[Faculty of Science
Information and Computing Sciences]

Talen en Compilers
2022 - 2023, period 2

David van Balen

Department of Information and Computing Sciences
Utrecht University

1980-01-01

9. Simple stack machine

[Faculty of Science
Information and Computing Sciences]

ap: Semantic functions

In the previous lectures, we have seen how to evaluate
(interpret) expressions.

[Faculty of Science
logo o Pdf Information and Computing Sciences]

Recap: Semantic functions

In the previous lectures, we have seen how to evaluate
(interpret) expressions.

» We have added variables and talked about environments.

» We have added local definitions and talked about nesting
and blocks.

» We have added (mutually) recursive definitions and talked
about scoping.

[Faculty of Science

uul 0go. pdf Information and Computing Sciences]

9-2

Recap: Semantic functions

In the previous lectures, we have seen how to evaluate
(interpret) expressions.

» We have added variables and talked about environments.

» We have added local definitions and talked about nesting
and blocks.

» We have added (mutually) recursive definitions and talked
about scoping.

Now we are going to generate code in a low-level language
instead of interpreting the expression directly.

[Faculty of Science

uul 0go. pdf Information and Computing Sciences]

9-2

This lecture

Simple stack machine
Architecture of the simple stack machine
Instructions
Translating programs

Functions / methods

[Faculty of Science

uul 0go. pdf Information and Computing Sciences]

9-3

9.1 Architecture of the simple stack machine

[Faculty of Science
Information and Computing Sciences]

Simple stack machine

9-5

A virtual machine that executes programs consisting of

assembly language instructions.

uulogo.pdf

[Faculty of Science
Information and Computing Sciences]

why? simple interpreters and compilers

why? it is a pushdown automaton; can recognise context-free languages

Simple stack machine

A virtual machine that executes programs consisting of
assembly language instructions.

» The program is a list of instructions with arguments, stored
in a continuous block of memory.

> A stack is used to store the current state of execution.

> There are eight registers, four with a special name:

» the program counter (PC)
» the stack pointer (SP)

» the mark pointer (MP)

» the return register (RR)

[Faculty of Science

uul 0go. pdf Information and Computing Sciences]

9-5

why? simple interpreters and compilers

why? it is a pushdown automaton; can recognise context-free languages

9-5

Simple stack machine

A virtual machine that executes programs consisting of
assembly language instructions.

» The program is a list of instructions with arguments, stored
in a continuous block of memory.

> A stack is used to store the current state of execution.

> There are eight registers, four with a special name:

» the program counter (PC)
» the stack pointer (SP)

» the mark pointer (MP)

» the return register (RR)

Question
Why a stack?

[Faculty of Science

uul 0go. pdf Information and Computing Sciences]

why? simple interpreters and compilers

why? it is a pushdown automaton; can recognise context-free languages

Execution

> A step in the execution interprets the instruction pointed
to by the program counter.

» Depending on the instruction, the contents of the stack
and registers are modified.

[Faculty of Science

uul 0go. pdf Information and Computing Sciences]

9-6

Draw the memory model

Execution

> A step in the execution interprets the instruction pointed
to by the program counter.

» Depending on the instruction, the contents of the stack
and registers are modified.

Example: LDC (load constant)

SPpost = SPpre +1 (increment stack pointer)
Mpost [SPpost] = Mpre [PCpre + 1] (place argument on stack)
PCpost =PCpre +2 (adjust program counter)

[Faculty of Science

uul 0go. pdf Information and Computing Sciences]

9-6

Draw the memory model

9-7

Visualizing the execution

SPpost =SS REEE (increment stack pointer)
Mpost [SPpost] = Mpre [PCpre + 1] (place argument on stack)
PCpost =PCpre +2 (adjust program counter)
LDC 42 e 23

P/

SP

MP

RR

The instruction LDC 42 takes up two words in memory, but we
write it in one cell.

[Faculty of Science
uulogo.pdf

Information and Computing Sciences]

9-7

Visualizing the execution

SPpost =SS REEE (increment stack pointer)

Mpost [SPpost] = Mpre [PCpre + 1] (place argument on stack)
PCpost =PCpre +2 (adjust program counter)

LDC 42

23
e«//////;S’//////,—a 42

SP
MP

RR

The instruction LDC 42 takes up two words in memory, but we
write it in one cell.

[Faculty of Science
uulogo.pdf

Information and Computing Sciences]

9.2 Instructions

[Faculty of Science
Information and Computing Sciences]

Instructions

Most instructions can be classified into the following groups:

» |oad instructions
» store instructions
P jump instructions

» arithmetic and logical operations

[Faculty of Science

uul 0go. pdf Information and Computing Sciences]

9-9

Load and store instructions

9-10

LDC — load constant

LDR — load from register
LDL — load local

LDS — load from stack
LDLA — load local address

LDA — load via address

uulogo.pdf

STR — store to register
STL — store local

STS — store to stack

SDA — store via address

[Faculty of Science
Information and Computing Sciences]

d instructions

LDC — load constant

LDC 17 ——F— |

LDR RR PC

LDL 2

LDS -3 Sp

LDLA 1

LDA 2 MP

NOP [31]
RR

HALT

logo.pdf

12

59
63
75
81

[Faculty of Science
Information and Computing Sciences]

