
Concepts of Programming Language Design

Abstract Machines Exercises

Liam O’Connor-Davis
Gabriele Keller

November 6, 2024

1. Decision Machines: Suppose we have a language of nested brackets N (where ε is the empty
string):

ε N
(N-1)

e N

(e) N
(N-2)

e N

〈e〉 N (N-3)

e N

[e] N
(N-4)

Note that ()() is not a string in this language.

We developed a simple abstract machine to check if strings are in this language. We set the
states for the machine to be simply strings. Initial states are all non-empty strings, and the
final state is the empty string. Then, our state transition relation is:

(e) 7→e
(M-1)

[e] 7→e
(M-2)

〈e〉7→e
(M-3)

(a) A machine recognises a language if any machine in the state corresponding to a string S
will eventually reach a final state if and only if the string S is in the language.

i. Show that the string ([〈〉]) is in the language N , and show that our machine reaches

a final state given the same string, i.e: ([〈〉]) !7→ ε.

ii. Show that the string []()[] is not in the language juN, and show that our machine
reaches a stuck state given the same string, i.e, there exists some stuck states such

that []()[]
?7→ s

iii. Possibly difficult Prove that the machine recognises the language N , that is:

1

α) s N =⇒ s
!7→ ε. Remember that

!7→ is just
?7→ , where the second state is a

final state.
?7→ of course being the reflexive transitive closure of 7→, that is:

s
?7→ s

Refl*
s1 7→s2 s2

?7→ s3

s1
?7→ s3

Trans*

β) s
!7→ ε =⇒ s N

(b) Suppose that we were unable to efficiently read from both the beginning and end of the
string simultaneously (For example, if a tape or a linked list is used to represent the
string). This makes our original machine highly inefficient, as each state transition must
examine the end of a string for a closing bracket.

We develop a new, stack-based machine that attempts to solve this problem. Our stack
consists of three symbols, P, A, and B, one for each type of bracket. The states of the
machine are of the form s | e, where s is a stack and e is a string. Our initial states are
all states with an empty stack and a non-empty string, i.e: ◦ | e, our final state is ◦ | ε,
and our state transitions are as follows:

s | (e 7→ P . s | e
S1

s | 〈e 7→ A . s | e
S2

s | [e 7→ B . s | e
S3

P . s |)e 7→ s | e
S4

A . s | 〉e 7→ s | e
S5

B . s |]e 7→ s | e
S6

i. Show the execution of the new stack machine given the start state ◦ | [(〈〉)].

ii. Does the new machine recognise N?

α) Difficult: Prove or disprove that s N =⇒ ◦ | s !7→ ◦ | ε for all strings s. Hint:
You may find it useful to prove the following lemma:

s1
?7→ s2 s2 7→s3

s1
?7→ s3

Lemma

Also, you may need to generalise your proof goal to a broader claim.

β) Prove or disprove that ◦ | s !7→ ◦ | ε =⇒ s N

iii. If your answer to the previous question was no, amend the structure of the stack
machine so that it does recognise N (efficiently). Explain your answer.

2. Computing Machines: Abstract machines are not just used for decision problems (yes/no
answers), they can also be used to compute results. Can you think of a machine to compute
binary addition?

(a) Formalise such a machine.

Hint: Think about the algorithm you would use when adding up large binary numbers
on paper.

(b) Compute the result 110 + 1010 with your machine. Show each execution step.

3. Evaluation Machines: We can also use abstract machines to express the operational se-
mantics of the λ-calculus. As abstract higher-order syntax representation of λ-terms we chose
the following:

x is a var

x λ−term
t λ−term

(Function x.t) λ−term
t1 λ−term t2 λ−term
(Apply t1 t2) λ−term

(Function x.t) ⇓ 〈〈x.t〉〉
Lambda

e1 ⇓ 〈〈x.t〉〉 e2 ⇓ e′2 t[x := e′2] ⇓ r
(Apply e1 e2) ⇓ r

Apply

Page 2

Note: You may notice that this language only has functions! Turns out, you can encode
any kind of data as a function, and that this is sufficient for a turing-complete programming
language. This language was invented by Alonzo Church as an alternative solution to the
Entscheidungsproblem, and is called the lambda calculus.

