9 832 59 49 7 6
Hh 7 1 8 7 8 4 5 4 8 27 9 8
] 2 2 6 29 6 3 8] 2
1. Matrix — Int**
5" Matriy — Int* Tnp** wooclap.com PEQPEH
3. Matrix = Int*
4. Matrix — Row Row™

Row = Int Int™

Answer: none of the above!

The matrix language 1s not
context-free.

(>>=) can parse it anyway.
Sometimes (>>=) can be avoided,
e.g.

o parseMatrix = many (many integer)
o Check row-length later

Back to (>>=)-free parsers

(y,) ::

Quiz: parser for wait lines?

<$>
*

A A A
* oF
vV Vv

N\
V

N’ N N NN\

12
1
1
1
1
1

NN 7NTNTNN

b
b

A
V

16:15 Utrecht

a—>b—>c¢c—

parse

narsel
narsel
narsel
narsel

narsel

10:21

(a,b,c)
Time <$>
ime <$>
ime <$>
ime <$
ime <*>
ime <*

wooclap.com

narseString
narseString
narseString
narsedtring
narseString

narseString

<$>
<$>
<$>
<$
<HD>
<%

narsel
narsel
parsel
narsel
parsel

narsel

PEQPEH

ime
ime
ime
ime
ime
ime

“Applicative style”
18:15 Utrecht 10:21

,) <$> parseTime <$> parseString <$> parseTime
,) <* parseTime <$> parseString <$> parseTime
,) <*> parselime <$> parseString <$> parseTime
,) <*> parseTime <$ parseString <§ parseTime
,) <$> parseTime <*> parseString <*> parseTime
,) <$> parseTime <* parseString <* parselime

Easy enough?
"10:15 Utrecht 10:21"

(,,) <$%> parseTime
<#> parseString
<#> parselime
:: Parser Char (Time,String,Time)

Whitespace trouble

"108:15 Utrecht 108:21"

(,,) <$%> parseTime
<#> parseString
<#> parselime
:: Parser Char (Time,String,Time)

(AM 18 15, " Utrecht ", AM 18 21)

Whitespace lexed away

1"10:15","Utrecht","10:21"]

(,,) <$%> parseTime
<#> parseString
<#> parselime
:: Parser String (Time,String,Time)

(AM 18 15, "Utrecht" , AM 18 21)

Lexing can be 1nconvenient
["10:15","Den","Haag","10:21"]

(,,) <$> parseTime
<#> parseString
<#> parselime
:: Parser String (Time,String,Time)

No parse.

Whitespace parsing
"10:15 Utrecht 10:21"

(,,) <$> parseTime <* some space
<*> parseString <* some space
<#> parselime

:: Parser Char (Time,String,Time)

(AM 18 15, "Utrecht" , AM 18 21)

Demo time

wooclap.com PEQPEH

import Parselib.Derived Quiz: what does GHCi return?
ghci> parse tline "10:15 Utrecht 16:21"

time :: Parser Char Time
time = AM
<$> natural <* symbol ':'
<*> patural

symbol '
many anySymbol

space
string

tline :: Parser Char
(Time,String,Time)
tline = (,,)
<$> time <* some space
<*> string <* some space
<x> time <x eof

Too

time :: Parser Char Time
time = AM
<$> natural <* symbol ':'
<*> natural

space = symbol ' '
string = many anySymbol

tline :: Parser Char
(Time,String,Time)
tline = (,,)
<$> time <* some space
<x> string <* some space
<x> time <x eof

many results!

wooclap.com PEQPEH

Quiz: what does GHCi return?
hci> parse tline "10:15 Utrecht 10:21"
? AM 10 15,"Utrecht ",AM 10 21),"")
AM 10 15 "Utrecht " AM 18 21), "”)

AM 10 15 "Utrecht" AM 18 21), "")]
Qu1z why are too many parses returned?

Definition of some

some :: Parser ¢ a — Parser c¢ [a]
some p = (:) <$> p <*> many p

many :: Parser ¢ a = Parser ¢ [a]
many p = some p <> succeed []

Expanding some

some space
= (:) <$> space <*> many space
= (:) <$> space <*> (some space
<[> succeed [])
= (:) <$> space <*> ((:) <$> space <*> many space
<[> succeed [])
= (:) <$> space <*> ((:) <$> space <*> (some space
<[> succeed [])
<[> succeed [])

Expanding some

some space

= (:) <$> space <*> ((:) <$> space <*> ((:) <$> space <*> some space))
<> (:) <$> space <> ((:) <$> space <*> ((:) <$> space <*> succeed []))
<> (:) <$> space <> ((:) <$> space <*> succeed [])

<> (:) <$> space <*> succeed []

<I> takes results from both parsers

some space

= (:) <$> space <*> ((:) <$> space <*> ((:) <$> space <*> some space))
<> (:) <$> space <> ((:) <$> space <*> ((:) <$> space <*> succeed []))
<> (:) <$> space <> ((:) <$> space <*> succeed [])

<> (:) <$> space <*> succeed []

(<I>) :: Parser s a = Parser s a = Parser s a
(p1 <> p2) s = (p1 s) ++ (p2 s)

But we only want the first result!