LDL: load value relative to MP

LDS: load value relative to SP

LDLA: load the address of a value relative to MP (= MP+offset)

LDA: load value at offset to address at top of stack

d instructions

LDR — load from register

LDC 17

LDR RR

LDL 2

LDS -3 SP

LDLA 1

LDA 2 MP

NOP [31]
RR

HALT

logo.pdf

12

59
63
75
81

[Faculty of Science
Information and Computing Sciences]

LDL: load value relative to MP

LDS: load value relative to SP

LDLA: load the address of a value relative to MP (= MP+offset)

LDA: load value at offset to address at top of stack

d instructions

LDL — load local
LDC 17
LDR RR
LDL 2
LDS -3
LDLA 1
LDA 2
NOP
HALT

logo.pdf

12
PC 17
[F— 31
SP
MP
RR :
59
63
75
81

[Faculty of Science
Information and Computing Sciences]

LDL: load value relative to MP

LDS: load value relative to SP

LDLA: load the address of a value relative to MP (= MP+offset)

LDA: load value at offset to address at top of stack

d instructions

LDS - load from stack

LDC 17

12

LDR RR

17

LDL 2

31

LDS -3

S

75

LDLA 1

LDA 2

NOP

HZ
=

Y
Py

HALT

59

63

75

logo.pdf

81

[Faculty of Science
Information and Computing Sciences]

LDL: load value relative to MP

LDS: load value relative to SP

LDLA: load the address of a value relative to MP (= MP+offset)

LDA: load value at offset to address at top of stack

Load instructions

9-11

LDLA — load local address

LDC 17

LDR RR

LDL 2

LDS -3

LDLA 1

LDA 2

NOP

HALT

uulogo.pdf

PC
SP
MP

RR

12
17
31
75
12

59
63
75
81

[Faculty of Science
Information and Computing Sciences]

LDL: load value relative to MP

LDS: load value relative to SP

LDLA: load the address of a value relative to MP (= MP+offset)

LDA: load value at offset to address at top of stack

Load instructions

9-11

LDA — load via address

LDC 17

LDR RR

LDL 2

LDS -3

LDLA 1

LDA 2

NOP

HALT

uulogo.pdf

PC

SP

MP

31
RR

12
17
31
75
12

59
63
75
81

[Faculty of Science
Information and Computing Sciences]

LDL: load value relative to MP

LDS: load value relative to SP

LDLA: load the address of a value relative to MP (= MP+offset)

LDA: load value at offset to address at top of stack

d instructions

NOP — noop
LDC 17
LDR RR
LDL 2
LDS -3
LDLA 1
LDA 2
NOP
HALT

logo.pdf

PC
SP
MP

RR

12
17
31
75
12
81

59
63
75
81

[Faculty of Science
Information and Computing Sciences]

LDL: load value relative to MP

LDS: load value relative to SP

LDLA: load the address of a value relative to MP (= MP+offset)

LDA: load value at offset to address at top of stack

d instructions

HALT - halt program

LDC 17 12

LDR RR PC 17

LDL 2 31

LDS -3 SP 75

LDLA 1 12

LDA 2 MP 81
NOP

HALT RR :

: 59

63

75

81

[Faculty of Science
logo o Pdf Information and Computing Sciences]

LDL: load value relative to MP

LDS: load value relative to SP

LDLA: load the address of a value relative to MP (= MP+offset)

LDA: load value at offset to address at top of stack

Branch instructions

9-12

BRA — branch always (unconditional)

BRT — branch on true (—1)

BRF — branch on false (0)

BSR — branch to subroutine (push return address on stack)

RET — return (from subroutine)

[Faculty of Science

uul 0go. pdf Information and Computing Sciences]

Register and jump instructions

9-13

LDRR — load register from register

LDRR R5 RR

e
AJS -2
BRA +5 SP
LDC 91
STR RR MP
RET [31]
BSR -7 RR
LDR RR]
R5

uulogo.pdf

12
17
31
75
12
81

[Faculty of Science
Information and Computing Sciences]

LDRR: copy register to register

AJS: move stack pointer a relative amount

BRA: unconditional branch; does not pop stack

BSR: branch to subroutine; store PC on stack. PC = PC + M[PC+1] + 2

STR: pop value from the stack and store in register

RET: jump to address at top of stack; pop stack

LDR: push value in register to stack

9-13

Register and jump instructions

AJS — adjust stack pointer
; 12

LDRR R5 RR%//////L7;:] 17
AJS -2 31
BRA +5 SP 75
LDC 91 12
STR RR MP 81

RET [31]
BSR -7
LDR RR

H
—

2y
Py

H
-

Y
(6]

[Faculty of Science

uulogo o pdf Information and Computing Sciences]

