Regexp

type Parser s a

Recap: parser combinators (1/3)

parseDate ::

<$> (a —
<x> :: Parser s (a —
=<«< :: (a — Parser s
<$ a —
<x :: Parser s a —

[s] — [(a,[s])]

Parser Char Date

) — Parser s a — Parser s b
n) — Parser s a — Parser s b
n) — Parser s a — Parser s b
Parser s b — Parser s a

Parser s b — Parser s a

symbol
token

fail

epsilon ::

return
option

satisfy ::

Recap: parser combinators (2/3)

:: (Egs) = s — Parser s s
:: (Eqg s) = [s] — Parser s [s]
(s > Bool) — Parser s s
Parser s a
Parser s ()
:: a — Parser s a
:: a — Parser s a — Parser s a

Recap: parser combinators (3/3)

<> :: Parser s a — Parser s a — Parser s a
<<|> :: Parser s a — Parser s a — Parser s a
many .. Parser s a — Parser s [a_
manyl :: Parser s a — Parser s [a.
greedy :: Parser s a — Parser s [a_
greedyl1 :: Parser s a — Parser s [a_

Objections to Parser Combinators

= “Too many functions”

“I hate types”
“My other code is C”

“Didn’t work in search bar”

& TC-03.lhs M Makefile » TCG-04lhs §) <O ® @M -

a - Pars 2 | dreedy (tokenisDigit) *> Aa ab, J*

Ser s p - rarser s a
a - Parser s a - Parser s a

A simple subset

<[> :: Parser s a — Parser s a — Parser s a
<x> :: Parser s (a = b) — Parser s a = Parser s b
many :: Parser s a — Parser s [a]

many1 :: Parser s a — Parser s [a]

option :: a — Parser s a — Parser s a

symbol :: (Eg s) = s — Parser s s

satisfy :: (s — Bool) — Parser s s

A simpler subset (1/9)

<> :: Parser Char a — Parser Char a — Parser Char a
<x> :: Parser Char (a = b) — Parser Char a — Parser Char b

many :: Parser Char a — Parser Char [a]

many1 :: Parser Char a — Parser Char [a]
option :: a — Parser Char a — Parser Char a
symbol :: Char — Parser Char Char

satisfy :: (Char — Bool) — Parser Char Char

A simpler subset (2/9)

<> P a — P a —> P a
<x> P(aeb)ePa%Pb
many P a P [a]

manyl :: P a — P [a]

option :: a —>Pa—>Pa

symbol :: Char — P Char
satisfy :: (Char — Bool) — P Char

type P a = Parser Char a

A simpler subset (3/9)

<> :: P a — P a —> P a
<,>:: Pa — P b — P (a,b)
many Pa— P [a]

manyl :: P a — P [a]

option :: a —>Pa—>Pa

symbol :: Char — P Char
satisfy :: (Char — Bool) — P Char

type P a = Parser Char a

A simpler subset (4/9)

<> :: P String — P String — P String

<,> :: P String — P String — P (String,String)
many :: P String — P [String]

many1 :: P String — P [String]

option :: String — P String — P String

symbol :: Char — P String

satisfy :: (Char — Bool) — P String

type P a = Parser Char a

A simpler subset (5/9)

<> :: P String — P String — P String
<+> :: P String — P String — P String
many :: P String — P [String]

many1 :: P String — P [String]

option :: String — P String — P String
symbol :: Char — P String

satisfy :: (Char — Bool) — P String

type P a = Parser Char a

A simpler subset (6/9)

<> :: P String — P String — P String
<+> :: P String — P String — P String
many :: P String — P String

many1l :: P String — P String

option :: String — P String — P String
symbol :: Char — P String

satisfy :: (Char — Bool) — P String

type P a = Parser Char a

A simpler subset (7/9)

<> :: P String — P String — P String
<+> :: P String — P String — P String
many :: P String — P String

many1l :: P String — P String

option :: P String — P String
symbol :: Char — P String

satisfy :: (Char — Bool) — P String

type P a = Parser Char a

A simpler subset (8/9)

<> :: R—>R —=R

<+> :: R—> R — R
many :: R — R
manyl :: R = R
option :: R —> R

symbol :: Char — R
satisfy :: (Char — Bool) — R

type R = Parser Char String

A simpler subset (9/9)

<> :: R—>R —=R

<+> :: R—> R — R
many :: R — R
manyl :: R = R
option :: R —> R

symbol :: Char — R
satisfy :: (Char — Bool) — R

type R = Parser Char String

Progress on Objections

> “Too many functions” |74

“T hate types” |4
“My other code is C” ['4

“Didn’t work in search bar” <

‘:-_/

& TC-03.lhs M Makefile »e TC-04.lhs) <O ® [0 -

a - Pars 2 | dreedy (tokenisDigit) *> Aa ab, J*
a - Parser s p - rarser s a
a - Parser s a - Parser s a