<<|> avoids calling second parser

some space

= (:) <$> space <*> ((:) <$> space <*> ((:) <$> space <*> some space))
<> (:) <$> space <> ((:) <$> space <*> ((:) <$> space <*> succeed []))
<> (:) <$> space <> ((:) <$> space <*> succeed [])

<> (:) <$> space <*> succeed []

(<I>) :: Parser s a = Parser s a = Parser s a
(p1 <> p2) s = (p1 s) ++ (p2 s)

(<<>) :: Parser s a = Parser s a = Parser s a
(p1 <<> p2) s = if (p1 s) /= [] then (p1 s) else (p2 s)

Definition of greedy,greedyT

greedyl :: Parser ¢ a = Parser ¢ [a]
greedyl p = (:) <$> p <*> greedy p

greedy :: Parser ¢ a = Parser ¢ [a
greedy p = greedyl p <<|> succeed [

Quiz: which parsers always return
exactly 1 result?

many space wooclap.com PEQPEH
greedy space

(greedy space <* greedy space)
(greedy space <* many space)
(many space <* greedy space)
(many (greedy space))

(greedy (greedy space))

(greedy empty)

(many empty)

These parsers always return exactly 1
result

greedy space
(greedy space <* greedy space)
(greedy space <* many space)

(greedy (greedy space))

(many empty) recurses forever

(many empty)
= some empty <[> succeed []

(many empty) recurses forever

(many empty)

some empty <> succeed []
((:) <$> empty <*> many empty) <> succeed []

(many empty) recurses forever

(many empty)

= some empty <[> succeed []

= ((:) <$> empty <*> many empty) <> succeed []
= (map (():) (many empty)) <> succeed []

(many empty) recurses forever

(many empty)

= some empty <[> succeed []
= ((:) <$> empty <*> many empty) <> succeed |]
= (map (():) (many empty)) <> succeed [_
= (map (():) (.cvvnnnn..)) <> succeed [_

(many empty) recurses forever

(many empty)

= some empty <[> succeed []
= ((:) <$> empty <*> many empty) <> succeed |]
= (map (():) (many empty)) <> succeed [_
= (map (():) (.cvvnnnn..)) <> succeed [_

e Laziness was not enough!

(many empty) recurses forever

(many empty)

= some empty <[> succeed []
= ((:) <$> empty <*> many empty) <> succeed |]
= (map (():) (many empty)) <> succeed [_
= (map (():) (.cvvnnnn..)) <> succeed [_

e Laziness was not enough!
e Beware left-recursion.

Summary (today)

(>=), (<=>), (<$>), ($)

(<), (<$), const

greedy, many
Excess results
Left-recursion

o1 N~ GO PO —

How to build parsers

. Design grammar

. Write parser

. Discover bugs

. Fix parser, transform grammar

. GOTO 3

	Parser Design
	common pitfalls, and how to avoid them

	Announcements
	Lab 1: Group registration
	Lab 1: base == 4.19.2.0
	Werkcollege today: 5cp bonus

	Today: last parsing lecture before Lab 1
	Previously…
	String

	Previously…
	Language

	Previously…
	Grammar

	Previously…
	Abstract Syntax

	Previously…
	Parsers

	Quiz: parser for travel schedules?
	Not 1
	Not 2
	Yes 3,4
	Not 5,6
	Combinator zoo
	Combinator zoo, abbreviated
	Combinator zoo, grouped
	Combinator zoo, expanded
	Combinator zoo, expanded
	Combinator zoo, classified
	More combinators?
	More combinators.
	More combinators.
	Flipped combinators.
	(>>=) allows more flexible parsing
	Example: matrices
	Example: IPv4 packets
	Example: nestable markdown divs
	Haskell has special syntax for (>>=)
	Quiz: grammar of well-formed matrices?
	Answer: none of the above!
	Back to (>>=)-free parsers
	Quiz: parser for wait lines?
	“Applicative style”
	Easy enough?
	Whitespace trouble
	Whitespace lexed away
	Lexing can be inconvenient
	Whitespace parsing
	Demo time
	Quiz: what does GHCi return?

	Too many results!
	Quiz: what does GHCi return?
	Quiz: why are too many parses returned?

	Definition of some
	Expanding some
	Expanding some
	<|> takes results from both parsers
	<<|> avoids calling second parser
	Definition of greedy,greedy1
	Quiz: which parsers always return exactly 1 result?
	These parsers always return exactly 1 result
	(many empty) recurses forever
	(many empty) recurses forever
	(many empty) recurses forever
	(many empty) recurses forever
	(many empty) recurses forever
	(many empty) recurses forever
	Summary (today)
	How to build parsers