LDRR: copy register to register

AJS: move stack pointer a relative amount

BRA: unconditional branch; does not pop stack

BSR: branch to subroutine; store PC on stack. PC = PC + M[PC+1] + 2

STR: pop value from the stack and store in register

RET: jump to address at top of stack; pop stack

LDR: push value in register to stack

Register and jump instructions

9-13

BRA — unconditional branch

LDRR R5 RR

AJS -2

BRA +5

LDC 91

STR RR

RET

BSR -7

LDR RR

uulogo.pdf

PC

S

MP
RR
RS

/

12
17
31
75
12
81

[Faculty of Science
Information and Computing Sciences]

LDRR: copy register to register

AJS: move stack pointer a relative amount

BRA: unconditional branch; does not pop stack

BSR: branch to subroutine; store PC on stack. PC = PC + M[PC+1] + 2

STR: pop value from the stack and store in register

RET: jump to address at top of stack; pop stack

LDR: push value in register to stack

Register and jump instructions

9-13

BSR — branch to subroutine

LDRR R5 RR

AJS -2

BRA +5

LDC 91

STR RR

RET

BSR -7

LDR RR

uulogo.pdf

=
SP 75

12
17

12
81

[Faculty of Science
Information and Computing Sciences]

LDRR: copy register to register

AJS: move stack pointer a relative amount

BRA: unconditional branch; does not pop stack

BSR: branch to subroutine; store PC on stack. PC = PC + M[PC+1] + 2

STR: pop value from the stack and store in register

RET: jump to address at top of stack; pop stack

LDR: push value in register to stack

Register and jump instructions

9-13

LDC — load constant

LDRR R5 RR
AJS -2

BRA +5

LDC 91

STR RR
RET

BSR -7

LDR RR

uulogo.pdf

PC
SP

MP
31

R5

12
17
31
75

81

[Faculty of Science
Information and Computing Sciences]

LDRR: copy register to register

AJS: move stack pointer a relative amount

BRA: unconditional branch; does not pop stack

BSR: branch to subroutine; store PC on stack. PC = PC + M[PC+1] + 2

STR: pop value from the stack and store in register

RET: jump to address at top of stack; pop stack

LDR: push value in register to stack

Register and jump instructions

9-13

STR — store to register

LDRR R5 RR
AJS -2

BRA +5

LDC 91

STR RR

RET

BSR -7

LDR RR

uulogo.pdf

PC
SP

MP
31

R5

12
17
31
75

91

[Faculty of Science
Information and Computing Sciences]

LDRR: copy register to register

AJS: move stack pointer a relative amount

BRA: unconditional branch; does not pop stack

BSR: branch to subroutine; store PC on stack. PC = PC + M[PC+1] + 2

STR: pop value from the stack and store in register

RET: jump to address at top of stack; pop stack

LDR: push value in register to stack

Register and jump instructions

9-13

RET — return

LDRR R5 RR

AJS -2

BRA +5

LDC 91

STR RR

RET

BSR -7

LDR RR

uulogo.pdf

PC
SP

MP
91

R5

12
17
31
75

91

[Faculty of Science
Information and Computing Sciences]

LDRR: copy register to register

AJS: move stack pointer a relative amount

BRA: unconditional branch; does not pop stack

BSR: branch to subroutine; store PC on stack. PC = PC + M[PC+1] + 2

STR: pop value from the stack and store in register

RET: jump to address at top of stack; pop stack

LDR: push value in register to stack

Register and jump instructions

9-13

LDR — load from register

LDRR R5 RR

AJS -2

BRA +5

LDC 91

STR RR

RET

BSR -7

LDR RR

uulogo.pdf

[Faculty of Science
Information and Computing Sciences]

LDRR: copy register to register

AJS: move stack pointer a relative amount

BRA: unconditional branch; does not pop stack

BSR: branch to subroutine; store PC on stack. PC = PC + M[PC+1] + 2

STR: pop value from the stack and store in register

RET: jump to address at top of stack; pop stack

LDR: push value in register to stack

Register and jump instructions

9-13

LDRR R5 RR

AJS -2

BRA +5

LDC 91

STR RR

RET

BSR -7

LDR RR

uulogo.pdf

SP

MP
RR
RS

12
17
31
75
91
91

[Faculty of Science
Information and Computing Sciences]

LDRR: copy register to register

AJS: move stack pointer a relative amount

BRA: unconditional branch; does not pop stack

BSR: branch to subroutine; store PC on stack. PC = PC + M[PC+1] + 2

STR: pop value from the stack and store in register

RET: jump to address at top of stack; pop stack

LDR: push value in register to stack

Operators

9-14

Operators remove stack arguments and put the result back on

the stack.

