
uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

Talen en Compilers

2022 - 2023, period 2

David van Balen

Department of Information and Computing Sciences
Utrecht University

1980-01-01



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-1

9. Simple stack machine



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-2

Recap: Semantic functions

In the previous lectures, we have seen how to evaluate
(interpret) expressions.

▶ We have added variables and talked about environments.

▶ We have added local definitions and talked about nesting
and blocks.

▶ We have added (mutually) recursive definitions and talked
about scoping.

Now we are going to generate code in a low-level language
instead of interpreting the expression directly.



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-2

Recap: Semantic functions

In the previous lectures, we have seen how to evaluate
(interpret) expressions.

▶ We have added variables and talked about environments.

▶ We have added local definitions and talked about nesting
and blocks.

▶ We have added (mutually) recursive definitions and talked
about scoping.

Now we are going to generate code in a low-level language
instead of interpreting the expression directly.



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-2

Recap: Semantic functions

In the previous lectures, we have seen how to evaluate
(interpret) expressions.

▶ We have added variables and talked about environments.

▶ We have added local definitions and talked about nesting
and blocks.

▶ We have added (mutually) recursive definitions and talked
about scoping.

Now we are going to generate code in a low-level language
instead of interpreting the expression directly.



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-3

This lecture

Simple stack machine

Architecture of the simple stack machine

Instructions

Translating programs

Functions / methods



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-4

9.1 Architecture of the simple stack machine



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-5

Simple stack machine

A virtual machine that executes programs consisting of
assembly language instructions.

▶ The program is a list of instructions with arguments, stored
in a continuous block of memory.

▶ A stack is used to store the current state of execution.
▶ There are eight registers, four with a special name:

▶ the program counter (PC)
▶ the stack pointer (SP)
▶ the mark pointer (MP)
▶ the return register (RR)

Question
Why a stack?



why? simple interpreters and compilers



why? it is a pushdown automaton; can recognise context-free languages



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-5

Simple stack machine

A virtual machine that executes programs consisting of
assembly language instructions.

▶ The program is a list of instructions with arguments, stored
in a continuous block of memory.

▶ A stack is used to store the current state of execution.
▶ There are eight registers, four with a special name:

▶ the program counter (PC)
▶ the stack pointer (SP)
▶ the mark pointer (MP)
▶ the return register (RR)

Question
Why a stack?



why? simple interpreters and compilers



why? it is a pushdown automaton; can recognise context-free languages



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-5

Simple stack machine

A virtual machine that executes programs consisting of
assembly language instructions.

▶ The program is a list of instructions with arguments, stored
in a continuous block of memory.

▶ A stack is used to store the current state of execution.
▶ There are eight registers, four with a special name:

▶ the program counter (PC)
▶ the stack pointer (SP)
▶ the mark pointer (MP)
▶ the return register (RR)

Question
Why a stack?



why? simple interpreters and compilers



why? it is a pushdown automaton; can recognise context-free languages



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-6

Execution

▶ A step in the execution interprets the instruction pointed
to by the program counter.

▶ Depending on the instruction, the contents of the stack
and registers are modified.

Example: LDC (load constant)

SPpost = SPpre + 1 (increment stack pointer)
Mpost [SPpost] =Mpre [PCpre + 1] (place argument on stack)
PCpost = PCpre + 2 (adjust program counter)



Draw the memory model



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-6

Execution

▶ A step in the execution interprets the instruction pointed
to by the program counter.

▶ Depending on the instruction, the contents of the stack
and registers are modified.

Example: LDC (load constant)

SPpost = SPpre + 1 (increment stack pointer)
Mpost [SPpost] =Mpre [PCpre + 1] (place argument on stack)
PCpost = PCpre + 2 (adjust program counter)



Draw the memory model



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-7

Visualizing the execution

SPpost = SPpre + 1 (increment stack pointer)
Mpost [SPpost] =Mpre [PCpre + 1] (place argument on stack)
PCpost = PCpre + 2 (adjust program counter)

LDC 42

...

PC

SP

MP

RR
...

23

42

The instruction LDC 42 takes up two words in memory, but we
write it in one cell.



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-7

Visualizing the execution

SPpost = SPpre + 1 (increment stack pointer)
Mpost [SPpost] =Mpre [PCpre + 1] (place argument on stack)
PCpost = PCpre + 2 (adjust program counter)

LDC 42

...

PC

SP

MP

RR
...

23

42

The instruction LDC 42 takes up two words in memory, but we
write it in one cell.



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-8

9.2 Instructions



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-9

Instructions

Most instructions can be classified into the following groups:

▶ load instructions

▶ store instructions

▶ jump instructions

▶ arithmetic and logical operations



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-10

Load and store instructions

LDC – load constant

LDR – load from register STR – store to register

LDL – load local STL – store local

LDS – load from stack STS – store to stack

LDLA – load local address

LDA – load via address SDA – store via address



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-11

Load instructions

LDC – load constant

LDC 17

LDR RR

LDL 2

LDS -3

LDLA 1

LDA 2

NOP

HALT
...

PC

SP

MP

31
RR

...

...

59

63

75

81

12

17

31

75

12

81



LDL: load value relative to MP



LDS: load value relative to SP



LDLA: load the address of a value relative to MP (= MP+offset)



LDA: load value at offset to address at top of stack



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-11

Load instructions

LDR – load from register

LDC 17

LDR RR

LDL 2

LDS -3

LDLA 1

LDA 2

NOP

HALT
...

PC

SP

MP

31
RR

...

