
Regexp

Recap: parser combinators (1/3)

type Parser s a = [s] → [(a,[s])]
parseDate :: Parser Char Date
<$> :: (a → b) → Parser s a → Parser s b
<*> :: Parser s (a → b) → Parser s a → Parser s b
=<< :: (a → Parser s b) → Parser s a → Parser s b
<$:: a → Parser s b → Parser s a
<* :: Parser s a → Parser s b → Parser s a

Recap: parser combinators (2/3)

symbol :: (Eq s) => s → Parser s s
token :: (Eq s) => [s] → Parser s [s]
satisfy :: (s → Bool) → Parser s s
fail :: Parser s a
epsilon :: Parser s ()
return :: a → Parser s a
option :: a → Parser s a → Parser s a

Recap: parser combinators (3/3)

<|> :: Parser s a → Parser s a → Parser s a
<<|> :: Parser s a → Parser s a → Parser s a
many :: Parser s a → Parser s [a]
many1 :: Parser s a → Parser s [a]
greedy :: Parser s a → Parser s [a]
greedy1 :: Parser s a → Parser s [a]

Objections to Parser Combinators
😧 “Too many functions”

“I hate types”

“My other code is C”

“Didn’t work in search bar”

A simple subset

<|> :: Parser s a → Parser s a → Parser s a
<*> :: Parser s (a → b) → Parser s a → Parser s b
many :: Parser s a → Parser s [a]
many1 :: Parser s a → Parser s [a]
option :: a → Parser s a → Parser s a
symbol :: (Eq s) => s → Parser s s
satisfy :: (s → Bool) → Parser s s

A simpler subset (1/9)

<|> :: Parser Char a → Parser Char a → Parser Char a
<*> :: Parser Char (a → b) → Parser Char a → Parser Char b
many :: Parser Char a → Parser Char [a]
many1 :: Parser Char a → Parser Char [a]
option :: a → Parser Char a → Parser Char a
symbol :: Char → Parser Char Char
satisfy :: (Char → Bool) → Parser Char Char

A simpler subset (2/9)

<|> :: P a → P a → P a
<*> :: P (a → b) → P a → P b
many :: P a → P [a]
many1 :: P a → P [a]
option :: a → P a → P a
symbol :: Char → P Char
satisfy :: (Char → Bool) → P Char

type P a = Parser Char a

A simpler subset (3/9)

<|> :: P a → P a → P a
<,> :: P a → P b → P (a,b)
many :: P a → P [a]
many1 :: P a → P [a]
option :: a → P a → P a
symbol :: Char → P Char
satisfy :: (Char → Bool) → P Char

type P a = Parser Char a

A simpler subset (4/9)

<|> :: P String → P String → P String
<,> :: P String → P String → P (String,String)
many :: P String → P [String]
many1 :: P String → P [String]
option :: String → P String → P String
symbol :: Char → P String
satisfy :: (Char → Bool) → P String

type P a = Parser Char a

A simpler subset (5/9)

<|> :: P String → P String → P String
<+> :: P String → P String → P String
many :: P String → P [String]
many1 :: P String → P [String]
option :: String → P String → P String
symbol :: Char → P String
satisfy :: (Char → Bool) → P String

type P a = Parser Char a

A simpler subset (6/9)

<|> :: P String → P String → P String
<+> :: P String → P String → P String
many :: P String → P String
many1 :: P String → P String
option :: String → P String → P String
symbol :: Char → P String
satisfy :: (Char → Bool) → P String

type P a = Parser Char a

A simpler subset (7/9)

<|> :: P String → P String → P String
<+> :: P String → P String → P String
many :: P String → P String
many1 :: P String → P String
option :: P String → P String
symbol :: Char → P String
satisfy :: (Char → Bool) → P String

type P a = Parser Char a

A simpler subset (8/9)

<|> :: R → R → R
<+> :: R → R → R
many :: R → R
many1 :: R → R
option :: R → R
symbol :: Char → R
satisfy :: (Char → Bool) → R

type R = Parser Char String

A simpler subset (9/9)