Binary operators

ADD AND
SUB OR
MUL XOR
DIV
MOD

EQ
NE
LT
GT
LE
GE

uulogo.pdf

Unary operators
NOT

NEG

[Faculty of Science
Information and Computing Sciences]

9.3 Translating programs

[Faculty of Science
Information and Computing Sciences]

hmetic expressions

Expression

3+4*xT7+2

[Faculty of Science
logo o Pdf Information and Computing Sciences]

hmetic expressions

Expression

3+4*xT7+2

Code

LDC 3
LDC 4
LDC 7
MUL
ADD
LDC 2
ADD

[Faculty of Science
logo o Pdf Information and Computing Sciences]

hmetic expression example

LDC 3

LDC 4

LDC 7

MUL SP

ADD []

LDC 2 MP

ADD []
RR

logo.pdf

<—§/ :
PC

[Faculty of Science
Information and Computing Sciences]

hmetic expression example

LDC 3 ﬁ :
LDC 4 PC 3
LpC 7 E/
MUL SP
ADD []
LDC 2 MP
ADD []

RR

[Faculty of Science
logo o Pdf Information and Computing Sciences]

hmetic expression example

LDC 3 :
LDC PC 3
LDC 7 a4

4

MUL SP

ADD []

LDC 2 MP

ADD []
RR

[Faculty of Science
logo o Pdf Information and Computing Sciences]

hmetic expression example

LDC 3 :
LDC 4 PC 3
LDC 7 E\ 4
MUL SP 7
ADD []
LDC 2 MP
ADD []

RR :

[Faculty of Science
logo o Pdf Information and Computing Sciences]

hmetic expression example

LDC 3 :
LDC 4 PC 3
LDC 7 | ———— 28
MUL SP 7
ADD []

LDC 2 MP

ADD []

RR

[Faculty of Science
logo o Pdf Information and Computing Sciences]

hmetic expression example

LDC 3 :
LDC 4 PC 31
LDC 7 E/ 28
MUL SP 7
ADD []

LDC 2 MP

ADD []

RR

[Faculty of Science
logo o Pdf Information and Computing Sciences]

hmetic expression example

LDC 3 :
LDC 4 PC 31
LDC 7 4 2
MUL SP 7
ADD []

LDC 2 MP

ADD []

RR

[Faculty of Science
logo o Pdf Information and Computing Sciences]

hmetic expression example

LDC 3 :
LDC 4 PC 33
LDC 7 E/ 2
MUL SP 7
ADD []

LDC 2 MP

ADD []

RR

[Faculty of Science
logo o Pdf Information and Computing Sciences]

Representing code in Haskell

9-18

type Code = [Instr]

data Instr = LDC Int

| LDL Int

| ADD

| NEG

| EQ

\
codeSize :: Code — Int
codeSize = sum . map instrSize

instrSize :: Instr — Int
instrSize (LDC n) =2
instrSize ADD =3

uulogo.pdf

[Faculty of Science
Information and Computing Sciences]

Translating expressions

9-19

data Expr = Num Int
| Add Expr Expr
| Mul Expr Expr
| Neg Expr

code :: Expr — Code

code (Num n) = [LDC n]

(

code (Add e; eg) = code e H code e + [ADD]

code (Mul e; e2) = code e; H code ey H [MUL]
(

code (Neg e) = code e H [NEG]

uulogo.pdf

[Faculty of Science

Information and Computing Sciences]

Translating expressions

9-19

data Expr = Num Int
| Add Expr Expr
| Mul Expr Expr
| Neg Expr

code :: Expr — Code

code (Num n) = [LDC n]

code (Neg e)

We can also write this as a fold.

uulogo.pdf

(

code (Add e; eg) = code e H code e + [ADD]

code (Mul e; e2) = code e; H code ey H [MUL]
(= code e H [NEG]

[Faculty of Science
Information and Computing Sciences]

Translating conditional expressions

9-20

data Expr= ...

| If Expr Expr Expr

code :: Expr — Code

code (If ctf) =cc

[BRF (st + 2)] H-

ct
[BRA sf] 4+
cf
where cc = code ¢
ct =codet
cf =codef

st = codeSize ct
sf = codeSize cf

uulogo.pdf

[Faculty of Science
Information and Computing Sciences]

nslating conditional expressions — contd.

CcC
BRF (st + 2) —7
A
C st
BRA sf >2
cf sf

logo.pdf

[Faculty of Science
Information and Computing Sciences]

Algebra for code generation

data Expr =
Num Int
| Add Expr Expr
| Neg Expr
|Eq Expr Expr
[If Expr Expr Expr

uulogo.pdf

9-22

code x = foldExpr codeAlg x
where
codeAlg :: ExprAlg Code
codeAlg =
(An —
S Alr —
Al —
S Ar —
%

[Faculty of Science
Information and Computing Sciences]

LDL: load value relative to MP

STL: store value relative to MP

Algebra for code generation

data Expr =
Num Int
| Add Expr Expr
| Neg Expr
|Eq Expr Expr
[If Expr Expr Expr

uulogo.pdf

9-22

code x = foldExpr codeAlg x

where
codeAlg :: ExprAlg Code
codeAlg =
(An — [LDC n
Alr = |+ r - [ADD]
S Al — |+ [NEG]
Alr = | +H#r 4 [EQ
,Actf —
)

[Faculty of Science
Information and Computing Sciences]

LDL: load value relative to MP

STL: store value relative to MP

Algebra for code generation

data Expr =
Num Int
| Add Expr Expr
| Neg Expr
|Eq Expr Expr
[If Expr Expr Expr

uulogo.pdf

9-22

code x = foldExpr codeAlg x

where
codeAlg :: ExprAlg Code
codeAlg =
(An — [LDC n
Alr = |+ r - [ADD]
S Al — |+ [NEG]
Alr = | +H#r 4 [EQ
,Actf —

c - [BRF (st+2)] +
t -+ [BRASf] #f

[Faculty of Science
Information and Computing Sciences]