...

59

63

75

81

12

17

31

75

12

81



LDL: load value relative to MP



LDS: load value relative to SP



LDLA: load the address of a value relative to MP (= MP+offset)



LDA: load value at offset to address at top of stack



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-11

Load instructions

LDL – load local

LDC 17

LDR RR

LDL 2

LDS -3

LDLA 1

LDA 2

NOP

HALT
...

PC

SP

MP

31
RR

...

...

59

63

75

81

12

17

31

75

12

81



LDL: load value relative to MP



LDS: load value relative to SP



LDLA: load the address of a value relative to MP (= MP+offset)



LDA: load value at offset to address at top of stack



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-11

Load instructions

LDS – load from stack

LDC 17

LDR RR

LDL 2

LDS -3

LDLA 1

LDA 2

NOP

HALT
...

PC

SP

MP

31
RR

...

...

59

63

75

81

12

17

31

75

12

81



LDL: load value relative to MP



LDS: load value relative to SP



LDLA: load the address of a value relative to MP (= MP+offset)



LDA: load value at offset to address at top of stack



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-11

Load instructions

LDLA – load local address

LDC 17

LDR RR

LDL 2

LDS -3

LDLA 1

LDA 2

NOP

HALT
...

PC

SP

MP

31
RR

...

...

59

63

75

81

12

17

31

75

12

81



LDL: load value relative to MP



LDS: load value relative to SP



LDLA: load the address of a value relative to MP (= MP+offset)



LDA: load value at offset to address at top of stack



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-11

Load instructions

LDA – load via address

LDC 17

LDR RR

LDL 2

LDS -3

LDLA 1

LDA 2

NOP

HALT
...

PC

SP

MP

31
RR

...

...

59

63

75

81

12

17

31

75

12

81



LDL: load value relative to MP



LDS: load value relative to SP



LDLA: load the address of a value relative to MP (= MP+offset)



LDA: load value at offset to address at top of stack



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-11

Load instructions

NOP – noop

LDC 17

LDR RR

LDL 2

LDS -3

LDLA 1

LDA 2

NOP

HALT
...

PC

SP

MP

31
RR

...

...

59

63

75

81

12

17

31

75

12

81



LDL: load value relative to MP



LDS: load value relative to SP



LDLA: load the address of a value relative to MP (= MP+offset)



LDA: load value at offset to address at top of stack



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-11

Load instructions

HALT – halt program

LDC 17

LDR RR

LDL 2

LDS -3

LDLA 1

LDA 2

NOP

HALT
...

PC

SP

MP

31
RR

...

...

59

63

75

81

12

17

31

75

12

81



LDL: load value relative to MP



LDS: load value relative to SP



LDLA: load the address of a value relative to MP (= MP+offset)



LDA: load value at offset to address at top of stack



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-12

Branch instructions

BRA – branch always (unconditional)

BRT – branch on true (−1)

BRF – branch on false (0)

BSR – branch to subroutine (push return address on stack)

RET – return (from subroutine)



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-13

Register and jump instructions

LDRR – load register from register

...
LDRR R5 RR

AJS -2

BRA +5

LDC 91

STR RR

RET

BSR -7

LDR RR

...

PC

SP

MP

31
RR

R5

...

...

12

17

31

75

12

81

12

819191

91



LDRR: copy register to register



AJS: move stack pointer a relative amount



BRA: unconditional branch; does not pop stack



BSR: branch to subroutine; store PC on stack. PC = PC + M[PC+1] + 2



STR: pop value from the stack and store in register



RET: jump to address at top of stack; pop stack



LDR: push value in register to stack



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-13

Register and jump instructions

AJS – adjust stack pointer

...
LDRR R5 RR

AJS -2

BRA +5

LDC 91

STR RR

RET

BSR -7

LDR RR

...

PC

SP

MP

31
RR

31
R5

...

...

12

17

31

75

12

81

12

819191

91



LDRR: copy register to register



AJS: move stack pointer a relative amount



BRA: unconditional branch; does not pop stack



BSR: branch to subroutine; store PC on stack. PC = PC + M[PC+1] + 2



STR: pop value from the stack and store in register



RET: jump to address at top of stack; pop stack



LDR: push value in register to stack



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-13

Register and jump instructions

BRA – unconditional branch

...
LDRR R5 RR

AJS -2

BRA +5

LDC 91

STR RR

RET

BSR -7

LDR RR

...

PC

SP

MP

31
RR

31
R5

...

...

12

17

31

75

12

81

12

81

9191

91



LDRR: copy register to register



AJS: move stack pointer a relative amount



BRA: unconditional branch; does not pop stack



BSR: branch to subroutine; store PC on stack. PC = PC + M[PC+1] + 2



STR: pop value from the stack and store in register



RET: jump to address at top of stack; pop stack



LDR: push value in register to stack



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-13

Register and jump instructions

BSR – branch to subroutine

...
LDRR R5 RR

AJS -2

BRA +5

LDC 91

STR RR

RET

BSR -7

LDR RR

...

PC

SP

MP

31
RR

31
R5

...

...

12

17

31

75

12

81

12

81

9191

91



LDRR: copy register to register



AJS: move stack pointer a relative amount



BRA: unconditional branch; does not pop stack



BSR: branch to subroutine; store PC on stack. PC = PC + M[PC+1] + 2



STR: pop value from the stack and store in register



RET: jump to address at top of stack; pop stack



LDR: push value in register to stack



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-13

Register and jump instructions

LDC – load constant

...
LDRR R5 RR

AJS -2

BRA +5

LDC 91

STR RR

RET

BSR -7

LDR RR

...

