Parser Design
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common pitfalls, and how to avoid them




Announcements

Lab 1: Group registration
e Ask Johan.

Lab 1: base = 4.19.2.0

e [he autograder uses this.
e Bump at your own risk.
Werkcollege today: 5Scp bonus
e Work on lab 1 or exercises.



Today: last parsing lecture before Lab 1




Previously...
String

e.g.
Groningen §&:3/7
18:15 Utrecht 18:21

11:85 Den Haag 11:23
11:34 Letiden



Previously...
Language

e.g.
“the set of all well-formed travel
schedules”



Previously...

Grammar
e.g.
S — Start Wait™ End
Start — StationName Time

Wait — Time StationName T[ime
End — Time StationName



e.g.

Previously...
Abstract Syntax

data TSched = TSched
{ start ::

, Walts
, end

5

o [ (Tir

(String, Time)

le, Strir

(Tir

1e, Strir

g, Time)]
9)



Previously...
Parsers
e.g.

parselSched :: String
— [(TSched, String)]
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Quiz: parser for travel schedules?

Groningen 8:37
18:15 Utrecht  18:21 wooclap.com PEQPEH

11:85 Den Haag 11.23
11:34 Letiden

many (pStart <[> pWait <[> pEnd)
TSched <$> (many (pStart <> pWait <> pEnd))
TSched <$> pStart <*> pWaits <*> pEnc
TSched <$> pStart <*> many pWait <*> pEnd
TSched <$> pStart <$> many pWait <$> pEnc
TSched <*> pStart <$ many pWait <* pEnd




Not 1

many :: ... —> Parser ¢ [a]

—- many (pStart <> pWait <> pEnd)
TSched <$> (many (pStart <> pWait <> pEnd))
TSched <$> pStart <*> pWaits <*> pEnc
TSched <$> pStart <*> many pWait <*> pEnd
TSched <$> pStart <$> many pWait <$> pEnc
TSched <*> pStart <$ many pWait <* pEnd
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Not 2

TSched :: ... => ... = ... = TISched
many :: ... —> Parser ¢ [a]

—- many (pStart <> pWait <> pEnd)

- TSched <$> (many (pStart <> pWait <> pEnd))
TSched <$> pStart <> pWaits <*> pEnc
TSched <$> pStart <*> many pWait <*> pEnd
TSched <$> pStart <$> many pWait <$> pEnd
TSched <*> pStart <$ many pWait <$ pEnd
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Yes 3,4

TSched :: ... => ... = ... = TISched
many :: ... —> Parser ¢ [a]

—- many (pStart <> pWait <> pEnd)
—- TSched <$> (many (pStart <> pWait <> pEnd))

[~ C -} TSched <$> pStart <> pWaits <*> pEnd
{- D -} TSched <$> pStart <*> many pWait <*> pEnc
{- E -} TSched <$> pStart <$> many pWait <$> pEnc
{- F -} TSched <*> pStart <§ many pWait <$ pEnoc




Not 5,6

ISched :: ... =»> ... = ... = ISched

infixl (<$>) :: (a = b) = Parser ¢ a = Parser c b
infixl (<*>) :: Parser ¢ (a = b) — Parser ¢ a = Parser ¢ b
infixl (<$) :: a —> Parser ¢ b = Parser ¢ a

infixl (<*) :: Parser ¢ a = Parser ¢ b = Parser ¢ a

—- many (pTStart <> pTEnd <[> pTLine)
- TSched <$> (many (pTStart <> pTEnd <> pTlLine))
{- 3 -} TSched <$> pStart <*> pTLine <> pWaits <*> pEnd
{- 4 -} TSched <$> pStart <*> pTLine <*> many pWait <*> pEnd
- TSched <$> pStart <$> pTLine <$> many pWait <$> pEnd
- TSched <*> pStart <§ pTlLine <*> many pWait <§ pEnd



Combinator zoo

(<$>) :: (a = b) = Parser ¢ a = Parser ¢ b
(<%>) :: Parser ¢ (a = b) — Parser ¢ a = Parser ¢ b
(<$) :: a —> Parser ¢ b = Parser c a