LDL: load value relative to MP

STL: store value relative to MP

Algebra for code generation

data Expr =
Num Int
| Add Expr Expr
| Neg Expr
|Eq Expr Expr
[If Expr Expr Expr

uulogo.pdf

9-22

code x = foldExpr codeAlg x

where
codeAlg :: ExprAlg Code
codeAlg =
(An — [LDC n
Alr = |+ r - [ADD]
S Al — |+ [NEG]
Alr = | +H#r 4 [EQ
,Actf —

let st = codeSize (t)
sf = codeSize (f)

in ¢+ [BRF (st+ 2)] #
t -+ [BRASf] #f

[Faculty of Science
Information and Computing Sciences]

LDL: load value relative to MP

STL: store value relative to MP

Algebra for code generation

data Expr =
Num Int
| Add Expr Expr
| Neg Expr
|Eq Expr Expr
[If Expr Expr Expr

| Var String
| Let String Expr Expr

uulogo.pdf

9-22

code x = foldExpr codeAlg x

where
codeAlg :: ExprAlg Code
codeAlg =
(An — [LDC n
Alr = | -+ r - [ADD]
DY — |+ [NEG]
Alr = | +H#r 4 [EQ
,Actf —

let st = codeSize (t)
sf = codeSize (f)
in ¢+ [BRF (st+ 2)] #
t -+ [BRASf] #f
, As —
,Asd b —

)

[Faculty of Science
Information and Computing Sciences]

LDL: load value relative to MP

STL: store value relative to MP

Algebra for code generation

data Expr =
Num Int
| Add Expr Expr
| Neg Expr
|Eq Expr Expr
[If Expr Expr Expr

| Var String
| Let String Expr Expr

uulogo.pdf

9-22

code x = foldExpr codeAlg x

where
codeAlg :: ExprAlg Code
codeAlg =
(An — [LDC n
Alr = | -+ r - [ADD]
DY — |+ [NEG]
Alr = | +H#r 4 [EQ
,Actf —

let st = codeSize (t)
sf = codeSize (f)
in ¢+ [BRF (st+ 2)] #
t -+ [BRASf] #f
s — [LDL ?7]
,Asdb—

)

[Faculty of Science
Information and Computing Sciences]

LDL: load value relative to MP

STL: store value relative to MP

Algebra for code generation

code x = foldExpr codeAlg x

where
codeAlg :: ExprAlg (Env — Code)
data Expr = codeAlg =
Num Int (An — [LDC n
| Add Expr Expr Ar = | +r - [ADD]
| Neg Expr DY — |+ [NEG]
|Eq Expr Expr Alr = | +H#r 4 [EQ
[If Expr Expr Expr JActf —

let st = codeSize (t)

sf = codeSize (f)
in ¢+ [BRF (st+ 2)] #

t -+ [BRASf] #f
| Var String ,As — Xe — [LDL (e!s)]
| Let String Expr Expr ,Asd b — Ae — deH [STL (size e)]

H b (insert s (size €) e)

) [Faculty of Science

uul 0go. pdf Information and Computing Sciences]

9-22

LDL: load value relative to MP

STL: store value relative to MP

Algebra for code generation

data Expr =
Num Int
| Add Expr Expr
| Neg Expr
|Eq Expr Expr
[If Expr Expr Expr

| Var String
| Let String Expr Expr

uulogo.pdf

9-22

code x = foldExpr codeAlg x empty

where
codeAlg :: ExprAlg (Env — Code)
codeAlg =
(An — Xe — [LDCn]
Al — Xe — e+ re [ADD]
DY — e — |le+ [NEG]
JAr = Xe — leHre+ [EQ

,Actf — e —
let st = codeSize (t e)
sf = codeSize (f ¢)
in ce -+ [BRF (st + 2)] #
te H [BRASf] H#fe
,As. — Ae — [LDL (e!s)]
,Asd b — Ae — d e [STL (size €)]
H b (insert s (size €) e)
)

[Faculty of Science
Information and Computing Sciences]

LDL: load value relative to MP

STL: store value relative to MP

Expressions vs. statements

We extend our language with statements:

data Stmt =
Assign String Expr
| If Expr Stmt Stmt
| While Expr Stmt
| Call String [Expr]

[Faculty of Science

uul 0go. pdf Information and Computing Sciences]

9-23

9-23

Expressions vs. statements

We extend our language with statements:

data Stmt =
Assign String Expr
| If Expr Stmt Stmt
| While Expr Stmt
| Call String [Expr]

For many languages, the following invariants hold:

» Expressions always leave a single result on the stack after
evaluation.

» Statements do not leave a result on the stack after
evaluation.

[Faculty of Science
Information and Computing Sciences]

uulogo.pdf

Translating while loops

9-24

data Stmt = ...
| While Expr Stmt

code :: Stmt — Code

code (While c b) = cc +
[BRF (sb + 2)] #
cb +

[BRA (—(sb +sc+4))]
where cc = code ¢
cb =code b
sc = codeSize cc
sb = codeSize cb

[Faculty of Science

uul 0go. pdf Information and Computing Sciences]

nslating while loops — contd.