PC

SP

MP

31
RR

31
R5

...

...

12

17

31

75

12

81

12

81

9191

91



LDRR: copy register to register



AJS: move stack pointer a relative amount



BRA: unconditional branch; does not pop stack



BSR: branch to subroutine; store PC on stack. PC = PC + M[PC+1] + 2



STR: pop value from the stack and store in register



RET: jump to address at top of stack; pop stack



LDR: push value in register to stack



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-13

Register and jump instructions

STR – store to register

...
LDRR R5 RR

AJS -2

BRA +5

LDC 91

STR RR

RET

BSR -7

LDR RR

...

PC

SP

MP

31
RR

31
R5

...

...

12

17

31

75

12

81

12

81

91

91

91



LDRR: copy register to register



AJS: move stack pointer a relative amount



BRA: unconditional branch; does not pop stack



BSR: branch to subroutine; store PC on stack. PC = PC + M[PC+1] + 2



STR: pop value from the stack and store in register



RET: jump to address at top of stack; pop stack



LDR: push value in register to stack



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-13

Register and jump instructions

RET – return

...
LDRR R5 RR

AJS -2

BRA +5

LDC 91

STR RR

RET

BSR -7

LDR RR

...

PC

SP

MP

91
RR

31
R5

...

...

12

17

31

75

12

81

12

8191

91

91



LDRR: copy register to register



AJS: move stack pointer a relative amount



BRA: unconditional branch; does not pop stack



BSR: branch to subroutine; store PC on stack. PC = PC + M[PC+1] + 2



STR: pop value from the stack and store in register



RET: jump to address at top of stack; pop stack



LDR: push value in register to stack



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-13

Register and jump instructions

LDR – load from register

...
LDRR R5 RR

AJS -2

BRA +5

LDC 91

STR RR

RET

BSR -7

LDR RR

...

PC

SP

MP

91
RR

31
R5

...

...

12

17

31

75

12

81

12

8191

91

91



LDRR: copy register to register



AJS: move stack pointer a relative amount



BRA: unconditional branch; does not pop stack



BSR: branch to subroutine; store PC on stack. PC = PC + M[PC+1] + 2



STR: pop value from the stack and store in register



RET: jump to address at top of stack; pop stack



LDR: push value in register to stack



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-13

Register and jump instructions

...
LDRR R5 RR

AJS -2

BRA +5

LDC 91

STR RR

RET

BSR -7

LDR RR

...

PC

SP

MP

91
RR

31
R5

...

...

12

17

31

75

12

81

12

8191

91

91



LDRR: copy register to register



AJS: move stack pointer a relative amount



BRA: unconditional branch; does not pop stack



BSR: branch to subroutine; store PC on stack. PC = PC + M[PC+1] + 2



STR: pop value from the stack and store in register



RET: jump to address at top of stack; pop stack



LDR: push value in register to stack



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-14

Operators

Operators remove stack arguments and put the result back on
the stack.

Binary operators Unary operators

ADD AND EQ NOT

SUB OR NE NEG

MUL XOR LT

DIV GT

MOD LE

GE



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-15

9.3 Translating programs



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-16

Arithmetic expressions

Expression

3+4*7+2

Code

LDC 3

LDC 4

LDC 7

MUL

ADD

LDC 2

ADD



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-16

Arithmetic expressions

Expression

3+4*7+2

Code

LDC 3

LDC 4

LDC 7

MUL

ADD

LDC 2

ADD



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-17

Arithmetic expression example

LDC 3

LDC 4

LDC 7

MUL

ADD

LDC 2

ADD

...

PC

SP

MP

RR

...

...

3

4

7

28

7

28

31

2

33

2



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-17

Arithmetic expression example

LDC 3

LDC 4

LDC 7

MUL

ADD

LDC 2

ADD

...

PC

SP

MP

RR

...

...

3

4

7

28

7

28

31

2

33

2



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-17

Arithmetic expression example

LDC 3

LDC 4

LDC 7

MUL

ADD

LDC 2

ADD

...

PC

SP

MP

RR

...

...

3

4

7

28

7

28

31

2

33

2



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-17

Arithmetic expression example

LDC 3

LDC 4

LDC 7

MUL

ADD

LDC 2

ADD

...

PC

SP

MP

RR

...

...

3

4

7

28

7

28

31

2

33

2



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-17

Arithmetic expression example

LDC 3

LDC 4

LDC 7

MUL

ADD

LDC 2

ADD

...

PC

SP

MP

RR

...

...

3

4

7

28

7

28

31

2

33

2



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-17

Arithmetic expression example

LDC 3

LDC 4

LDC 7

MUL

ADD

LDC 2

ADD

...

PC

SP

MP

RR

...

...

3

4

7

28

7

28

31

2

33

2



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-17

Arithmetic expression example

LDC 3

LDC 4

LDC 7

MUL

ADD

LDC 2

ADD

...

PC

SP

MP

RR

...

...

3

4

7

28

7

28

31

2

33

2



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-17

Arithmetic expression example

LDC 3

LDC 4

LDC 7

MUL

ADD

LDC 2

ADD

...

PC

SP

MP

RR

...

...

3

4

7

28

7

28

31

2

33

2



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-18

Representing code in Haskell

type Code= [Instr]

data Instr = LDC Int
| LDL Int
| ADD
| NEG
| EQ
| . . .

codeSize :: Code→ Int
codeSize= sum .map instrSize

instrSize :: Instr→ Int
instrSize (LDC n) = 2
instrSize ADD = 1
. . .



