
Concepts of Programming Language Design

Exercises

Liam O’Connor-Davis
Gabriele Keller

November 6, 2024

1. Strange Loops: The following system, based on a system called MIU, is perhaps famously mentioned in
Douglas Hofstadter’s book, Gödel, Escher, Bach (see, for example, “MU puzzle” on Wikipedia).

MI MIU
(MIU-1 )

xI MIU

xIU MIU
(MIU-2 )

MxMIU

MxxMIU
(MIU-3 )

xIIIy MIU

xUy MIU
(MIU-4 )

xUUy MIU

xy MIU
(MIU-5 )

(a) Is MUII MIU derivable? If so, show the derivation tree. If not, explain why not.

(b) Is
xIU MIU

xI MIU
admissible? Is it derivable? Justify your answer.

(c) Tricky: Perhaps famously, MU MIU is not admissible. Prove this using rule induction. Hint: Try
proving something related to the number of Is in the string.

(d) Here is another language, which we’ll call MI:

MI MI
(MI-1 )

MxMI

MxxMI
(MI-2 )

xIIIIIIy MI

xy MI
(MI-3 )

i. Prove using rule induction that all strings in MI could be expressed as follows, for some k and
some i, where 2k − 6i > 0 (where Cn is the character C repeated n times):

M I2
k−6i

ii. We will now prove the opposite claim that, for all k and i, assuming 2k − 6i > 0:

M I2
k−6i MI

To prove this we will need a few lemmas which we will prove separately.
α) Prove, using induction on the natural number k (i.e when k = 0 and when k = k′ + 1), that

M I2
k

MI

1



β) Prove, using induction on the natural number i, that M Ik MI implies M Ik−6i MI, assuming
k − 6i > 0.

Hence, as we know M I2
k

MI for all k from lemma α, we can conclude from lemma β that

M I2
k−6i MI for all k and all i where 2k − 6i > 0 by modus ponens.

These two parts prove that the language MI is exactly characterised by the formulation M I2
k−6i where

2k − 6i > 0. A very useful result!

iii. Hence prove or disprove that the following rule is admissible in MI:

MxxMI

MxMI
(Lemma1)

iv. Why is the following rule not admissible in MI?

xy MI

xIIIIIIy MI
(Lemma2)

v. Prove that, for all s, s MI =⇒ s MIU. You can prove it using the characterisation we have
already developed, or directly by induction.

2. Counting Sticks: The following language (also presented in a similar form by Douglas Hofstadter, but
the original invention is not his) is called the ΦΨ system. Unlike the MIU language discussed above, this
language is not comprised of a single judgement, but of a ternary relation, written x Φ y Ψ z, where x, y
and z are strings of hyphens (i.e ‘-’), which may be empty (ε). The system is defined as follows:

ε Φ xΨ x
(ΦΨ− 1)

x Φ y Ψ z

-x Φ y Ψ -z
(ΦΨ− 2)

(a) Prove that -- Φ --- Ψ -----.

(b) Is the following rule admissible? Is it derivable? Explain your answer

-x Φ y Ψ -z

x Φ y Ψ z
(ΦΨ− 2′)

(c) Show that x Φ ε Ψ x, for all hyphen strings x, by doing induction on the length of the hyphen string
(where x = ε and x = -x′).

(d) Show that if -x Φ y Ψ z then x Φ -y Ψ z, for all hyphen strings x, y and z, by doing a rule induction
on the premise.

(e) Show that x Φ y Ψ z implies y Φ x Ψ z.

(f) Have you figured out what the ΦΨ system actually is? Prove that if -x Φ -y Ψ -z, then z = -x+y

(where -x is a hyphen string of length x).

3. Ambiguity and Simultaneity: Here is a simple grammar for a functional programming language 1:

x ∈ N
x Expr

(E-1)

e1 Expr e2 Expr

e1e2 Expr
(E-2)

e Expr

λe Expr
(E-3)

e Expr

(e) Expr
(E-4)

1if you’re interested, it’s called lambda calculus, with de Bruijn indices syntax, not that it’s relevant to the question!

Page 2



(a) Is this grammar ambiguous? If not, explain why not. If so, give an example of an expression that has
multiple parse trees.

(b) Develop a new (unambiguous) grammar that encodes the left associativity of application, that is 1 2

3 4 should be parsed as ((1 2) 3) 4 (modulo parentheses). Furthermore, lambda expressions should
extend as far as possible, i.e λ 1 2 is equivalent to λ (1 2) not (λ 1) 2.

(c) Tricky Prove that all expressions in your grammar are representable in Expr, that is, that your
grammar describes only strings that are in Expr.

Page 3


