
Concepts of Programming Language Design

Abstract Machines Exercises

Liam O’Connor-Davis
Gabriele Keller

November 6, 2024

1. Decision Machines: Suppose we have a language of nested brackets N (where ε is the empty
string):

ε N
(N-1)

e N

(e) N
(N-2)

e N

〈e〉 N (N-3)

e N

[e] N
(N-4)

Note that ()() is not a string in this language.

We developed a simple abstract machine to check if strings are in this language. We set the
states for the machine to be simply strings. Initial states are all non-empty strings, and the
final state is the empty string. Then, our state transition relation is:

(e) 7→e
(M-1)

[e] 7→e
(M-2)

〈e〉7→e
(M-3)

(a) A machine recognises a language if any machine in the state corresponding to a string S
will eventually reach a final state if and only if the string S is in the language.

i. Show that the string ([〈〉]) is in the language N , and show that our machine reaches

a final state given the same string, i.e: ([〈〉]) !7→ ε.

Solution: The string is in the language, as shown:

ε N
N1

〈〉 N N3

[〈〉] N
N4

([〈〉]) N
N2

1

The machine derivation is simply:
([〈〉])

7→ [〈〉] (M1)
7→ 〈〉 (M2)
7→ ε (M3)

ii. Show that the string []()[] is not in the language juN, and show that our machine
reaches a stuck state given the same string, i.e, there exists some stuck states such

that []()[]
?7→ s

Solution: If we attempt to derive []()[] N:

???

]()[N

[]()[] N
N4

We get the subgoal]()[N, which is false, as all strings in N are either ε or begin
with an opening bracket. Hence, as the rules are unambiguous, there is no other
way to derive []()[] N and hence it is not in N . Similarly, our machine derivation:

[]()[]
7→]()[(M2)
7→ ???

We end up in the state]()[, which is a stuck state, as there are no transitions
from a state that begins with a closing bracket.

iii. Possibly difficult Prove that the machine recognises the language N , that is:

α) s N =⇒ s
!7→ ε. Remember that

!7→ is just
?7→ , where the second state is a

final state.
?7→ of course being the reflexive transitive closure of 7→, that is:

s
?7→ s

Refl*
s1 7→s2 s2

?7→ s3

s1
?7→ s3

Trans*

Solution:

Base case: Where s = ε, we must show ε 7→sε. We can show this using the
reflexivity rule:

ε
?7→ ε

Refl*

Inductive cases: Where s = (s′), with the inductive hypothesis that s′ N =⇒
s′ 7→sε, we must show that, if (s′) N, then (s′)7→sε. By inversion of rule N2,
on our assumption (s′) N, we can deduce that s′ N(∗). Then, we simply
derive our goal as follows:

(s′)7→s′
M1

s′ N
(∗)

s′ 7→sε
I.H

(s′) 7→sε
Trans*

The other inductive cases are extremely similar.

β) s
!7→ ε =⇒ s N

Solution:

Page 2

Proof. Here we use induction over the number of steps in the machine’s
execution, which is the same as induction over the definition of 7→s.
Base case: Where the length of the execution is zero - i.e, we are already in
a final state. The only final state is ε, and hence our proof goal is just ε N,
which is already known from rule N1.

Inductive case: Where our state s executes in one step to s′ (s7→s′), and
s′ 7→sε (∗). We have the inductive hypothesis s′ 7→sε =⇒ s′ N. We must
show that s N. We proceed by case distinction on s. Seeing as s7→s′, s
must be one of (s′) (by rule M1), [s′] (by rule M2), or 〈s′〉 (by rule M3).
All three cases are nearly identical, so we will deal with just the first case,
where s = (s′).

s′ 7→sε
(∗)

s′ N
I.H

(s′) N
N2

(b) Suppose that we were unable to efficiently read from both the beginning and end of the
string simultaneously (For example, if a tape or a linked list is used to represent the
string). This makes our original machine highly inefficient, as each state transition must
examine the end of a string for a closing bracket.