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-19

Translating expressions

data Expr = Num Int
| Add Expr Expr
| Mul Expr Expr
| Neg Expr
| . . .

code :: Expr→ Code
code (Num n) = [LDC n]
code (Add e1 e2) = code e1 ++ code e2 ++ [ADD]
code (Mul e1 e2) = code e1 ++ code e2 ++ [MUL]
code (Neg e) = code e++ [NEG]

We can also write this as a fold.



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-19

Translating expressions

data Expr = Num Int
| Add Expr Expr
| Mul Expr Expr
| Neg Expr
| . . .

code :: Expr→ Code
code (Num n) = [LDC n]
code (Add e1 e2) = code e1 ++ code e2 ++ [ADD]
code (Mul e1 e2) = code e1 ++ code e2 ++ [MUL]
code (Neg e) = code e++ [NEG]

We can also write this as a fold.



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-20

Translating conditional expressions

data Expr = . . .
| If Expr Expr Expr

code :: Expr→ Code
. . .
code (If c t f) = cc ++

[BRF (st+ 2)] ++
ct ++
[BRA sf] ++
cf

where cc= code c
ct = code t
cf = code f
st = codeSize ct
sf = codeSize cf



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-21

Translating conditional expressions – contd.

cc

BRF (st+ 2)

ct

BRA sf

cf

st

2

sf



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-22

Algebra for code generation

data Expr =
Num Int
| Add Expr Expr
| Neg Expr
| Eq Expr Expr
| If Expr Expr Expr

|

Var

String
|

Let

String Expr Expr

code x= foldExpr codeAlg x

empty

where
codeAlg :: ExprAlg

(Env→

Code

)

codeAlg =
(λn →

λ

e

→ [LDC n]

, λl r →

λ

e

→ l

e

++ r

e

++ [ADD]

, λl →

λ

e

→ l

e

++ [NEG]

, λl r →

λ

e

→ l

e

++ r

e

++ [EQ]

, λc t f →

λ

e

→
let st = codeSize (t

e

)
sf = codeSize (f

e

)
in c

e

++ [BRF (st+ 2)] ++
t

e

++ [BRA sf] ++ f

e

, λs →

λ

e

→

[LDL ]
, λs d b→

λ

e

→

d

e

++ [STL (size

e

)]
++ b (insert s (size

e

)

e

)

)



LDL: load value relative to MP



STL: store value relative to MP



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-22

Algebra for code generation

data Expr =
Num Int
| Add Expr Expr
| Neg Expr
| Eq Expr Expr
| If Expr Expr Expr

|

Var

String
|

Let

String Expr Expr

code x= foldExpr codeAlg x

empty

where
codeAlg :: ExprAlg

(Env→

Code

)

codeAlg =
(λn →

λ

e

→

[LDC n]
, λl r →

λ

e

→

l

e

++ r

e

++ [ADD]
, λl →

λ

e

→

l

e

++ [NEG]
, λl r →

λ

e

→

l

e

++ r

e

++ [EQ]
, λc t f →

λ

e

→
let st = codeSize (t

e

)
sf = codeSize (f

e

)
in c

e

++ [BRF (st+ 2)] ++
t

e

++ [BRA sf] ++ f

e

, λs →

λ

e

→

[LDL ]
, λs d b→

λ

e

→

d

e

++ [STL (size

e

)]
++ b (insert s (size

e

)

e

)

)



LDL: load value relative to MP



STL: store value relative to MP



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-22

Algebra for code generation

data Expr =
Num Int
| Add Expr Expr
| Neg Expr
| Eq Expr Expr
| If Expr Expr Expr

|

Var

String
|

Let

String Expr Expr

code x= foldExpr codeAlg x

empty

where
codeAlg :: ExprAlg

(Env→

Code

)

codeAlg =
(λn →

λ

e

→

[LDC n]
, λl r →

λ

e

→

l

e

++ r

e

++ [ADD]
, λl →

λ

e

→

l

e

++ [NEG]
, λl r →

λ

e

→

l

e

++ r

e

++ [EQ]
, λc t f →

λ

e

→
let st = codeSize (t

e

)
sf = codeSize (f

e

)
in

c

e

++ [BRF (st+ 2)] ++
t

e

++ [BRA sf] ++ f

e
, λs →

λ

e

→

[LDL ]
, λs d b→

λ

e

→

d

e

++ [STL (size

e

)]
++ b (insert s (size

e

)

e

)

)



LDL: load value relative to MP



STL: store value relative to MP



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-22

Algebra for code generation

data Expr =
Num Int
| Add Expr Expr
| Neg Expr
| Eq Expr Expr
| If Expr Expr Expr

|

Var

String
|

Let

String Expr Expr

code x= foldExpr codeAlg x

empty

where
codeAlg :: ExprAlg

(Env→

Code

)

codeAlg =
(λn →

λ

e

→

[LDC n]
, λl r →

λ

e

→

l

e

++ r

e

++ [ADD]
, λl →

λ

e

→

l

e

++ [NEG]
, λl r →

λ

e

→

l

e

++ r

e

++ [EQ]
, λc t f →

λ

e

→

let st = codeSize (t

e

)
sf = codeSize (f

e

)
in c

e

++ [BRF (st+ 2)] ++
t

e

++ [BRA sf] ++ f

e
, λs →

λ

e

→

[LDL ]
, λs d b→

λ

e

→

d

e

++ [STL (size

e

)]
++ b (insert s (size

e

)

e

)

