Concepts of Programming Language Design
Exercises

Liam O’Connor-Davis

Gabriele Keller
November 6, 2024

1. Strange Loops: The following system, based on a system called MIU, is perhaps famously mentioned in
Douglas Hofstadter’s book, Godel, Escher, Bach (see, for example, “MU puzzle” on Wikipedia).

— (MIU-1)
% (MIU-2)
% (MIU-3)
% (MIU-5)

(a) Is MUII MIU derivable? If so, show the derivation tree. If not, explain why not.

+IU MIU

® ZIMIU

(¢) Tricky: Perhaps famously, MU MIU is not admissible. Prove this using rule induction. Hint: Try
proving something related to the number of Is in the string.

—
o
Nl
—

admissible? Is it derivable? Justify your answer.

(d) Here is another language, which we’ll call MI:

MI-1
MI MI ()
Mx MI
Mzax MI (MI-2)
2IIIIIIy MI
ra2a2iy V2 (MI-3)

zy MI

i. Prove using rule induction that all strings in MI could be expressed as follows, for some k£ and
some 4, where 28 — 6i > 0 (where C" is the character C repeated n times):

M I2’“76i
ii. We will now prove the opposite claim that, for all ¥ and 4, assuming 2* — 6i > 0:
M1 =6 MI

To prove this we will need a few lemmas which we will prove separately.
«) Prove, using induction on the natural number k (i.e when k = 0 and when k& = k' + 1), that
M 12" MI

) Prove, using induction on the natural number 7, that M I¥ MI implies M I*~%" MI, assuming
k —6i > 0.

Hence, as we know M12° MI for all k from lemma «, we can conclude from lemma [that
M 12" =61 MT for all k and all i where 2¥ — 6i > 0 by modus ponens.

These two parts prove that the language MI is exactly characterised by the formulation M 12" =61 where
2k — 6i > 0. A very useful result!

iii. Hence prove or disprove that the following rule is admissible in MI:

Mzax MI
—_— LEMMA
Mz MI ()
iv. Why is the following rule not admissible in MI?
xy MI
Y (LEMMAg)

2cIIIIIIy MI

v. Prove that, for all s, s MI = s MIU. You can prove it using the characterisation we have
already developed, or directly by induction.

2. Counting Sticks: The following language (also presented in a similar form by Douglas Hofstadter, but
the original invention is not his) is called the ®U system. Unlike the MIU language discussed above, this
language is not comprised of a single judgement, but of a ternary relation, written © ® y U z, where x, y
and z are strings of hyphens (i.e ‘=), which may be empty (¢). The system is defined as follows:

_ U —1
€P VU ()
z®y Wz

g7 U — 2
-z Py V-2 ()
Prove that -- & ——— ¥ ————- .
Is the following rule admissible? Is it derivable? Explain your answer
-r ®y W -z
rryr oz (DT — 27
z®y Wz

Show that © ® € W z, for all hyphen strings =, by doing induction on the length of the hyphen string
(where © = € and = = -2/).

Show that if -2 ® y U z then x ® -y ¥ z, for all hyphen strings z, y and z, by doing a rule induction
on the premise.

) Show that = ® y U z implies y ® = U =.

Have you figured out what the ®¥ system actually is? Prove that if -=* ® -Y ¥ -*, then » = -1V

(where =" is a hyphen string of length).

3. Ambiguity and Simultaneity: Here is a simple grammar for a functional programming language :

r eN

E-1
r Expr ()
e1 Expr eo Expr (B-2)
ereo Expr
e Expr
E-3
e Expr ()
e Expr
—_— E-4
(e) Expr (E-4)

Lif you’re interested, it’s called lambda calculus, with de Bruijn indices syntax, not that it’s relevant to the question!

Page 2

(a) Is this grammar ambiguous? If not, explain why not. If so, give an example of an expression that has
multiple parse trees.

(b) Develop a new (unambiguous) grammar that encodes the left associativity of application, that is 1 2
3 4 should be parsed as ((1 2) 3) 4 (modulo parentheses). Furthermore, lambda expressions should
extend as far as possible, i.e A 1 2 is equivalent to A (1 2) not (A 1) 2.

(¢) Tricky Prove that all expressions in your grammar are representable in Expr, that is, that your
grammar describes only strings that are in Expr.

Page 3