We develop a new, stack-based machine that attempts to solve this problem. Our stack
consists of three symbols, P, A, and B, one for each type of bracket. The states of the
machine are of the form s | e, where s is a stack and e is a string. Our initial states are
all states with an empty stack and a non-empty string, i.e: ◦ | e, our final state is ◦ | ε,
and our state transitions are as follows:

s | (e 7→ P . s | e
S1

s | 〈e 7→ A . s | e
S2

s | [e 7→ B . s | e
S3

P . s |)e 7→ s | e
S4

A . s | 〉e 7→ s | e
S5

B . s |]e 7→ s | e
S6

i. Show the execution of the new stack machine given the start state ◦ | [(〈〉)].

Solution: The machine execution proceeds as follows:
◦ | [(〈〉)]

7→ B . ◦ | (〈〉)] (S3)
7→ P . B . ◦ | 〈〉)] (S1)
7→ A . P . B . ◦ | 〉)] (S2)
7→ P . B . ◦ |)] (S5)
7→ B . ◦ |] (S4)
7→ ◦ | ε (S6)

ii. Does the new machine recognise N?

α) Difficult: Prove or disprove that s N =⇒ ◦ | s !7→ ◦ | ε for all strings s. Hint:
You may find it useful to prove the following lemma:

s1
?7→ s2 s2 7→s3

s1
?7→ s3

Lemma

Also, you may need to generalise your proof goal to a broader claim.

Page 3

Solution:

Proof of Lemma. We will prove the lemma provided above first, as it will
come in handy. We proceed by induction on the size of the execution
s1 7→ss2, and must show that, given s2 7→s3 (†), that s1 7→s3.

Base case: s1
07→ s2, i.e s1 = s2. We must therefore show that s2 7→ss3:

s2 7→s3
(†)

s3 7→ss3
Refl*

s2 7→ss3
Trans*

Inductive case: When s1 7→s′1 (∗), and s′1 7→ss2 (∗∗), and we have the induc-
tive hypothesis:

s′1 7→ss2 s2 7→s3

s′1 7→ss3
I.H

Then, we simply derive the proof goal:

s1 7→s′1
(∗) s′1 7→ss2

(∗∗)
s2 7→s3

(†)

s′1 7→ss3
I.H

s1 7→s3
Trans*

Proof of main theorem. Now that we have proven the lemma, we must now

prove that s N =⇒ ◦|s !7→ ◦ | ε. We will generalise this proof goal to make
the stronger claim that s N =⇒ t | sr 7→st | r for any stack t and remainder
string r. Note that this trivially implies our original proof goal by setting t
to ◦ and r to ε.
Base case: Where s = ε, we must therefore show that t | r 7→st | r, trivially
shown by rule Refl*.
Inductive case: s = (s′), where we have the inductive hypothesis: s′ N =⇒
t′ | s′r′ 7→st′ | r′, for any t′ and r′. We must show that, assuming (s′) N,
t|(s′)r 7→st|r for all t, r. Note that by inversion of rule N2 on our assumption,
we know s′ N (∗)

t | (s′)r 7→P . t | s′)r
S1

s′ N
(∗)

P . t | s′)r 7→sP . t |)r
I.H1

P . t |)r 7→t | r
S4

P . t | s′)r 7→st | r
Lemma

t | (s′)r 7→st | r
Trans*

The other inductive cases are extremely similar.
1: The application of the I.H rule here sets t′ to be P . t and r′ to be)r.

β) Prove or disprove that ◦ | s !7→ ◦ | ε =⇒ s N

Solution:

Counterexample. We will disprove this by way of a counterexample. It is
already established that ()() is not in N . We will show that ◦ | ()() 7→s ◦ | ε
and thus there is no way that ◦ | s !7→ ◦ | ε could imply s N.
The machine execution is as follows:

Page 4

◦ | ()()
7→ P . ◦ |)() (S1)
7→ ◦ | () (S4)
7→ P . ◦ |) (S1)
7→ ◦ | ε (S4)

iii. If your answer to the previous question was no, amend the structure of the stack
machine so that it does recognise N (efficiently). Explain your answer.

Solution: The problem with the existing machine is that it recognises any
amount of strings in N placed next to each other. A string in N consists of
a sequence of opening brackets, followed by a sequence of closing brackets. Once
a closing bracket has been observed by the machine, it should not see any open-
ing brackets. To fix this, we modify the state such that there are two modes,
pushing (�), and popping (≺). The machine starts in pushing mode, i.e: ◦ � s
for some string s, and now we have two terminating states: ◦ � ε and ◦ ≺ ε.
Our transition rules are updated as follows:

s � (e7→P . s � e s � 〈e 7→A . s � e s � [e 7→B . s � e

P . s �)e7→P . s ≺)e A . s � 〉e 7→A . s ≺ 〉e B . s �]e 7→B . s ≺]e

P . s ≺)e 7→s ≺ e A . s ≺ 〉e7→s ≺ e B . s ≺]e 7→s ≺ e

As there are no rules to go from popping to pushing mode, the machine cannot
push a symbol after one has been popped, and hence the machine recognises N .