)



LDL: load value relative to MP



STL: store value relative to MP



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-22

Algebra for code generation

data Expr =
Num Int
| Add Expr Expr
| Neg Expr
| Eq Expr Expr
| If Expr Expr Expr

| Var String
| Let String Expr Expr

code x= foldExpr codeAlg x

empty

where
codeAlg :: ExprAlg

(Env→

Code

)

codeAlg =
(λn →

λ

e

→

[LDC n]
, λl r →

λ

e

→

l

e

++ r

e

++ [ADD]
, λl →

λ

e

→

l

e

++ [NEG]
, λl r →

λ

e

→

l

e

++ r

e

++ [EQ]
, λc t f →

λ

e

→

let st = codeSize (t

e

)
sf = codeSize (f

e

)
in c

e

++ [BRF (st+ 2)] ++
t

e

++ [BRA sf] ++ f

e

, λs →

λ

e

→

[LDL ]

, λs d b→

λ

e

→

d

e

++ [STL (size

e

)]
++ b (insert s (size

e

)

e

)

)



LDL: load value relative to MP



STL: store value relative to MP



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-22

Algebra for code generation

data Expr =
Num Int
| Add Expr Expr
| Neg Expr
| Eq Expr Expr
| If Expr Expr Expr

| Var String
| Let String Expr Expr

code x= foldExpr codeAlg x

empty

where
codeAlg :: ExprAlg

(Env→

Code

)

codeAlg =
(λn →

λ

e

→

[LDC n]
, λl r →

λ

e

→

l

e

++ r

e

++ [ADD]
, λl →

λ

e

→

l

e

++ [NEG]
, λl r →

λ

e

→

l

e

++ r

e

++ [EQ]
, λc t f →

λ

e

→

let st = codeSize (t

e

)
sf = codeSize (f

e

)
in c

e

++ [BRF (st+ 2)] ++
t

e

++ [BRA sf] ++ f

e

, λs →

λ

e

→

[LDL ??]
, λs d b→

λ

e

→

d

e

++ [STL (size

e

)]
++ b (insert s (size

e

)

e

)

)



LDL: load value relative to MP



STL: store value relative to MP



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-22

Algebra for code generation

data Expr =
Num Int
| Add Expr Expr
| Neg Expr
| Eq Expr Expr
| If Expr Expr Expr

| Var String
| Let String Expr Expr

code x= foldExpr codeAlg x

empty

where
codeAlg :: ExprAlg (Env→ Code)
codeAlg =

(λn →

λ

e

→

[LDC n]
, λl r →

λ

e

→

l

e

++ r

e

++ [ADD]
, λl →

λ

e

→

l

e

++ [NEG]
, λl r →

λ

e

→

l

e

++ r

e

++ [EQ]
, λc t f →

λ

e

→

let st = codeSize (t

e

)
sf = codeSize (f

e

)
in c

e

++ [BRF (st+ 2)] ++
t

e

++ [BRA sf] ++ f

e

, λs → λe → [LDL (e ! s)]
, λs d b→ λe → d e++ [STL (size e)]

++ b (insert s (size e) e)
)



LDL: load value relative to MP



STL: store value relative to MP



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-22

Algebra for code generation

data Expr =
Num Int
| Add Expr Expr
| Neg Expr
| Eq Expr Expr
| If Expr Expr Expr

| Var String
| Let String Expr Expr

code x= foldExpr codeAlg x empty
where
codeAlg :: ExprAlg (Env→ Code)
codeAlg =

(λn → λe → [LDC n]
, λl r → λe → l e++ r e++ [ADD]
, λl → λe → l e++ [NEG]
, λl r → λe → l e++ r e++ [EQ]
, λc t f → λe →
let st = codeSize (t e)

sf = codeSize (f e)
in c e ++ [BRF (st+ 2)] ++

t e ++ [BRA sf] ++ f e
, λs → λe → [LDL (e ! s)]
, λs d b→ λe → d e++ [STL (size e)]

++ b (insert s (size e) e)
)



LDL: load value relative to MP



STL: store value relative to MP



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-23

Expressions vs. statements

We extend our language with statements:

data Stmt=
Assign String Expr
| If Expr Stmt Stmt
|While Expr Stmt
| Call String [Expr]

For many languages, the following invariants hold:

▶ Expressions always leave a single result on the stack after
evaluation.

▶ Statements do not leave a result on the stack after
evaluation.



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-23

Expressions vs. statements

We extend our language with statements:

data Stmt=
Assign String Expr
| If Expr Stmt Stmt
|While Expr Stmt
| Call String [Expr]

For many languages, the following invariants hold:

▶ Expressions always leave a single result on the stack after
evaluation.

▶ Statements do not leave a result on the stack after
evaluation.