<|> :: R → R → R
<+> :: R → R → R
many :: R → R
many1 :: R → R
option :: R → R
symbol :: Char → R
satisfy :: (Char → Bool) → R

type R = Parser Char String

Progress on Objections
😧 “Too many functions” ✅

“I hate types” ✅

“My other code is C” ✅

“Didn’t work in search bar” 👈

More concise (1/4)

-- Haskell types
<|> :: R → R → R
<+> :: R → R → R
many :: R → R
many1 :: R → R
option :: R → R
symbol :: Char → R
satisfy :: (Char → Bool) → R

More concise (2/4)

-- Haskell
p₁ <|> p₂
p₁ <+> p₂
many p
many1 p
option p
symbol c
satisfy q

More concise (3/4)

-- Haskell
p₁ <|> p₂
p₁ <+> p₂
many p
many1 p
option p
symbol c
satisfy q

-- Regular expression
r₁|r₂
r₁r₂
r*
r+
r?
c

More concise (4/4)

-- Haskell
p₁ <|> p₂
p₁ <+> p₂
many p
many1 p
option p
symbol c
satisfy isDigit
satisfy isWhitespace
satisfy (`elem` ['a'..'z'])
satisfy (const True)

-- Regular expression
r₁|r₂
r₁r₂
r*
r+
r?
c
\d
\s
[a-z]
.

Quiz: which regexp?

APDPDO

Don’t parse HTML with regexp

Regular Languages

A regular language is matched by
some regular expression

Regular languages ⊂ Context-Free languages

See board

Regular Grammar

Regular grammars ⊂ Context-Free grammars

See board

Regular ⊂ Context-Free ⊂ …

See board

Quiz: classify languages

APDPDO

Why not regexp?

Unreadability
Expressivity
Performance 👈

•
•
•

Regexp parser performance (1/5)

ghci> matchRegExp "a*a*" "aaaaaaaaaaaaaa"

Regexp parser performance (2/5)

ghci> matchRegExp "a*a*" "aaaaaaaaaaaaaa"
 [("aaaaaaaaaaaaaa","")
 , ("aaaaaaaaaaaaa","a")
 , ("aaaaaaaaaaaa","aa")
 , ("aaaaaaaaaaa","aaa")
 , ("aaaaaaaaaa","aaaa")
 , ("aaaaaaaaa","aaaaa")
 , ("aaaaaaaa","aaaaaa")
 , ("aaaaaaa","aaaaaaa")
 , ...
]

Regexp parser performance (3/5)

ghci> matchRegExp "a*a*$" "aaaaaaaaaaaaaa"

Regexp parser performance (4/5)

ghci> matchRegExp "a*a*$" "aaaaaaaaaaaaaa"
 [("aaaaaaaaaaaaaa","")
 , ("aaaaaaaaaaaaaa","")
 , ("aaaaaaaaaaaaaa","")
 , ("aaaaaaaaaaaaaa","")
 , ("aaaaaaaaaaaaaa","")
 , ("aaaaaaaaaaaaaa","")
 , ("aaaaaaaaaaaaaa","")
 , ...
]

Regexp parser performance (5/5)

ghci> matchRegExp "a*a*$" "aaaaaaaaaaaaaa"
 [("aaaaaaaaaaaaaa"++"","")
 , ("aaaaaaaaaaaaa"++"a","")
 , ("aaaaaaaaaaaa"++"aa","")
 , ("aaaaaaaaaaa"++"aaa","")
 , ("aaaaaaaaaa"++"aaaa","")
 , ("aaaaaaaaa"++"aaaaa","")
 , ("aaaaaaaa"++"aaaaaa","")
 , ...
]

Take the first? (1/3)

ghci> head $ matchRegExp "a*a*$" "aaaaaaaaaaaaaa"
 ("aaaaaaaaaaaaaaa"++"","")

Take the first? (2/3)

ghci> head $ matchRegExp "a*a*$" "aaaaaaaaaaaaaa"
 ("aaaaaaaaaaaaaaa"++"","")
ghci> head $ matchRegExp "a*(abcdefg)?$" "aaabcdefg"

