
Concepts of Programming Language Design

Inference Rule Exercises

Liam O’Connor-Davis
Gabriele Keller

November 19, 2024

1. Strange Loops: The following system, based on a system called MIU, is perhaps famously mentioned in
Douglas Hofstadter’s book, Gödel, Escher, Bach (see, for example, “MU puzzle” on Wikipedia).

MI MIU
(MIU-1 )

xI MIU

xIU MIU
(MIU-2 )

MxMIU

MxxMIU
(MIU-3 )

xIIIy MIU

xUy MIU
(MIU-4 )

xUUy MIU

xy MIU
(MIU-5 )

(a) Is MUII MIU derivable? If so, show the derivation tree. If not, explain why not.

Solution:

MI MIU
1

MII MIU
3

MIIII MIU
3

MIIIIIIII MIU
3

MIIIIIIIIU MIU
2

MIIIIIUU MIU
4

MIIIII MIU
5

MUII MIU
4

(b) Is
xIU MIU

xI MIU
admissible? Is it derivable? Justify your answer.

Solution: It is not derivable, but it is admissible. It is not derivable because there is no way to
construct a tree that looks like this:

xIU MIU

...
xI MIU

It is, however, admissible because it does not change the language MIU. There is no string x that
could be judged xMIU with this rule that could not be so judged without it. We could show this
by proving the rule using rule induction.

(c) Tricky: Perhaps famously, MU MIU is not admissible. Prove this using rule induction. Hint: Try
proving something related to the number of Is in the string.

1



Solution: We will prove that the number of Is in any string in MIU is not divisible by three.
Seeing as MU has zero Is (a multiple of three), if we prove the above, we prove that MU is not
admissible.

Base Case (From rule 1). We see that the string MI has only one I, which is not a multiple of
three, hence we have shown our goal.

Inductive case (From rule 2). Given that the number of Is in xI is not divisible by three (our
inductive hypothesis), we can easily see that the number of Is in xIU is identical and therefore is
similarly not divisible by three.

Inductive case (From rule 3). Let n be the number of Is in Mx. Our inductive hypothesis is that
3 - n. The number of Is in Mxx, clearly 2n, is similarly indivisible, i.e 3 - n =⇒ 3 - 2n.

Inductive case (From rule 4). Let n be the number of Is in xIIIy. Our inductive hypothesis is
that 3 - n. The number of Is in xUy, clearly n− 3, is similarly indivisible, i.e 3 - n =⇒ 3 - (n− 3)

Inductive case (From rule 5). Given that the number of Is in xUUy is the same as the number of
Is in xy, our inductive hypothesis trivially proves our goal.

Thus, by induction, no string in MIU has a number of Is divisible by three. Therefore, MU MIU
is not admissible.

(d) Here is another language, which we’ll call MI:

MI MI
(MI-1 )

MxMI

MxxMI
(MI-2 )

xIIIIIIy MI

xy MI
(MI-3 )

i. Prove using rule induction that all strings in MI could be expressed as follows, for some k and
some i, where 2k − 6i > 0 (where Cn is the character C repeated n times):

M I2
k−6i

Solution:

Base case (From rule A). MI = M I2
k−6i when 2k − 6i = 1, i.e when k = 0 and i = 0.

Inductive case (From rule B) Given that Mx = MI2
a−6b (our inductive hypothesis), we must

show that Mxx = M I2
k−6i for some k and some i. As x = I2

a−6b (from I.H), it is easy to see

that xx = I2(2
a−6b) = I2

a+1−6(2b) = I2
k−6i for k = a+ 1 and i = 2b.

Inductive case (from rule C) Given that xIIIIIIy = M I2
a−6b (our inductive hypothesis). We

must show that xy = M I2
k−6i for some k and i. It should be clear to see that this rule simply

subtracts six I characters, and therefore xy = MI2
a−6(b+1), hence k = a and i = b+ 1.

Thus, all strings in MI can be expressed as M I2
k−6i where 2k − 6i > 0

ii. We will now prove the opposite claim that, for all k and i, assuming 2k − 6i > 0:

M I2
k−6i MI

To prove this we will need a few lemmas which we will prove separately.
α) Prove, using induction on the natural number k (i.e when k = 0 and when k = k′ + 1), that

M I2
k

MI

Solution:

Page 2



Base case (when k = 0). We have to show MI MI, which is true by rule A.

Inductive case (when k = k′ + 1) We have to show MI2
k′+1

MI, with the inductive

hypothesis that MI2
k′

MI. Equivalently, we have to show MI2
k′

I2
k′

MI, as follows:

MI2
k′

MI
I.H

MI2
k′
I2

k′
MI

B

Therefore, by induction on the natural number k, we have shown ∀k.M I2k MI.