(<x) :: Parser ¢ a = Parser ¢ b — Parser ¢ a



Combinator zoo, abbreviated

(<$>) :: (a > b) = fa—
(<x>) & f(a—>bh) — fa—>
(<$) :: a — fb—>fa
(<*) fa-— fbh—>fa

-H b
o O



Combinator zoo, grouped

(<$>) :: (a = bh) = fa—
(<x>) :: f (a—>bh) — fa—
(<$) :: a — fb—>fa
(<x) & fa— fb—>fa



Combinator zoo, expanded

($) =
(<$>) ::
(<*>) ::

(<$)
(<)

(a =>b) =

(a—=>h) = f
f (a—>bh) — f
a —> fb—>f
fa— fb—>f
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Combinator zoo, expanded

($) =
(<$>) ::
(<*>) ::

const
(<$)
(<x)

(a =
(a =
f (a =

q =
9 =
fa—

) =
) =

) =

H —>
0 > f

p > f

a —
a —
a —




Combinator zoo, classified

-- Application-Llike

($) :: (a > b) = a —
(<$>) :: (a = b)) = fa—
(<x>) :: f (a—>bh) - fa—
-— Const-Llike
const :: a — D —> a
(<$) :: a — fb—> fa
(<x) & fa— fb—>fa




($) =
(<$>) ::

(<x>) ::

More combinators?

(a =
(a =
f (a =

) =
) =

) =

a —
fa—
fa—




More combinators.

-- Application-Llike
($) ::
(<$>) ::
(<x>) ::
flap ::

(a =
(a =
f (a =
f (a =

) =
) =
) =

) =

a =
fa-—

fa—
q =

—H
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More combinators.

-- Application-Llike

($) :: (a = b) =
(<$>) :: (a > b) =
(<x>) f(a—>bh)—
flap :: f (a—=>h) -
(=) :: (a > fbh) -

2R 2R 2R 2R



Flipped combinators.

-- Application-Llike

($) :: (a = b) =

(<$>) :: (a > b) = f
(<x>) f (a—=>bh) = f
flap :: f (a—=>h) -

(=) :: (a —> fh) > f

-- Application-like, arguments flipped

(&) :: a — (a > b) =
(<&) :: fa— (a = b) =
(<x*x>) & f g > f (a—>h) —
(?77) = a — f (a—>b) >
(>=) :: fa— (a—> fbh) >

- —h —h b
Q O O O O

- —h —h —b
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(>>=) allows more flexible parsing



Example: matrices

3 3 6 3 98 32 5 949 1 6
5 7 18 7 8 45 4 § 272 9 8
1 2 2 6 2963 8 1 2

Numer of columns constant but not known 1in
advance.

parseMatrix :: Parser Char [[Int]]
parseMatrix = parseRowOfAnyLength >= \r —
(r :) <$> parseRowsOfFixedLength (length r)
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Example: IPv4 packets

1 2 3

8123456789012345678968123456728980°1

+—+—+—t—Ft—t—F—F—F—F—F—F—F+—F+—F—F—F—Ft—Ft—t—F—F—F—F—F—F—F—F—F—+—+—+—
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Protocol | Header Checksum
—+—+—+—-+—+—+—+—F+—+—F—+—+—F+—F—F+—+—t+—+—F+—F+—F+—+—+—+-—
Source Address
—+—+—+—-+—+—+—+—F+—+—F+—+—+—F+—F—F+—F+—+—+—F+—+—F+—+—+—+-—
Destination Address
—+—+—t+—+—+—t+—t+—F—t—F+—F—+—F+—F—t—t+—F—t—F+—F—+—+—+—+—
Options | Padding
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Payload length not known 1n advance.

parselpPacket : Parser Byte IpPacket
parselpPacket = parselpHeader >= \h —
(IpPacket h) <$> parseIpPayload (h .totallength)



Example: nestable markdown divs
criiisiiis columns

[ ](duck.png)

;i1 bold

parseMarkdown :: Int — Parser Line MarkdownBlock
parseMarkdown d = text <[> image <I> (parseDivHeaderShorterThan d >= \h —
Div h <$> many (parseMarkdown (h .length))
<*> parseDivFooter (h .length) )



Haskell has special syntax for (>>=)

do foo >»>= (\a =
a < foo bar >= (\b —

b < bar baz ))
baz



Quiz: grammar of well-formed matrices?