2. Computing Machines: Abstract machines are not just used for decision problems (yes/no
answers), they can also be used to compute results. Can you think of a machine to compute
binary addition?

(a) Formalise such a machine.

Hint: Think about the algorithm you would use when adding up large binary numbers
on paper.

Solution: The machine’s states are of the form:

n1

n2

}
s 〈〈c〉〉

Where s, n1 and n2 are strings of binary digits, and c is a single carry bit. n1 and
n2 are also padded with zeros so as to be the same length.

Initial states are all states where s is empty and the carry bit is zero:

n1

n2

}
ε 〈〈0〉〉

Final states are all states where n1 and n2 are empty and the carry bit is zero:

ε

ε

}
s 〈〈0〉〉

Page 5

The transition rules work as follows:

n10

n20

}
s 〈〈0〉〉 7→n1

n2

}
0s 〈〈0〉〉

B1
n10

n21

}
s 〈〈0〉〉 7→n1

n2

}
1s 〈〈0〉〉

B2

n11

n20

}
s 〈〈0〉〉 7→n1

n2

}
1s 〈〈0〉〉

B3
n11

n21

}
s 〈〈0〉〉 7→n1

n2

}
0s 〈〈1〉〉

B4

n10

n20

}
s 〈〈1〉〉 7→n1

n2

}
1s 〈〈0〉〉

B1c
n10

n21

}
s 〈〈1〉〉 7→n1

n2

}
0s 〈〈1〉〉

B2c

n11

n20

}
s 〈〈1〉〉 7→n1

n2

}
0s 〈〈1〉〉

B3c
n11

n21

}
s 〈〈1〉〉 7→n1

n2

}
1s 〈〈1〉〉

B4c

ε

ε

}
s 〈〈1〉〉 7→ε

ε

}
1s 〈〈0〉〉

Boverflow

(b) Compute the result 110 + 1010 with your machine. Show each execution step.

Solution:

The result is 10000, as shown below:

0110

1010

}
ε 〈〈0〉〉

7→ 011

101

}
0 〈〈0〉〉 (B1)

7→ 01

10

}
00 〈〈1〉〉 (B4)

7→ 0

1

}
000 〈〈1〉〉 (B3c)

7→ ε

ε

}
0000 〈〈1〉〉 (B2c)

7→ ε

ε

}
10000 〈〈0〉〉 (Boverflow)

3. Evaluation Machines: We can also use abstract machines to express the operational se-
mantics of the λ-calculus. As abstract higher-order syntax representation of λ-terms we chose
the following:

x is a var

x λ−term
t λ−term

(Function x.t) λ−term
t1 λ−term t2 λ−term
(Apply t1 t2) λ−term

(Function x.t) ⇓ 〈〈x.t〉〉
Lambda

e1 ⇓ 〈〈x.t〉〉 e2 ⇓ e′2 t[x := e′2] ⇓ r
(Apply e1 e2) ⇓ r

Apply

Note: You may notice that this language only has functions! Turns out, you can encode
any kind of data as a function, and that this is sufficient for a turing-complete programming
language. This language was invented by Alonzo Church as an alternative solution to the
Entscheidungsproblem, and is called the lambda calculus.

Page 6

(a) Develop a structural operational (“small step”) semantics for this language.

i. Include a rule for function literals, if necessary.

Solution:

(Function x.t) 7→〈〈x.t〉〉Lambda

ii. Include three rules for function application. Assume the function expression is eval-
uated before the argument expression. Note that this language does not include
recursion.

Solution:

t1 7→t′1
(Apply t1 t2) 7→(Apply t′1 t2)

Apply1
t2 7→t′2

(Apply 〈〈x.t〉〉 t2)7→(Apply 〈〈x.t〉〉 t′2)
Apply2

(Apply 〈〈x.t〉〉 〈〈a.t′〉〉)7→t[x := 〈〈a.t′〉〉]
Apply3

(b) Now define an abstract machine which eliminates recursion from the meta-level of the
semantics to include an explicit stack, a la the C Machine.

i. Define a suitable stack formalism.