β) Prove, using induction on the natural number i, that M Ik MI implies M Ik−6i MI, assuming
k − 6i > 0.

Solution:

Base case (when i = 0). We must show that M Ik MI implies M Ik−0 MI, which is obvi-
ously a tautology.
Inductive case (when i = i′ + 1) We must show that M Ik MI implies M Ik−6(i

′+1) MI,
given the inductive hypothesis that M Ik−6i

′
MI. Note that our I.H can be restated as

MIIIIII Ik−6(i
′+1) MI due to our assumption that k − 6(i′ + 1) > 0. With this, we can

prove our goal as shown:

MIIIIII Ik−6(i
′+1) MI

I.H

M Ik−6(i
′+1) MI

C

Therefore, our goal is shown by induction.

Hence, as we know M I2
k

MI for all k from lemma α, we can conclude from lemma β that

M I2
k−6i MI for all k and all i where 2k − 6i > 0 by modus ponens.

These two parts prove that the language MI is exactly characterised by the formulation M I2
k−6i where

2k − 6i > 0. A very useful result!

iii. Hence prove or disprove that the following rule is admissible in MI:

MxxMI

MxMI
(Lemma1)

Solution: We know from part i that MxxMI =⇒ x2 = I2
k−6i for some k and some i where

2k − 6i > 0.
This rule is not admissible as it adds strings to the language. As 24 − 6 = 10, we know MI10

is in the language. This rule would make MI5 a string in the language which it is not as there
is no k and i such that 2k − 6i = 5.

iv. Why is the following rule not admissible in MI?

xy MI

xIIIIIIy MI
(Lemma2)

Solution: The rule is not admissible as it adds strings to the language. This allows us to add
six I characters to any string in MI and judge it in MI, which results in additional strings. For
example, applying the rule to MI (which is in MI), gives us M I7, when our existing formulation

of MI(M I2
k−6i) clearly only allows for even amounts of Is.

v. Prove that, for all s, s MI =⇒ s MIU. You can prove it using the characterisation we have
already developed, or directly by induction.

Page 3



Solution:

Using the characterisation We shall show that all strings in MI, characterised by M I2
k−6i

where 2k − 6i > 0, are also in MIU. That is, we shall show that M I2
k−6i MIU.

To start, we shall prove inductively on k that M I2
k

MIU for all k.

Base case (Where k = 0). We must show MI MIU, which we know trivially from rule 1.

Inductive case (where k = k′+1). We must show M I2
k′+1

MIU, given the inductive hypothesis

that M I2
k′

MIU. Note we can restate our proof goal as M I2
k′

I2
k′

MIU

M I2
k′

MIU
I.H

M I2
k′
I2

k′
MIU

B

Thus we have shown by induction that M I2
k

MIU for all k.

Next we must prove that M Ik MIU implies M Ik−6i MIU for all i, assuming k − 6i > 0.

Base case (where i = 0), we must show that M Ik MIU implies M Ik−0 MIU, which is trivially
a tautology.
Inductive case (where i = i′ + 1) we must show that M Ik−6(i

′+1) MIU given the inductive
hypothesis M Ik−6i

′
MIU. As we know k−6(i′+1) > 0, we can restate our inductive hypothesis

as MIIIIII Ik−6(i
′+1) MIU, and easily prove our goal:

MIIIIII Ik−6(i
′+1) MIU

I.H

MUIII Ik−6(i
′+1) MIU

4

MUU Ik−6(i
′+1) MIU

4

M Ik−6(i
′+1) MIU

5

Thus, by modus ponens we can see that M I2
k−6i MIU for all k and i where 2k − 6i > 0. As

this is the exact characterisation of MI, we have proven that sMI =⇒ sMIU for all s.

Using straight forward induction (solution provided by Ramón Rico Cuevas)

• Base case: s is in MIvia rule (A), then s = MI also in MIU via rule 1.