3 3 6 3 9 832 59 49 7 6
Hh 7 1 8 7 8 4 5 4 8 27 9 8
] 2 2 6 29 6 3 8 ] 2
1. Matrix — Int**
5" Matriy — Int* Tnp** wooclap.com PEQPEH
3. Matrix = Int*
4. Matrix — Row Row™

Row = Int Int™



Answer: none of the above!

The matrix language 1s not
context-free.

(>>=) can parse it anyway.
Sometimes (>>=) can be avoided,
e.g.

o parseMatrix = many (many integer)
o Check row-length later



Back to (>>=)-free parsers



(y,) ::

Quiz: parser for wait lines?

<$>
*
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16:15 Utrecht

a—>b—>c¢c—

parse

narsel
narsel
narsel
narsel

narsel

10:21

(a,b,c)
Time <$>
ime <$>
ime <$>
ime <$
ime <*>
ime <*

wooclap.com

narseString
narseString
narseString
narsedtring
narseString

narseString

<$>
<$>
<$>
<$
<HD>
<%

narsel
narsel
parsel
narsel
parsel

narsel

PEQPEH

ime
ime
ime
ime
ime
ime



“Applicative style”
18:15 Utrecht 10:21

,) <$> parseTime <$> parseString <$> parseTime
,) <* parseTime <$> parseString <$> parseTime
,) <*> parselime <$> parseString <$> parseTime
,) <*> parseTime <$ parseString <§ parseTime
,)  <$> parseTime <*> parseString <*> parseTime
,) <$> parseTime <* parseString <* parselime



Easy enough?
"10:15 Utrecht 10:21"

(,,) <$%> parseTime
<#> parseString
<#> parselime
:: Parser Char (Time,String,Time)



Whitespace trouble

"108:15 Utrecht 108:21"

(,,) <$%> parseTime
<#> parseString
<#> parselime
:: Parser Char (Time,String,Time)

(AM 18 15, " Utrecht ", AM 18 21)



Whitespace lexed away

1"10:15","Utrecht","10:21" ]

(,,) <$%> parseTime
<#> parseString
<#> parselime
:: Parser String (Time,String,Time)

(AM 18 15, "Utrecht" , AM 18 21)



Lexing can be 1nconvenient
["10:15","Den","Haag","10:21" ]

(,,) <$> parseTime
<#> parseString
<#> parselime
:: Parser String (Time,String,Time)

No parse.



Whitespace parsing
"10:15 Utrecht 10:21"

(,,) <$> parseTime <* some space
<*> parseString <* some space
<#> parselime

:: Parser Char (Time,String,Time)

(AM 18 15, "Utrecht" , AM 18 21)



Demo time

wooclap.com PEQPEH

import Parselib.Derived Quiz: what does GHCi return?
ghci> parse tline "10:15 Utrecht 16:21"

time :: Parser Char Time
time = AM
<$> natural <* symbol ':'
<*> patural

symbol '
many anySymbol

space
string

tline :: Parser Char
(Time,String,Time)
tline = (,,)
<$> time <* some space
<*> string <* some space
<x> time <x eof



Too

time :: Parser Char Time
time = AM
<$> natural <* symbol ':'
<*> natural

space = symbol ' '
string = many anySymbol

tline :: Parser Char
(Time,String,Time)
tline = (,,)
<$> time <* some space
<x> string <* some space
<x> time <x eof

many results!

wooclap.com PEQPEH

Quiz: what does GHCi return?
hci> parse tline "10:15 Utrecht 10:21"
? AM 10 15,"Utrecht ",AM 10 21),"")
AM 10 15 "Utrecht " AM 18 21), "”)

AM 10 15 "Utrecht" AM 18 21), "")]
Qu1z why are too many parses returned?