Solution:

◦ Stack
x Frame s Stack

x . s Stack

Where a Frame is simply either (Apply � x) or (Apply x �) for some x.

ii. Define the set of states Q, the set of initial states I ⊆ Q, and the set of final states
F ⊆ Q.

Solution: The set of states consists of: either a value or an expression, and a
stack:

s Stack e Expr

s | e∈ Q
s Stack e Expr

todo

Initial states are an expression with an empty stack:

e Expr

todo

Final states are a function value with an empty stack

iii. Define a state transition rule for function literals

Solution:

s | (Function x.t)7→s | 〈〈x.t〉〉

iv. Include three rules for function application, using capture-avoiding substitution as a
built-in machine operation.

Page 7

Solution:

s | (Apply e1 e2)7→(Apply � e2) . s | e1

(Apply � e2) . s | 〈〈x.t〉〉 7→(Apply 〈〈x.t〉〉 �) . s | e2

(Apply 〈〈x.t〉〉 �) . s | 〈〈a.b〉〉 7→s | t[x := 〈〈a.b〉〉]

(c) Now suppose that we want to eliminate substitution from our machine. Extend the
semantics to include environments, a la the E Machine. Recall than an environment is
commonly defined as:

• Env

x Ident t Expr Γ Env

x← y; Γ Env

i. Revise your definition of the state sets Q, I and F , and of the stack.

Solution: Our stack can now also include environments:

s Stack Γ Env

Γ . s Stack

Our state now also includes a current environment, of the form s | Γ | e, where s
is a Stack, Γ is an environment and e is an expression.
I and F are unchanged except that they include the empty environment.

ii. Revise your transition rule for function literals. Note that these function literals
should produce closures which capture the environment at their definition.

Solution:

s | Γ | (Function x.t)7→s | Γ | 〈〈Γ, x.t〉〉

iii. Revise your rules for function application

Solution: All the rules are essentially unchanged (preserving the environment),
except for the final application rule:

(Apply 〈〈Γ, x.t〉〉,�) . s |∆ | 〈〈E, a.b〉〉 7→∆ . s | x← 〈〈E, a.b〉〉; Γ | t

iv. Include any additional rules necessary to complete the definition, such as variable
lookup.

Solution: Variable Lookup:

s | x← t; Γ | x 7→s | x← t; Γ | t

Popping environments from the stack, back into the current environment:

Γ . s |∆ | 〈〈E, x.t〉〉 7→s | Γ | 〈〈E, x.t〉〉

v. Give an example of an expression in this language which requires closures in order
to evaluate correctly. Explain your answer.

Page 8

Solution: A simple example is:

(Apply (Apply (Function x.(Function y.(Apply x y))) (Function a.a)) (Function b.b))

Evaluating the outer application will cause the inner application to be evaluated
first, where x is bound to 〈〈a.a〉〉. Without closures, the inner application will
return the function
〈〈y.(Apply x y)〉〉 back beyond the stack frame where x is in scope resulting in a
free variable inside the function. When the outer application is finally evaluated,
one would end up encountering x free in the program, and be in a stuck state.
With closures, however, the environment containing the binding for x is captured
in the returned function and x will not be found free.

4. Stack Machines: In this question, we will examine a machine that is quite similar to a type
of machine used in virtual machines, such as the JVM, called a stack machine. Imagine an
arithmetic expression language with the following big step semantics:

x ∈ Z
(Num x) ⇓ x

Num
x ⇓ x′ y ⇓ y′

(Plus x y) ⇓ x′ + y′
Plus

x ⇓ x′ y ⇓ y′

(Times x y) ⇓ x′ × y′
Times

We have a machine, called the J Machine, that’s capable of performing these operations, how-
ever it works by using a stack to store operands and accumulate results. For example, 4 * (2 +
3) would be the following program in the J Machine’s bytecode: (Val 4); (Val 2); (Val 3); add; Times.
Each Val instruction pushes a value to the stack, and each operation instruction pops two
values off, and pushes the result of the operation.