\cc

SC

BRF(sD + 2)

H2

sb

C/BRA (—(sb+sc+4))

P

logo.pdf

[Faculty of Science
Information and Computing Sciences]

nslating while loops — contd.

BRA sb 2

cc sc
cb sb

BRF\@er }2

c sb cc SC

/BRA (—(sb +sc+4)) -92 BRT (—(sb + sc + 2)) 92

[Faculty of Science
logo o Pdf Information and Computing Sciences]

9-26

Translating while loops — contd.

data Stmt = ...
| While Expr Stmt

code :: Stmt — Code

code (While ¢ b) = [BRA sb] +
cb +-
cc +
[BRT (—(sb +sc+2))]
where cc = code ¢
cb =code b
sc = codeSize cc
sb = codeSize cb

[Faculty of Science

uul 0go. pdf Information and Computing Sciences]

Algebra for code generation

data Stmt =
Assign String Expr
| If Expr Stmt Stmt

| While Expr Stmt

| Call String [Expr]

uulogo.pdf

9-27

code x = foldSE codeAlg x empty
where
codeAlg :: SEAIlg (Env — Code) (Env — Code)
codeAlg =
(Asd e —de-+H[STL (e!s)]
,Actf e —
let st = codeSize (t e)
sf = codeSize (f e)
in ce-+ [BRF (st +2)] +
te 4+ [BRASf| Hfe
,ACb e —
let sc = codeSize (c e)
sb = codeSize (b e)
in [BRAsb] Hbe4ce+
[BRT (—(sb + sc + 2))]
,Am ps e — concat [p e | p <— ps| + [BSR m]
, ... -—components for Expr

)

[Faculty of Science
Information and Computing Sciences]

Similar to last week; extend the algebra with another carrier type

..for the result of Stmt

9.4 Functions / methods

[Faculty of Science
Information and Computing Sciences]

Methods with parameters

9-29

LDC 12
BSR m

m| LDS -2
LDC 37
ADD
BSR p
LDS -2
LDS -2
MUL
BSR q
STS -2
AJS -1
RET

uulogo.pdf-

LDC 7 —
PC
P

S
MP

RR

m(7, 12);

void m (int x, int y) {
p (x + 37);
q (x * y);

}

[Faculty of Science
Information and Computing Sciences]

STS: pop a value from the stack; store it relative to SP

cleanup when returning from function; pop all input parameters

Methods with parameters

9-29

LDC 7
LDC 12
BSR m

m| LDS -2
LDC 37
ADD
BSR p
LDS -2
LDS -2
MUL
BSR q
STS -2
AJS -1
RET

uulogo.pdf-

7
PC 12
SP
MP
RR
m(7, 12);

void m (int x, int y) {
p (x + 37);
q (x * y);

}

[Faculty of Science
Information and Computing Sciences]

STS: pop a value from the stack; store it relative to SP

cleanup when returning from function; pop all input parameters

Methods with parameters

9-29

LDC 7
LDC 12
BSR m

m| LDS -2
LDC 37
ADD
BSR p
LDS -2
LDS -2
MUL
BSR q
STS -2
AJS -1
RET

uulogo.pdf-

m(7, 12);

void m (int x, int y) {
p (x + 37);
q (x * y);

}

[Faculty of Science
Information and Computing Sciences]

STS: pop a value from the stack; store it relative to SP

cleanup when returning from function; pop all input parameters

Methods with parameters

9-29

LDC 7
LDC 12
BSR m

m| LDS -2
LDC 37
ADD
BSR p
LDS -2
LDS -2
MUL
BSR q
STS -2
AJS -1
RET

uulogo.pdf-

m(7, 12);

void m (int x, int y) {
p (x + 37);
q (x * y);

}

[Faculty of Science
Information and Computing Sciences]

STS: pop a value from the stack; store it relative to SP

cleanup when returning from function; pop all input parameters

Methods with parameters

9-29

LDC 7
LDC 12
BSR m

m| LDS -2
LDC 37
ADD
BSR p
LDS -2
LDS -2
MUL
BSR q
STS -2
AJS -1
RET

uulogo.pdf-

7
PC 12
SP
MP
RR
m(7, 12);

void m (int x, int y) {
p (x + 37);
q (x * y);

}

[Faculty of Science
Information and Computing Sciences]

STS: pop a value from the stack; store it relative to SP

cleanup when returning from function; pop all input parameters

Methods with parameters

9-29

LDC 7
LDC 12
BSR m

m| LDS -2
LDC 37
ADD
BSR p
LDS -2
LDS -2
MUL
BSR q
STS -2
AJS -1
RET

uulogo.pdf-

(7, 12);

void m (int x, int y) {
p (x + 37);
q (x * y);

}

[Faculty of Science
Information and Computing Sciences]

STS: pop a value from the stack; store it relative to SP

cleanup when returning from function; pop all input parameters

Methods with parameters

9-29

LDC 7
LDC 12
BSR m

m| LDS -2
LDC 37
ADD
BSR p
LDS -2
LDS -2
MUL
BSR q
STS -2
AJS -1
RET

uulogo.pdf-

12

(7, 12);

void m (int x, int y) {

3

p (x + 37);
q (x * y);