Definition of some

some :: Parser ¢ a — Parser c¢ [a]
some p = (:) <$> p <*> many p

many :: Parser ¢ a = Parser ¢ [a]
many p = some p <> succeed []



Expanding some

some space
= (:) <$> space <*> many space
= (:) <$> space <*> (some space
<[> succeed [])
= (:) <$> space <*> ((:) <$> space <*> many space
<[> succeed [])
= (:) <$> space <*> ((:) <$> space <*> (some space
<[> succeed [])
<[> succeed [])



Expanding some

some space

= (:) <$> space <*> ((:) <$> space <*> ((:) <$> space <*> some space))
<> (:) <$> space <> ((:) <$> space <*> ((:) <$> space <*> succeed []))
<> (:) <$> space <> ((:) <$> space <*> succeed [])

<> (:) <$> space <*> succeed []



<I> takes results from both parsers

some space

= (:) <$> space <*> ((:) <$> space <*> ((:) <$> space <*> some space))
<> (:) <$> space <> ((:) <$> space <*> ((:) <$> space <*> succeed []))
<> (:) <$> space <> ((:) <$> space <*> succeed [])

<> (:) <$> space <*> succeed []

(<I>) :: Parser s a = Parser s a = Parser s a
(p1 <> p2) s = (p1 s) ++ (p2 s)

But we only want the first result!



<<|> avoids calling second parser

some space

= (:) <$> space <*> ((:) <$> space <*> ((:) <$> space <*> some space))
<> (:) <$> space <> ((:) <$> space <*> ((:) <$> space <*> succeed []))
<> (:) <$> space <> ((:) <$> space <*> succeed [])

<> (:) <$> space <*> succeed []

(<I>) :: Parser s a = Parser s a = Parser s a
(p1 <> p2) s = (p1 s) ++ (p2 s)

(<<>) :: Parser s a = Parser s a = Parser s a
(p1 <<> p2) s = if (p1 s) /= [] then (p1 s) else (p2 s)



Definition of greedy,greedyT

greedyl :: Parser ¢ a = Parser ¢ [a]
greedyl p = (:) <$> p <*> greedy p

greedy :: Parser ¢ a = Parser ¢ [a
greedy p = greedyl p <<|> succeed [




Quiz: which parsers always return
exactly 1 result?

many  space wooclap.com PEQPEH
greedy space

(greedy space <* greedy space)
(greedy space <* many space)
(many space <* greedy space)
(many (greedy space))

(greedy (greedy space))

(greedy empty)

(many empty)




These parsers always return exactly 1
result

greedy space
(greedy space <* greedy space)
(greedy space <* many space)

(greedy (greedy space))



(many empty) recurses forever

(many empty)
= some empty <[> succeed []



(many empty) recurses forever

(many empty)

some empty <> succeed []
((:) <$> empty <*> many empty) <> succeed []



(many empty) recurses forever

(many empty)

= some empty <[> succeed []

= ((:) <$> empty <*> many empty) <> succeed []
= (map (():) (many empty)) <> succeed []



(many empty) recurses forever

(many empty)

= some empty <[> succeed []
= ((:) <$> empty <*> many empty) <> succeed | ]
= (map (():) (many empty)) <> succeed [_
= (map (():) (.cvvnnnn.. )) <> succeed [_




(many empty) recurses forever

(many empty)

= some empty <[> succeed []
= ((:) <$> empty <*> many empty) <> succeed | ]
= (map (():) (many empty)) <> succeed [_
= (map (():) (.cvvnnnn.. )) <> succeed [_

e Laziness was not enough!



(many empty) recurses forever

(many empty)

= some empty <[> succeed []
= ((:) <$> empty <*> many empty) <> succeed | ]
= (map (():) (many empty)) <> succeed [_
= (map (():) (.cvvnnnn.. )) <> succeed [_

e Laziness was not enough!
e Beware left-recursion.



Summary (today)

(>=), (<=>), (<$>), ($)

(<), (<$), const

greedy, many
Excess results
Left-recursion
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How to build parsers

. Design grammar

. Write parser

. Discover bugs

. Fix parser, transform grammar

. GOTO 3
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