(a) Develop a structural operational (“small step”) semantics for this language.

i. Include a rule for function literals, if necessary.

ii. Include three rules for function application. Assume the function expression is eval-
uated before the argument expression. Note that this language does not include
recursion.

(b) Now define an abstract machine which eliminates recursion from the meta-level of the
semantics to include an explicit stack, a la the C Machine.

i. Define a suitable stack formalism.

ii. Define the set of states Q, the set of initial states I ⊆ Q, and the set of final states
F ⊆ Q.

iii. Define a state transition rule for function literals

iv. Include three rules for function application, using capture-avoiding substitution as a
built-in machine operation.

(c) Now suppose that we want to eliminate substitution from our machine. Extend the
semantics to include environments, a la the E Machine. Recall than an environment is
commonly defined as:

• Env

x Ident t Expr Γ Env

x← y; Γ Env

i. Revise your definition of the state sets Q, I and F , and of the stack.

ii. Revise your transition rule for function literals. Note that these function literals
should produce closures which capture the environment at their definition.

iii. Revise your rules for function application

iv. Include any additional rules necessary to complete the definition, such as variable
lookup.

v. Give an example of an expression in this language which requires closures in order
to evaluate correctly. Explain your answer.

4. Stack Machines: In this question, we will examine a machine that is quite similar to a type
of machine used in virtual machines, such as the JVM, called a stack machine. Imagine an
arithmetic expression language with the following big step semantics:

x ∈ Z
(Num x) ⇓ x

Num
x ⇓ x′ y ⇓ y′

(Plus x y) ⇓ x′ + y′
Plus

x ⇓ x′ y ⇓ y′

(Times x y) ⇓ x′ × y′
Times

We have a machine, called the J Machine, that’s capable of performing these operations, how-
ever it works by using a stack to store operands and accumulate results. For example, 4 * (2 +
3) would be the following program in the J Machine’s bytecode: (Val 4); (Val 2); (Val 3); add; Times.
Each Val instruction pushes a value to the stack, and each operation instruction pops two
values off, and pushes the result of the operation.

Formally, the J Machine is specified as follows: The machine consists of three instructions:

x ∈ Z
(Val x) Inst Plus Inst Times Inst

The state of the machine consists of a list of instructions, called a Program, and a stack of
integers:

Halt Program

i Inst p Program

i; p Program

Page 3

◦ Stack
x ∈ Z s Stack

x . s Stack

They are presented in the form s | p where s is a stack and p is program. The initial state
consists of the empty stack and any nonempty program p i.e, ◦ | p. The final state consists of
a stack with merely one element r (the result of the computation), and the empty program,
i.e, r . ◦ | Halt.

The state transition rules are as follows:

s | (Val x); p7→x . s | p
J1

y . x . s | Plus; p7→x+ y . s | p
J2

y . x . s | Times; p7→x× y . s | p
J3

(a) Translate the expression (Plus (Times (Num -1) (Num 7)) (Num 7)) into a J Machine pro-
gram, and write down each step the J Machine would take to execute this program.

(b) Possibly difficult Formalise (using inference rules) a “compilation” relation . : Expr×
Program which translates expressions in the arithmetic language to the semantically
equivalent J Machine bytecode.

(c) Definitely difficult. Suppose we wanted to add a Let construct to add variables to our
arithmetic language, using environments as shown:

i ∈ Z
Γ ` (Num i) ⇓ i

Num
Γ ` x ⇓ x′ Γ ` y ⇓ y′

Γ ` (Plus x y) ⇓ x′ + y′
Plus

Γ ` x ⇓ x′ Γ ` y ⇓ y′

Γ ` (Times x y) ⇓ x′ × y′
Times

Γ ` e1 ⇓ v1 Γ ∪ {x← v1} ` e2 ⇓ v2
Γ ` (Let x e1 e2) ⇓ v2

Let
x← v ∈ Γ

Γ ` (Var x) ⇓ v
Var

Extend the J Machine to support this construct, and expand your . relation to include
the correct translation. Don’t forget to deal with name shadowing by exploiting stacks.

Page 4