[Faculty of Science
Information and Computing Sciences]

STS: pop a value from the stack; store it relative to SP

cleanup when returning from function; pop all input parameters

Methods with parameters

9-29

LDC 7
LDC 12
BSR m

m| LDS -2
LDC 37
ADD
BSR p
LDS -2
LDS -2
MUL
BSR q
STS -2
AJS -1
RET

uulogo.pdf-

(7, 12);

void m (int x, int y) {

3

p (x + 37);
q (x * y);

[Faculty of Science
Information and Computing Sciences]

STS: pop a value from the stack; store it relative to SP

cleanup when returning from function; pop all input parameters

Methods with parameters

9-29

LDC 7
LDC 12
BSR m

m| LDS -2
LDC 37
ADD
BSR p
LDS -2
LDS -2
MUL
BSR q
STS -2
AJS -1
RET

uulogo.pdf-

3

oid m (int x, int y) {
p (x + 37);
q (x * y);

[Faculty of Science
Information and Computing Sciences]

STS: pop a value from the stack; store it relative to SP

cleanup when returning from function; pop all input parameters

9-29

Methods with parameters

LDC 7 —
LDC 12 PC 12
BSR m —
SP
m| LDS -2 MP
LDC 37 []
ADD RR
BSR p
LDS -2
LDS -2
MUL m(7, 12);
222 ?2 void m (int x, int y) {
ATE 1 p (x + 37);
— q (x * y);
. +

[Faculty of Science

uulogo o pdf Information and Computing Sciences]

STS: pop a value from the stack; store it relative to SP

cleanup when returning from function; pop all input parameters

thod translation

Method call

> Put parameters on the stack.
» Call BSR with the method label.

[Faculty of Science
logo o Pdf Information and Computing Sciences]

Method translation

Method call

> Put parameters on the stack.
» Call BSR with the method label.

Method definition

» Use parameters: from LDS —(n + d) to LDS —(1 + d),
where n is the number of parameters and d is your current
offset (this becomes easier with the mark pointer).

» Clean up: STS —n followed by AJS —(n — 1).
» Return: RET

[Faculty of Science

uul 0go. pdf Information and Computing Sciences]

9-30

Method translation

Method call
> Put parameters on the stack.
» Call BSR with the method label.

Method definition

» Use parameters: from LDS —(n + d) to LDS —(1 + d),
where n is the number of parameters and d is your current
offset (this becomes easier with the mark pointer).

» Clean up: STS —n followed by AJS —(n — 1).

> Return: RET
It is also possible, but less common, to let the caller clean up
after a method call.

[Faculty of Science
uul 0go. pdf Information and Computing Sciences]

9-30

Methods with local variables

9-31

LDC 7
LDC 12
BSR m

m | LDR MP
LDRR MP SP
AJS +2
LDL -3
NEG
STL +1

LDRR SP MP
STR MP

STS -2

AJS -1

RET

uulogo.pdf

7
PC 12
SP
MP
RR
m(7, 12);

void m (int x, int y) {
int a, b;
a = -x;

[Faculty of Science
Information and Computing Sciences]

LDR: push value of a register onto the stack

LDRR: load register from another register

LDL: load a (local) value; relative to the mark pointer

STR: pop value and store in register

STS: pop a value from the stack; store it relative to SP

Methods with local variables

9-31

LDC 7
LDC 12
BSR m

m | LDR MP
LDRR MP SP
AJS +2
LDL -3
NEG
STL +1

LDRR SP MP
STR MP

STS -2

AJS -1

RET

uulogo.pdf

7
PC 12
SP
MP
RR
m(7, 12);

void m (int x, int y) {
int a, b;
a = -x;

[Faculty of Science
Information and Computing Sciences]

LDR: push value of a register onto the stack

LDRR: load register from another register

LDL: load a (local) value; relative to the mark pointer

STR: pop value and store in register

STS: pop a value from the stack; store it relative to SP

Methods with local variables

9-31

LDC 7
LDC 12
BSR m

m | LDR MP
LDRR MP SP
AJS +2
LDL -3
NEG
STL +1

LDRR SP MP
STR MP

STS -2

AJS -1

RET

uulogo.pdf

7
PC 12
SP
MP
RR
m(7, 12);

void m (int x, int y) {
int a, b;
a = -x;

[Faculty of Science
Information and Computing Sciences]

LDR: push value of a register onto the stack

LDRR: load register from another register

LDL: load a (local) value; relative to the mark pointer

STR: pop value and store in register

STS: pop a value from the stack; store it relative to SP

Methods with local variables

9-31

LDC 7
LDC 12 PC
BSR m

SP

m LDR MP MP
LDRR MP SP
AJS +2 RR
LDL -3
NEG
STL +1 m(7, 12);

12

LDRR SP MP void m (int x, int y) {

STR MP int a, b;
STS -2 a = —X;
AJS -1

RET }

uulogo.pdf

[Faculty of Science
Information and Computing Sciences]