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-24

Translating while loops

data Stmt= . . .
| While Expr Stmt

code :: Stmt→ Code
. . .
code (While c b) = cc ++

[BRF (sb+ 2)] ++
cb ++
[BRA (−(sb+ sc+ 4))]

where cc = code c
cb= code b
sc = codeSize cc
sb = codeSize cb



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-25

Translating while loops – contd.

cc

BRF (sb+ 2)

cb

BRA (−(sb+ sc+ 4))

sc

sb

2

2

BRA sb

cb

cc

BRT (−(sb+ sc+ 2))

sc

sb

2

2



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-25

Translating while loops – contd.

cc

BRF (sb+ 2)

cb

BRA (−(sb+ sc+ 4))

sc

sb

2

2

BRA sb

cb

cc

BRT (−(sb+ sc+ 2))

sc

sb

2

2



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-26

Translating while loops – contd.

data Stmt= . . .
| While Expr Stmt

code :: Stmt→ Code
. . .
code (While c b) = [BRA sb] ++

cb ++
cc ++
[BRT (−(sb+ sc+ 2))]

where cc = code c
cb= code b
sc = codeSize cc
sb = codeSize cb



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-27

Algebra for code generation

data Stmt=
Assign String Expr
| If Expr Stmt Stmt

|While Expr Stmt

| Call String [Expr]

code x= foldSE codeAlg x empty
where
codeAlg :: SEAlg (Env→ Code) (Env→ Code)
codeAlg =

(λs d e→ d e++ [STL (e ! s)]
, λc t f e→

let st = codeSize (t e)
sf = codeSize (f e)

in c e++ [BRF (st+ 2)] ++
t e ++ [BRA sf] ++ f e

, λc b e→
let sc = codeSize (c e)

sb= codeSize (b e)
in [BRA sb] ++ b e++ c e++

[BRT (−(sb+ sc+ 2))]
, λm ps e→ concat [p e | p← ps] ++ [BSR m]
, . . . -- components for Expr
)



Similar to last week; extend the algebra with another carrier type



..for the result of Stmt



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-28

9.4 Functions / methods



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-29

Methods with parameters

LDC 7

LDC 12

BSR m

...
LDS -2m

LDC 37

ADD

BSR p

LDS -2

LDS -2

MUL

BSR q

STS -2

AJS -1

RET
...

PC

SP

MP

RR
...

...

7

12

7

37

44

37

84

12

1212

m(7, 12);

void m (int x, int y) {

p (x + 37);

q (x * y);

}



STS: pop a value from the stack; store it relative to SP



cleanup when returning from function; pop all input parameters



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-29

Methods with parameters

LDC 7

LDC 12

BSR m

...
LDS -2m

LDC 37

ADD

BSR p

LDS -2

LDS -2

MUL

BSR q

STS -2

AJS -1

RET
...

PC

SP

MP

RR
...

...

7

12

7

37

44

37

84

12

1212

m(7, 12);

void m (int x, int y) {

p (x + 37);

q (x * y);

}



STS: pop a value from the stack; store it relative to SP



cleanup when returning from function; pop all input parameters



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-29

Methods with parameters

LDC 7

LDC 12

BSR m

...
LDS -2m

LDC 37

ADD

BSR p

LDS -2

LDS -2

MUL

BSR q

STS -2

AJS -1

RET
...

PC

SP

MP

RR
...

...

7

12

7

37

44

37

84

12

1212

m(7, 12);

void m (int x, int y) {

p (x + 37);

q (x * y);

}



STS: pop a value from the stack; store it relative to SP



cleanup when returning from function; pop all input parameters



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-29

Methods with parameters

LDC 7

LDC 12

BSR m

...
LDS -2m

LDC 37

ADD

BSR p

LDS -2

LDS -2

MUL

BSR q

STS -2

AJS -1

RET
...

PC

SP

MP

RR
...

...

7

12

7

37

44

37

84

12

1212

m(7, 12);

void m (int x, int y) {

p (x + 37);

q (x * y);

}



STS: pop a value from the stack; store it relative to SP



cleanup when returning from function; pop all input parameters



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-29

Methods with parameters

LDC 7

LDC 12

BSR m

...
LDS -2m

LDC 37

ADD

BSR p

LDS -2

LDS -2

MUL

BSR q

STS -2

AJS -1

RET
...

PC

SP

MP

RR
...

...

7

12

7

37

44

37

84

12

1212

m(7, 12);

void m (int x, int y) {

p (x + 37);

q (x * y);

}



STS: pop a value from the stack; store it relative to SP



cleanup when returning from function; pop all input parameters



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-29

Methods with parameters

LDC 7

LDC 12

BSR m

...
LDS -2m

LDC 37

ADD

BSR p

LDS -2

LDS -2

MUL

BSR q

STS -2

AJS -1

RET
...

PC

SP

MP

RR
...

...

7

12

7

37

44

37

84

12

1212

m(7, 12);

void m (int x, int y) {

p (x + 37);

q (x * y);

}



STS: pop a value from the stack; store it relative to SP



cleanup when returning from function; pop all input parameters



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-29

Methods with parameters

LDC 7

LDC 12

BSR m

...
LDS -2m

LDC 37

ADD

BSR p

LDS -2

LDS -2

MUL

BSR q

STS -2

AJS -1

RET
...

PC

SP

MP

RR
...

...

7

12

7

37

44

37

84

12

1212

m(7, 12);

void m (int x, int y) {

p (x + 37);

q (x * y);

}



STS: pop a value from the stack; store it relative to SP



cleanup when returning from function; pop all input parameters



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-29

Methods with parameters

LDC 7

LDC 12

BSR m

...
LDS -2m

LDC 37

ADD

BSR p

LDS -2

LDS -2

MUL

BSR q

STS -2

AJS -1

RET
...

PC

SP

MP

RR
...

...

7

12

7

37

44

37

84

12

12

12

m(7, 12);

void m (int x, int y) {

p (x + 37);

q (x * y);

}



STS: pop a value from the stack; store it relative to SP



cleanup when returning from function; pop all input parameters



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-29

Methods with parameters

LDC 7

LDC 12

BSR m

...
LDS -2m

LDC 37

ADD

BSR p

LDS -2

LDS -2

MUL

BSR q

STS -2

AJS -1

RET
...