Take the first? (3/3)

ghci> head $ matchRegExp "a*a*$" "aaaaaaaaaaaaaa"
 ("aaaaaaaaaaaaaaa"++"","")
ghci> head $ matchRegExp "a*(abcdefg)?" "aaabcdefg"
 ("aaa"++"","bcdefg")

Take the longest? (1/3)

ghci> longest $ matchRegExp "a*a*$" "aaaaaaaaaaaaaa"
 ("aaaaaaaaaaaaaaa"++"","")
ghci> longest $ matchRegExp "a*(abcdefg)?" "aaabcdefg"
 ("aa"++"abcdefg","")

Take the longest? (2/3)

ghci> longest $ matchRegExp "a*a*$" "aaaaaaaaaaaaaa"
 ("aaaaaaaaaaaaaaa"++"","")
ghci> longest $ matchRegExp "a*(abcdefg)?" "aaabcdefg"
 ("aa"++"abcdefg","")
ghci> longest $ matchRegExp "a*(aab)?" "aaab"
 ("a"++"aab","")

Take the longest? (3/3)

ghci> longest $ matchRegExp "a*a*$" "aaaaaaaaaaaaaa"
 ("aaaaaaaaaaaaaaa"++"","")
ghci> longest $ matchRegExp "a*(abcdefg)?" "aaabcdefg"
 ("aa"+"abcdefg","")
ghci> matchRegExp "a*(aab)?" "aaab"
 [("aaaa"++"","b")
 ,("aaa"++"","aab")
 ,("aa"++"","aab")
 ,("a"++"","aaab")
 ,(""++"","aaaab")
 ,("a"++"aaaab","")
]

Use greedy? (1/3)

ghci> matchRegExp' "a*a*$" "aaaaaaaaaaaaaa"
 [("aaaaaaaaaaaaaa","")]

Use greedy? (2/3)

ghci> matchRegExp' "a*a*$" "aaaaaaaaaaaaaa"
 [("aaaaaaaaaaaaaa","")]
ghci> matchRegExp' "a*a$" "aaaaaaaaaaaaaa"
 []

Use greedy? (3/3)

_* must match as much as possible
without making the match fail

ghci> matchRegExp' "a*a*$" "aaaaaaaaaaaaaa"
 [("aaaaaaaaaaaaaa","")]
ghci> matchRegExp' "a*a$" "aaaaaaaaaaaaaa"
 []

Performance is hard

Next Thursday:
O(length * regexp_complexity) matching

time

Challenges
Craft regex with O(length^2) matching time
Craft regex with O(2^length) matching time
Hint: swtch.com/~rsc/regexp/regexp1.html

•
•
•

	Regexp
	Recap: parser combinators (1/3)
	Recap: parser combinators (2/3)
	Recap: parser combinators (3/3)
	Objections to Parser Combinators
	A simple subset
	A simpler subset (1/9)
	A simpler subset (2/9)
	A simpler subset (3/9)
	A simpler subset (4/9)
	A simpler subset (5/9)
	A simpler subset (6/9)
	A simpler subset (7/9)
	A simpler subset (8/9)
	A simpler subset (9/9)
	Progress on Objections
	More concise (1/4)
	More concise (2/4)
	More concise (3/4)
	More concise (4/4)
	Quiz: which regexp?
	Don’t parse HTML with regexp
	Regular Languages
	Regular languages ⊂ Context-Free languages
	Regular Grammar
	Regular grammars ⊂ Context-Free grammars
	Regular ⊂ Context-Free ⊂ …
	Quiz: classify languages
	Why not regexp?
	Regexp parser performance (1/5)
	Regexp parser performance (2/5)
	Regexp parser performance (3/5)
	Regexp parser performance (4/5)
	Regexp parser performance (5/5)
	Take the first? (1/3)
	Take the first? (2/3)
	Take the first? (3/3)
	Take the longest? (1/3)
	Take the longest? (2/3)
	Take the longest? (3/3)
	Use greedy? (1/3)
	Use greedy? (2/3)
	Use greedy? (3/3)
	Performance is hard
	Challenges