More concise (1/4)

-- Haskell types

<> it R—->R-—->R

<+> :: R—-> R — R

many :: R — R

manyl :: R — R

option :: R —> R

symbol :: Char — R

satisfy :: (Char — Bool) — R

p1 <> p2
P1 <+> p2
many p

manyl p

option p
symbol ¢
satisfy g

More concise (2/4)

p1 <> p2
D <+> P2
many p

manyl p

option p
symbol ¢
satisfy q

More concise (3/4)

-- Regular expression
rilrz

r1ro

r.*

M+

r?

C

More concise (4/4)

-- Regular expression

p1 <> p2 rilrz
p1 <*+> p2 rirz
many p r*
manyl p r+
option p r?
symbol ¢ C
satisfy isDigit \d
satisfy isWhitespace \s

satisfy (Celem” ['a'..'z"']) [a-Z]
satisfy (const True) .

Quiz: which regexp?
APDPDO

Don’t parse HTML with regexp

- = html - RegEx match op X [Eg

« C O 8 == stackoverflow.com/questions/1732348/ B ¢ & =
Products Q ‘ Login ’

6 Locked. There are disputes about this answer's content being resolved at this

Il

time. It is not currently accepting new interactions.

4395

v You can't parse [X]JHTML with regex. Because HTML can't be parsed by regex.
Regex is not a tool that can be used to correctly parse HTML. As | have
answered in HTML-and-regex questions here so many times before, the use of

¢ regex will not allow you to consume HTML. Regular expressions are a tool that
is insufficiently sophisticated to understand the constructs employed by HTML.
HTML is not a regular language and hence cannot be parsed by regular
expressions. Regex queries are not equipped to break down HTML into its
meaningful parts. so many times but it is not getting to me. Even enhanced
irregular regular expressions as used by Perl are not up to the task of parsing
HTML. You will never make me crack. HTML is a language of sufficient
complexity that it cannot be parsed by regular expressions. Even Jon Skeet
cannot parse HTML using regular expressions. Every time you attempt to parse

Regular Languages

A regular Llanguage 1s matched by
some regular expression

Regular languages c Context-Free languages

See board

Regular Grammar

A right-regular grammar (also called right-linear grammar) is
a formal grammar (N, Z, P, S) in which all production rules in P
are of one of the following forms:

1. A- a
2. A—- aB
3.A—- ¢

where A, B, S € N are non-terminal symbols, a€ 2 is a }9rminal
symbol, and € denotes the empty string, i.e. the strinc,,
0. Sis called the start symbol.

‘.‘i

PR C .\
8 Q
: v
o -
N

Regular grammars c Context-Free grammars

See board

Regular c Context-Free c ...

See board

Quiz: classify languages
APDPDO

Why not regexp?
e Unreadability
e Expressivity
e Performance -

Regexp parser performance (1/5)

ghci> matchRegExp "a*a*" "aaaaaaaaaaaaaa"

Regexp parser performance (2/5)

"a*a*" "aaaaaaaaaaaaaa"

ghci> matchRegExp
[(”aaaaaaaaaaaaaa” "

"aaaaaaaaaaaaa","a")

("aaaaaaaaaaaa", ”aa“)
(”aaaaaaaaaaa” "aaa")
"aaaaaaaaaa', "aaaa"
(”aaaaaaaaa” ”aaaaa“)

"aaaaaaaa", '""aaaaaa"
"aaaaaaa', ”aaaaaaa”

Ll ~o ~ ~ ~ ~ ~ ~ ~

Regexp parser performance (3/5)

ghci> matchRegExp "a*a*$" "aaaaaaaaaaaaaa"

Regexp parser performance (4/5)

ghci> matchRegExp "a*a*$" "aaaaaaaaaaaaaa"
[(”aaaaaaaaaaaaaa” "
"aaaaaaaaaaaaaa","")
("aaaaaaaaaaaaaa","")
(”aaaaaaaaaaaaaa” "
"aaaaaaaaaaaaaa","")
(”aaaaaaaaaaaaaa” "
"aaaaaaaaaaaaaa","")

L] ~o ~ ~ ~ ~ ~ ~

Regexp parser performance (5/5)

ghci> matchRegExp "a*a*$" "aaaaaaaaaaaaaa"
[("aaaaaaaaaaaaaan++uu un)
"aaaaaaaaaaaaa"++"a","")

("aaaaaaaaaaaa"++"aa","")