PC

SP

MP

RR
...

...

7

12

7

37

44

37

84

12

12

12

m(7, 12);

void m (int x, int y) {

p (x + 37);

q (x * y);

}



STS: pop a value from the stack; store it relative to SP



cleanup when returning from function; pop all input parameters



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-29

Methods with parameters

LDC 7

LDC 12

BSR m

...
LDS -2m

LDC 37

ADD

BSR p

LDS -2

LDS -2

MUL

BSR q

STS -2

AJS -1

RET
...

PC

SP

MP

RR
...

...

7

12

7

37

44

37

84

12

12

12

m(7, 12);

void m (int x, int y) {

p (x + 37);

q (x * y);

}



STS: pop a value from the stack; store it relative to SP



cleanup when returning from function; pop all input parameters



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-30

Method translation

Method call
▶ Put parameters on the stack.

▶ Call BSR with the method label.

Method definition
▶ Use parameters: from LDS −(n+ d) to LDS −(1 + d),

where n is the number of parameters and d is your current
offset (this becomes easier with the mark pointer).

▶ Clean up: STS −n followed by AJS −(n− 1).

▶ Return: RET

It is also possible, but less common, to let the caller clean up
after a method call.



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-30

Method translation

Method call
▶ Put parameters on the stack.

▶ Call BSR with the method label.

Method definition
▶ Use parameters: from LDS −(n+ d) to LDS −(1 + d),

where n is the number of parameters and d is your current
offset (this becomes easier with the mark pointer).

▶ Clean up: STS −n followed by AJS −(n− 1).

▶ Return: RET

It is also possible, but less common, to let the caller clean up
after a method call.



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-30

Method translation

Method call
▶ Put parameters on the stack.

▶ Call BSR with the method label.

Method definition
▶ Use parameters: from LDS −(n+ d) to LDS −(1 + d),

where n is the number of parameters and d is your current
offset (this becomes easier with the mark pointer).

▶ Clean up: STS −n followed by AJS −(n− 1).

▶ Return: RET

It is also possible, but less common, to let the caller clean up
after a method call.



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-31

Methods with local variables

LDC 7

LDC 12

BSR m

...
LDR MPm

LDRR MP SP

AJS +2

LDL -3

NEG

STL +1
...

LDRR SP MP

STR MP

STS -2

AJS -1

RET

PC

SP

MP

RR
...

...

7

12

a

b

-7

-7

-7

-7

-7

-7

-7

12

m(7, 12);

void m (int x, int y) {

int a, b;

a = -x;

. . .
}



LDR: push value of a register onto the stack



LDRR: load register from another register



LDL: load a (local) value; relative to the mark pointer



STR: pop value and store in register



STS: pop a value from the stack; store it relative to SP



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-31

Methods with local variables

LDC 7

LDC 12

BSR m

...
LDR MPm

LDRR MP SP

AJS +2

LDL -3

NEG

STL +1
...

LDRR SP MP

STR MP

STS -2

AJS -1

RET

PC

SP

MP

RR
...

...

7

12

a

b

-7

-7

-7

-7

-7

-7

-7

12

m(7, 12);

void m (int x, int y) {

int a, b;

a = -x;

. . .
}



LDR: push value of a register onto the stack



LDRR: load register from another register



LDL: load a (local) value; relative to the mark pointer



STR: pop value and store in register



STS: pop a value from the stack; store it relative to SP



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-31

Methods with local variables

LDC 7

LDC 12

BSR m

...
LDR MPm

LDRR MP SP

AJS +2

LDL -3

NEG

STL +1
...

LDRR SP MP

STR MP

STS -2

AJS -1

RET

PC

SP

MP

RR
...

...

7

12

a

b

-7

-7

-7

-7

-7

-7

-7

12

m(7, 12);

void m (int x, int y) {

int a, b;

a = -x;

. . .
}



LDR: push value of a register onto the stack



LDRR: load register from another register



LDL: load a (local) value; relative to the mark pointer



STR: pop value and store in register



STS: pop a value from the stack; store it relative to SP



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-31

Methods with local variables

LDC 7

LDC 12

BSR m

...
LDR MPm

LDRR MP SP

AJS +2

LDL -3

NEG

STL +1
...

LDRR SP MP

STR MP

STS -2

AJS -1

RET

PC

SP

MP

RR
...

...

7

12

a

b

-7

-7

-7

-7

-7

-7

-7

12

m(7, 12);

void m (int x, int y) {

int a, b;

a = -x;

. . .
}



LDR: push value of a register onto the stack



LDRR: load register from another register



LDL: load a (local) value; relative to the mark pointer



STR: pop value and store in register



STS: pop a value from the stack; store it relative to SP



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-31

Methods with local variables

LDC 7

LDC 12

BSR m

...
LDR MPm

LDRR MP SP

AJS +2

LDL -3

NEG

STL +1
...

LDRR SP MP

STR MP

STS -2

AJS -1

RET

PC

SP

MP

RR
...

...

7

12

a

b

-7

-7

-7

-7

-7

-7

-7

12

m(7, 12);

void m (int x, int y) {

int a, b;

a = -x;

. . .
}



LDR: push value of a register onto the stack



LDRR: load register from another register



LDL: load a (local) value; relative to the mark pointer



STR: pop value and store in register



STS: pop a value from the stack; store it relative to SP



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-31

Methods with local variables

LDC 7

LDC 12

BSR m

...
LDR MPm

LDRR MP SP

AJS +2

LDL -3

NEG

STL +1
...