Formally, the J Machine is specified as follows: The machine consists of three instructions:

x ∈ Z
(Val x) Inst Plus Inst Times Inst

The state of the machine consists of a list of instructions, called a Program, and a stack of
integers:

Halt Program

i Inst p Program

i; p Program

◦ Stack
x ∈ Z s Stack

x . s Stack

They are presented in the form s | p where s is a stack and p is program. The initial state
consists of the empty stack and any nonempty program p i.e, ◦ | p. The final state consists of
a stack with merely one element r (the result of the computation), and the empty program,
i.e, r . ◦ | Halt.

The state transition rules are as follows:

s | (Val x); p7→x . s | p
J1

y . x . s | Plus; p7→x+ y . s | p
J2

y . x . s | Times; p7→x× y . s | p
J3

(a) Translate the expression (Plus (Times (Num -1) (Num 7)) (Num 7)) into a J Machine pro-
gram, and write down each step the J Machine would take to execute this program.

Page 9

Solution: The program is: (Val -1); (Val 7); Times; (Val 7); Plus; Halt.

Execution is as follows:
◦ | (Val -1); (Val 7); Times; (Val 7); Plus; Halt

7→ -1 . ◦ | (Val 7); Times; (Val 7); Plus; Halt (J1)
7→ 7 . -1 . ◦ | Times; (Val 7); Plus; Halt (J1)
7→ -7 . ◦ | (Val 7); Plus; Halt (J3)
7→ 7 . -7 . ◦ | Plus; Halt (J1)
7→ 0 . ◦ | Halt (J2)

(b) Possibly difficult Formalise (using inference rules) a “compilation” relation . : Expr×
Program which translates expressions in the arithmetic language to the semantically
equivalent J Machine bytecode.

Solution:

(Num n) . (Val n); Halt
NumJ

n . n′; Halt m . m′; Halt

(Plus n,m) . n′;m′; Plus; Halt
PlusJ

n . n′; Halt m . m′; Halt

(Times n,m) . n′;m′; Times; Halt
TimesJ

(c) Definitely difficult. Suppose we wanted to add a Let construct to add variables to our
arithmetic language, using environments as shown:

i ∈ Z
Γ ` (Num i) ⇓ i

Num
Γ ` x ⇓ x′ Γ ` y ⇓ y′

Γ ` (Plus x y) ⇓ x′ + y′
Plus

Γ ` x ⇓ x′ Γ ` y ⇓ y′

Γ ` (Times x y) ⇓ x′ × y′
Times

Γ ` e1 ⇓ v1 Γ ∪ {x← v1} ` e2 ⇓ v2

Γ ` (Let x e1 e2) ⇓ v2
Let

x← v ∈ Γ

Γ ` (Var x) ⇓ v
Var

Extend the J Machine to support this construct, and expand your . relation to include
the correct translation. Don’t forget to deal with name shadowing by exploiting stacks.

Solution: We extend the state definition of the states in the machine to include an
additional stack of environments, called scopes, notated as z | s | p, where z is the
integer stack and s is the scope stack. The initial states now look like this:

◦ | {} | p

That is, they start with the empty environment sitting at the bottom of the scope
stack. Similarly, final states also have the empty environment only on their scope
stack.

We introduce three new instructions, Scope, Descope, and Var, which have the
following semantics:

(Scope x) pushes a new environment to the scope stack. The new environment is
the same as the old environment except it includes a new binding1 from the name x
to the value on the top of the value stack. The value stack is also popped.

(Descope x) simply pops the scope stack. (Var x) pushes the value of a variable to
the value stack. The value is determined by looking in the topmost scope environ-
ment.

v . s | Γ . ζ | (Scope x); p7→s | Γ ∪ {x← v} . ζ | p
J4

s | Γ . ζ | Descope; p7→s | ζ | p
J5

Page 10

s | {x← v} ∪ Γ . ζ | (Var x); p7→v . s | {x← v} ∪ Γ . ζ | p
J6

1: Because each environment is a superset of the last, pointer magic could be used
here to make this efficient in practice.

As for the compilation relation, we translate Let as follows:

e1 . e′1; Halt e2 . e′2; Halt

(Let x e1 e2) . e′1; (Scope x); e′2; Descope; Halt
LetJ

And, for variable lookup, it’s quite simple:

(Var x) . (Var x)
VarJ

Note: This is basically how the JVM bytecode works (modulo some OO features).

Page 11