(”aaaaaaaaaaa ++"323" ")
'aaaaaaaaaa"++"aaaa","")

(”aaaaaaaaa ++"3a232","")
"aaaaaaaa"++"aaaaaa","")

Ll o . ~ ~ ~ ~ ~

Take the first? (1/3)

ghci> head $ matchRegExp "a*a*$" "aaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaa"++"","")

Take the first? (2/3)

ghci> head $ matchRegExp "a*a*$" "aaaaaaaaaaaaaa"

"aaaaaaaaaaaaaaa"++"","")
ghci> head $ matchRegExp "a*(abcdefg)?$" "aaabcdefg"

Take the first? (3/3)

ghci> head $ matchRegExp "a*a*$" "aaaaaaaaaaaaaa"
“aaaaaaaaaaaaaaa“++”",””)

ghci> head $ matchRegExp "a*(abcdefg)?" "aaabcdefg"
”aaa”++””,”bcdefg”)

Take the longest? (1/3)

ghci> longest $ matchRegExp "a*a*$" "aaaaaaaaaaaaaa"
"aaaaaaaaaaaaaaa"++"","")
ghci> longest $ matchRegExp "a*(abcdefg)?" "aaabcdefg"

"aa"++"abcdefg",

Take the longest? (2/3)

a*a*$" "aaaaaaaaaaaaaa"

gh01> longest $ matchRegExp
"aaaaaaaaaaaaaaa"++"","")
ghci> longest $ matchRegExp "a*(abcdefg)?" "aaabcdefg"
"aa"++"abcdefg",""
ghci> longest $ matchRegExp "a*(aab)?" "aaab"
(ll ||++||aab||’||||)

Take the longest? (3/3)

a*a*$" "aaaaaaaaaaaaaa"

gh01> longest $ matchRegExp
"aaaaaaaaaaaaaaa"++"","")

ghci> longest $ matchRegExp "a*(abcdefg)?" "aaabcdefg"
||aa|| ||adee_Fgll il

ghci> matchRegExp "a*(aab)?" "aaab"

[(”aaaa”'l"l'””, Ilbll)
aaa ++IIII Ilaabll)

aa ++|II| Ilaaall
(Ilall++llll II aaaI|
(IIII IIII IIaaaaa

(Ilall++ aaaabll Illl)

]

Use greedy? (1/3)

ghci> matchRegExp' "a*a*$" "aaaaaaaaaaaaaa"
[("aaaaaaaaaaaaaa","")]

Use greedy? (2/3)

ghci> matchRegExp' "a*a*$" "aaaaaaaaaaaaaa"
[("aaaaaaaaaaaaaa","")]
ghci> matchRegExp' "a*a$" "aaaaaaaaaaaaaa"

[]

Use greedy? (3/3)

ghci> matchRegExp' "a*a*$" "aaaaaaaaaaaaaa"
[("aaaaaaaaaaaaaa","")]
ghci> matchRegExp' "a*a$" "aaaaaaaaaaaaaa"

[]

* must match as much as possible

without making the match fatl

Performance is hard

Next Thursday:
0(length * regexp_complexity) matching
time

Challenges

e Craft regex with 0(length™2) matching time
e Craft regex with 0(2"length) matching time
e Hint: swtch.com/~rsc/regexp/regexpl.html

	Regexp
	Recap: parser combinators (1/3)
	Recap: parser combinators (2/3)
	Recap: parser combinators (3/3)
	Objections to Parser Combinators
	A simple subset
	A simpler subset (1/9)
	A simpler subset (2/9)
	A simpler subset (3/9)
	A simpler subset (4/9)
	A simpler subset (5/9)
	A simpler subset (6/9)
	A simpler subset (7/9)
	A simpler subset (8/9)
	A simpler subset (9/9)
	Progress on Objections
	More concise (1/4)
	More concise (2/4)
	More concise (3/4)
	More concise (4/4)
	Quiz: which regexp?
	Don’t parse HTML with regexp
	Regular Languages
	Regular languages ⊂ Context-Free languages
	Regular Grammar
	Regular grammars ⊂ Context-Free grammars
	Regular ⊂ Context-Free ⊂ …
	Quiz: classify languages
	Why not regexp?
	Regexp parser performance (1/5)
	Regexp parser performance (2/5)
	Regexp parser performance (3/5)
	Regexp parser performance (4/5)
	Regexp parser performance (5/5)
	Take the first? (1/3)
	Take the first? (2/3)
	Take the first? (3/3)
	Take the longest? (1/3)
	Take the longest? (2/3)
	Take the longest? (3/3)
	Use greedy? (1/3)
	Use greedy? (2/3)
	Use greedy? (3/3)
	Performance is hard
	Challenges