LDR: push value of a register onto the stack

LDRR: load register from another register

LDL: load a (local) value; relative to the mark pointer

STR: pop value and store in register

STS: pop a value from the stack; store it relative to SP

Methods with local variables

9-31

LDC 7
LDC 12
BSR m

m | LDR MP
LDRR MP SP
AJS +2
LDL -3
NEG

STL +1 m(7, 12);

LDRR SP MP void m (int x, int y) {

STR MP int a, b;
STS -2 a = —X;
AJS -1

RET }

uulogo.pdf

[Faculty of Science
Information and Computing Sciences]

LDR: push value of a register onto the stack

LDRR: load register from another register

LDL: load a (local) value; relative to the mark pointer

STR: pop value and store in register

STS: pop a value from the stack; store it relative to SP

Methods with local variables

9-31

LDC 7
LDC 12
BSR m

m| LDR MP
LDRR MP SP
AJS +2
LDL -3
NEG
STL +1 (7, 12);
LDRR SP MP
STR MP int a, b;
STS -2 a = —x;
AJS -1
RET }

uulogo.pdf

void m (int x, int y) {

[Faculty of Science
Information and Computing Sciences]

LDR: push value of a register onto the stack

LDRR: load register from another register

LDL: load a (local) value; relative to the mark pointer

STR: pop value and store in register

STS: pop a value from the stack; store it relative to SP

Methods with local variables

9-31

LDC 7
LDC 12
BSR m

m | LDR MP
LDRR MP SP
AJS +2
LDL -3
NEG
STL +1

LDRR SP MP
STR MP

STS -2

AJS -1

RET

uulogo.pdf

(7, 12);

void m (int x, int y) {
int a, b;
a = -x;

[Faculty of Science
Information and Computing Sciences]

LDR: push value of a register onto the stack

LDRR: load register from another register

LDL: load a (local) value; relative to the mark pointer

STR: pop value and store in register

STS: pop a value from the stack; store it relative to SP

9-31

Methods with local variables

LDC 7
LDC 12
BSR m

12

m | LDR MP
LDRR MP SP
AJS +2
LDL -3
NEG
STL +1

LDRR SP MP
STR MP
STS -2
AJS -1
RET }

oid m (int x, int y) {
int a, b;
a = -x;

[Faculty of Science

uul 0go. pdf Information and Computing Sciences]

LDR: push value of a register onto the stack

LDRR: load register from another register

LDL: load a (local) value; relative to the mark pointer

STR: pop value and store in register

STS: pop a value from the stack; store it relative to SP

9-31

Methods with local variables

LDC 7
LDC 12 P_C/» 12
BSR m
SP
m | LDR MP MP
LDRR MP SP
AJS +2 RR
LDL -3
NEG
STL +1 m(7, 12);
LDRR SP MP oid m (int x, int y) {
STR MP int a, b;
STS -2 a = -x;
AJS -1
RET }

[Faculty of Science

uul 0go. pdf Information and Computing Sciences]

LDR: push value of a register onto the stack

LDRR: load register from another register

LDL: load a (local) value; relative to the mark pointer

STR: pop value and store in register

STS: pop a value from the stack; store it relative to SP

9-31

Methods with local variables

LDC 7
LDC 12
BSR m

m | LDR MP
LDRR MP SP
AJS +2
LDL -3
NEG
STL +1

7, 12);

LDRR SP MP
STR MP

STS -2

AJS -1

RET

id m (int x, int y) {
int a, b;
a = -x;

[Faculty of Science

uul 0go. pdf Information and Computing Sciences]

LDR: push value of a register onto the stack

LDRR: load register from another register

LDL: load a (local) value; relative to the mark pointer

STR: pop value and store in register

STS: pop a value from the stack; store it relative to SP

thod translation with local variables

Method call as before.

[Faculty of Science
logo o Pdf Information and Computing Sciences]

Method translation with local variables

9-32

Method call as before.

Method definition (n parameters, k local variables)

>

v

Create room for local variables: LDR MP to save the mark
pointer, LDRR MP SP to reset the mark pointer, AJS +k to
adjust the stack pointer. (Also available as a single
instruction LINK £.)

Use parameters: from LDL —(n + 1) to LDL —2.
Use local variables: from LDL +1 to LDL +k.

Clean up local variables: LDRR SP MP to reset the stack
pointer, and STR MP to restore the mark pointer. (Also
available as a single instruction UNLINK.)

Clean up: STS —n followed by AJS —(n —1).
Return: RET

uulogo.

[Faculty of Science
pdf Information and Computing Sciences]

thods with return values

Two options.

[Faculty of Science
logo o Pdf Information and Computing Sciences]

Methods with return values

Two options.

Result on stack
» Leave the result as the final value on the stack.

» Adapt the cleanup code so that this works.

[Faculty of Science

uul 0go. pdf Information and Computing Sciences]

9-33

9-33

Methods with return values

Two options.
Result on stack

» Leave the result as the final value on the stack.

» Adapt the cleanup code so that this works.

Result in register

» Place the result of a method call in a fixed free register (RR
for example).

» Use the value from there at the call site.

[Faculty of Science

uul 0go. pdf Information and Computing Sciences]

