
Concepts of Programming Language Design

Data types in Explicitly Typed Languages

Liam O’Connor-Davis, Gabriele Keller

November 6, 2024

1. Data and Type Constructors

(a) Just looking at the dynamic semantics of MinHs with algebraic data types: what is the difference
between constructors, such as Pair, Inl, Inl, Inr, and Roll, and destructors such as Fst, Snd, Case,
and Unroll?

(b) What are possible types for the following MinHs terms?

1. (3, True)

2. snd (3, True)

3. Inl (3, True)

4. Roll (3, True)

5. Roll (Inl (3, True))

2. Relating Haskell and MinHs Types: Determine a MinHS type that is isomorphic to the following
Haskell type declarations:

(a) data Maybe Int = Just Int | Nothing

(b) data Nat = Zero | Suc Nat

(c) data IntTree = Tree Int IntTree IntTree | Leaf Int

3. Inhabitation: Do the following MinHS types contain any (finite) values? If not, explain why. If so, give
an example value. For those who do not, can you write a function which, according to the typing rules
given in the lecture, can have this type as return type?

(a) Rec t. Int + t

(b) Rec t. Int ∗ t

(c) (Rec t. Int ∗ t) + Bool

4. Isomorphism

(a) What types (other than Bool) are isomorphic to Bool? Give an example, and show how it is isomorphic
by providing the mapping from Bool and inverse mapping to Bool.

(b) What types (other than Int) are isomorphic to Int? Give an example and show it to be isomorphic.
Remember that Int in MinHS is the full set Z not just machine integers.

5. Functional Programming: A type isomorphic to a list of integers in MinHS is simply Rec t. ((Int ∗ t) +
Unit). Implement a variety of utility functions to manipulate these lists in MinHS.

(a) The function sum, which computes the sum of a list of integers.

(b) The function map, which takes a function f of type Int→ Int and an input list i, returning a new list
which consists of f applied to every element of the list i.

(c) The function filter, which takes a predicate p of type Int→ Bool, and an input list i, returning a new
list which consists of all elements x in i for which p(x) is True.

(d) The function foldl, which takes an initial value (called an accumulator) a (of type Int), a binary
function op ∶ Int ∗ Int → Int, and a list of integers. When given an empty list, the function returns
the accumulator. For a non-empty list with head h and tail t, it will recursively call itself with the new
accumulator being op(a, h), the same op, and the list t.

(e) Implement sum and also product (which multiplies a list of integers) using foldl.

1