LDRR SP MP

STR MP

STS -2

AJS -1

RET

PC

SP

MP

RR
...

...

7

12

a

b

-7

-7

-7

-7

-7

-7

-7

12

m(7, 12);

void m (int x, int y) {

int a, b;

a = -x;

. . .
}



LDR: push value of a register onto the stack



LDRR: load register from another register



LDL: load a (local) value; relative to the mark pointer



STR: pop value and store in register



STS: pop a value from the stack; store it relative to SP



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-31

Methods with local variables

LDC 7

LDC 12

BSR m

...
LDR MPm

LDRR MP SP

AJS +2

LDL -3

NEG

STL +1
...

LDRR SP MP

STR MP

STS -2

AJS -1

RET

PC

SP

MP

RR
...

...

7

12

a

b

-7

-7

-7

-7

-7

-7

-7

12

m(7, 12);

void m (int x, int y) {

int a, b;

a = -x;

. . .
}



LDR: push value of a register onto the stack



LDRR: load register from another register



LDL: load a (local) value; relative to the mark pointer



STR: pop value and store in register



STS: pop a value from the stack; store it relative to SP



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-31

Methods with local variables

LDC 7

LDC 12

BSR m

...
LDR MPm

LDRR MP SP

AJS +2

LDL -3

NEG

STL +1
...

LDRR SP MP

STR MP

STS -2

AJS -1

RET

PC

SP

MP

RR
...

...

7

12

a

b

-7

-7

-7

-7

-7

-7

-7

12

m(7, 12);

void m (int x, int y) {

int a, b;

a = -x;

. . .
}



LDR: push value of a register onto the stack



LDRR: load register from another register



LDL: load a (local) value; relative to the mark pointer



STR: pop value and store in register



STS: pop a value from the stack; store it relative to SP



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-31

Methods with local variables

LDC 7

LDC 12

BSR m

...
LDR MPm

LDRR MP SP

AJS +2

LDL -3

NEG

STL +1
...

LDRR SP MP

STR MP

STS -2

AJS -1

RET

PC

SP

MP

RR
...

...

7

12

a

b

-7

-7

-7

-7

-7

-7

-7

12

m(7, 12);

void m (int x, int y) {

int a, b;

a = -x;

. . .
}



LDR: push value of a register onto the stack



LDRR: load register from another register



LDL: load a (local) value; relative to the mark pointer



STR: pop value and store in register



STS: pop a value from the stack; store it relative to SP



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-31

Methods with local variables

LDC 7

LDC 12

BSR m

...
LDR MPm

LDRR MP SP

AJS +2

LDL -3

NEG

STL +1
...

LDRR SP MP

STR MP

STS -2

AJS -1

RET

PC

SP

MP

RR
...

...

7

12

a

b

-7

-7

-7

-7

-7

-7

-7

12

m(7, 12);

void m (int x, int y) {

int a, b;

a = -x;

. . .
}



LDR: push value of a register onto the stack



LDRR: load register from another register



LDL: load a (local) value; relative to the mark pointer



STR: pop value and store in register



STS: pop a value from the stack; store it relative to SP



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-32

Method translation with local variables

Method call as before.

Method definition (n parameters, k local variables)

▶ Create room for local variables: LDR MP to save the mark
pointer, LDRR MP SP to reset the mark pointer, AJS +k to
adjust the stack pointer. (Also available as a single
instruction LINK k.)

▶ Use parameters: from LDL −(n+ 1) to LDL −2.
▶ Use local variables: from LDL +1 to LDL +k.

▶ Clean up local variables: LDRR SP MP to reset the stack
pointer, and STR MP to restore the mark pointer. (Also
available as a single instruction UNLINK.)

▶ Clean up: STS −n followed by AJS −(n− 1).

▶ Return: RET



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-32

Method translation with local variables

Method call as before.

Method definition (n parameters, k local variables)

▶ Create room for local variables: LDR MP to save the mark
pointer, LDRR MP SP to reset the mark pointer, AJS +k to
adjust the stack pointer. (Also available as a single
instruction LINK k.)

▶ Use parameters: from LDL −(n+ 1) to LDL −2.
▶ Use local variables: from LDL +1 to LDL +k.

▶ Clean up local variables: LDRR SP MP to reset the stack
pointer, and STR MP to restore the mark pointer. (Also
available as a single instruction UNLINK.)

▶ Clean up: STS −n followed by AJS −(n− 1).

▶ Return: RET



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-33

Methods with return values

Two options.

Result on stack
▶ Leave the result as the final value on the stack.

▶ Adapt the cleanup code so that this works.

Result in register

▶ Place the result of a method call in a fixed free register (RR
for example).

▶ Use the value from there at the call site.



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-33

Methods with return values

Two options.

Result on stack
▶ Leave the result as the final value on the stack.

▶ Adapt the cleanup code so that this works.

Result in register

▶ Place the result of a method call in a fixed free register (RR
for example).

▶ Use the value from there at the call site.



uulogo.pdf
[Faculty of Science

Information and Computing Sciences]

9-33

Methods with return values

Two options.

Result on stack
▶ Leave the result as the final value on the stack.

▶ Adapt the cleanup code so that this works.

Result in register

▶ Place the result of a method call in a fixed free register (RR
for example).

▶ Use the value from there at the call site.


