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1. Data and Type Constructors

(a) Just looking at the dynamic semantics of MinHs with algebraic data types: what is the difference
between constructors, such as Pair, Inl, Inl, Inr, and Roll, and destructors such as Fst, Snd, Case,
and Unroll?

Solution: Terms formed by constructors are already in a final state (for strict semantics: if their
arguments are fully evaluated), whereas there are evaluation rules for the destructors.

(b) What are possible types for the following MinHs terms?

1. (3, True)

2. snd (3, True)

3. Inl (3, True)

4. Roll (3, True)

5. Roll (Inl (3, True))

Solution:

1. (3, True) :: Int * Bool

2. snd (3, True) :: Bool

3. Inl (3, True) :: (Int * Bool) + (Int -> Int), or any other type of the form (Int

* Bool) + a, where a is replaced with any legal MinHs type.

4. Roll (3, True) :: Rec t. (Int * Bool), where the choice of the variable name t is
arbitrary. It’s a somewhat pointless type, but it’s a legal MinHs type.

5. Roll (Inl (3, True)) :: Rec t. (Int * Bool) + t is a possible type, but so is Rec

t. (Int * Bool) + Int or Rec t. (Int * Bool) + (t + ()). That is, any type of the
form Rec t. (Int * Bool) + a, where a is a placeholder for a MinHs type which may (but
does not have to) contain the type variable t.

2. Relating Haskell and MinHs Types: Determine a MinHS type that is isomorphic to the following
Haskell type declarations:

(a) data Maybe Int = Just Int | Nothing

Solution: Solutions may vary, but Int + Unit is the simplest.

(b) data Nat = Zero | Suc Nat

Solution: Rec t. Unit + t

(c) data IntTree = Tree Int IntTree IntTree | Leaf Int
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Solution: Rec t. (Int ∗ t ∗ t) + Int

3. Inhabitation: Do the following MinHS types contain any (finite) values? If not, explain why. If so, give
an example value. For those who do not, can you write a function which, according to the typing rules
given in the lecture, can have this type as return type?

(a) Rec t. Int + t

Solution: Yes, (Roll (Inr (Roll (Inl 3)))) is an example finite value.

(b) Rec t. Int ∗ t

Solution: No, there is no finitie value. The only way to express a value of this type is to write a
recursive definition

let x = Roll (5, x)

in ...

which is not allowed in MinHs, since the scope of x is just the body of the let-binding, not the
right hand side of the binding.

(c) (Rec t. Int ∗ t) + Bool

Solution: Yes, the only finite values are (Inr True) and (Inr False). All other values are infinite.

4. Isomorphism

(a) What types (other than Bool) are isomorphic to Bool? Give an example, and show how it is isomorphic
by providing the mapping from Bool and inverse mapping to Bool.

Solution: The simplest is τ = Unit+ Unit, where True is isomorphic to (Inl unitel) and False

is isomorphic to (Inr unitel) (or the other way around).

(b) What types (other than Int) are isomorphic to Int? Give an example and show it to be isomorphic.
Remember that Int in MinHS is the full set Z not just machine integers.

Solution: One of the simplest is τ = (Rec t. Unit + t) ∗ Bool. The mapping works as follows:

f(x) =

⎧⎪⎪
⎨
⎪⎪⎩

x < 0, (pair g(−x − 1),False)

x >= 0, (pair g(x),True)

Where g(x) =

⎧⎪⎪
⎨
⎪⎪⎩

x = 0, (Roll (Inl unitel))

x > 0, (Roll (Inr g(x − 1)))

The inverse mapping is very similar:

f(x) =

⎧⎪⎪
⎨
⎪⎪⎩

x = (pair n,True ), g−1(n)

x = (pair n,False), −g−1(n) − 1

Where g−1(x) =

⎧⎪⎪
⎨
⎪⎪⎩

x = (Roll (Inl unitel)), 0

x = (Roll (Inr x′)), 1 + g−1(x′)

As f ○ f−1 = IZ and f−1 ○ f = Iτ , τ is isomorphic to Int.

5. Functional Programming: A type isomorphic to a list of integers in MinHS is simply Rec t. ((Int ∗ t) +
Unit). Implement a variety of utility functions to manipulate these lists in MinHS.

(a) The function sum, which computes the sum of a list of integers.

Solution:
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recfun sum :: ((Rec t. ((Int * t) + Unit)) -> Int) x =

case (Unroll x) of

Inl l -> fst l + sum (snd l)

Inr e -> 0

(b) The function map, which takes a function f of type Int→ Int and an input list i, returning a new list
which consists of f applied to every element of the list i.

Solution:

recfun map :: ((Int -> Int) * (Rec t. ((Int * t) + Unit))

-> (Rec t. ((Int * t) + Unit))) x =

case (Unroll (snd x)) of

Inl l -> Roll(Inl (fst x (fst l), map (fst x, snd l)))

Inr e -> Roll(Inr e)

(c) The function filter, which takes a predicate p of type Int→ Bool, and an input list i, returning a new
list which consists of all elements x in i for which p(x) is True.

Solution:

recfun filter :: ((Int -> Bool) * (Rec t. ((Int * t) + Unit))

-> (Rec t. ((Int * t) + Unit))) x =

case (Unroll (snd x)) of

Inl l -> if (fst x (fst l))

then Roll(Inl (fst l, filter (fst x, snd l)))

else filter (fst x, snd l)

Inr e -> Roll(Inr e)

(d) The function foldl, which takes an initial value (called an accumulator) a (of type Int), a binary
function op ∶ Int ∗ Int → Int, and a list of integers. When given an empty list, the function returns
the accumulator. For a non-empty list with head h and tail t, it will recursively call itself with the new
accumulator being op(a, h), the same op, and the list t.

Solution:

recfun foldl :: (Int * (Int * Int -> Int) * (Rec t. ((Int * t) + Unit)) -> Int)

args =

let a = fst args in

let op = fst (snd args) in

let list = snd (snd args) in

case (Unroll list) of

Inl l -> foldl (op(a,fst l),(op, snd l))

Inr e -> a

(e) Implement sum and also product (which multiplies a list of integers) using foldl.

Solution:

recfun sum :: ((Rec t. ((Int * t) + Unit)) -> Int) list =

foldl (0, (recfun add :: (Int * Int -> Int) xy = fst xy + snd xy), list)

recfun product :: ((Rec t. ((Int * t) + Unit)) -> Int) list =

foldl (1, (recfun mul :: (Int * Int -> Int) xy = fst xy * snd xy), list)
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