• Inductive case 1: s is in MIvia rule (B), then ∃x.s = Mxx, with

– (A1) MxMi

– (IH) MxMI implies Mx MIU

MxMI

MxMIU
IH

A1

MxxMIU
3

• Inductive case 2: s is in MIvia rule (B), then ∃x.y.s = xy with

– (A1)xIIIIIIy MI

– (IH) xIIIIIIy MI implies xIIIIIIy MIU

xIIIIIIy MI
A1

xIIIIIIy MIU
IH

xUIIIy MIU
4

xUUy MIU
4

xy MIU
5

2. Counting Sticks: The following language (also presented in a similar form by Douglas Hofstadter, but
the original invention is not his) is called the ΦΨ system. Unlike the MIU language discussed above, this

Page 4



language is not comprised of a single judgement, but of a ternary relation, written x Φ y Ψ z, where x, y
and z are strings of hyphens (i.e ‘-’), which may be empty (ε). The system is defined as follows:

ε Φ xΨ x
(ΦΨ− 1)

x Φ y Ψ z

-x Φ y Ψ -z
(ΦΨ− 2)

(a) Prove that -- Φ --- Ψ -----.

Solution:

ε Φ --- Ψ ---
B

- Φ --- Ψ ----
I

-- Φ --- Ψ -----
I

(b) Is the following rule admissible? Is it derivable? Explain your answer

-x Φ y Ψ -z

x Φ y Ψ z
(ΦΨ− 2′)

Solution: It is not derivable (as it cannot be shown with a proof tree), but it is admissible. We
know this because the language definition for ΦΨ is unambiguous, so the only way for -x Φ y Ψ -z
to hold is if this was established by rule I. Therefore, we can deduce that x Φ y Ψ z, as this is
the premise of rule I. We can often “flip” or invert rules in this way, but only if the language
definition is unambiguous.

(c) Show that x Φ ε Ψ x, for all hyphen strings x, by doing induction on the length of the hyphen string
(where x = ε and x = -x′).

Solution:

Base case (where x = ε). We must show that ε Φ ε Ψ ε, which is trivially true by rule B.

Inductive case (where x = -x′) We have the inductive hypothesis x′ Φ ε Ψ x′, and must show that
-x′ Φ ε Ψ -x′. Our goal trivially reduces to our induction hypothesis by rule I.

Therefore we have shown x Φ ε Ψ x for all x by induction on x.

(d) Show that if -x Φ y Ψ z then x Φ -y Ψ z, for all hyphen strings x, y and z, by doing a rule induction
on the premise.

Solution:

Base case. (From rules B and I, where - Φ y Ψ -y). We must show that ε Φ -y Ψ -y, which is
trivially true by rule B.

Inductive case. (From rule I, where --x′ Φ y Ψ -z′ (∗)). We have the inductive hypothesis:

-x′ Φ y Ψ z′

x′ Φ -y Ψ z′
I.H

We must show that -x′ Φ -y Ψ -z′.

--x′ Φ y Ψ -z′
(∗)

-x′ Φ y Ψ z′
I ′

x′ Φ -y Ψ z′
I.H

-x′ Φ -y Ψ -z′
I

Thus we have shown by induction that if -x Φ y Ψ z then x Φ -y Ψ z, for all hyphen strings x, y
and z.

Page 5



(e) Show that x Φ y Ψ z implies y Φ x Ψ z.

Solution: We show this by rule induction on the premise with the rules of ΦΨ.

Base case. (From rule B, where ε Φ y Ψ y). We must show that y Φ ε Ψ y. We proved this, most
fortunately, above in part (c).

Inductive case. (From rule I, where -x′ Φ y Ψ −z′ (∗) ). We have the inductive hypothesis:

x′ Φ y Ψ z′

y Φ x′ Ψ z′
I.H

We must show that y Φ -x′ Ψ -z′.

-x′ Φ y Ψ −z′
(∗)

x′ Φ y Ψ z′
I ′

y Φ x′ Ψ z′
I.H

-y Φ x′ Ψ -z′
I

y Φ -x′ Ψ -z′
(d)

Thus we have shown by induction that x Φ y Ψ z implies y Φ x Ψ z.

(f) Have you figured out what the ΦΨ system actually is? Prove that if -x Φ -y Ψ -z, then z = -x+y

(where -x is a hyphen string of length x).

Solution: We proceed by rule induction on the premise.

Base case. (From rule B, where -0 Φ -y Ψ -y), we must show that -0 Φ -y Ψ -0+y. As 0 + y = y,
this trivially reduces to the premise.

Inductive case (From rule I, where -x
′+1 Φ -y Ψ -z

′+1 (∗)), we have the inductive hypothesis that
-x

′
Φ -y Ψ -z

′
=⇒ z′ = x′ + y. We must show that z′ + 1 = (x′ + 1) + y, or, equivalently, that

z′ = x′ + y:

-x
′+1 Φ -y Ψ -z

′+1
(∗)

-x
′

Φ -y Ψ -z
′ I

z′ = x′ + y
I.H

Thus we have shown by rule induction that the ΦΨ system is in fact unary addition.

3. Ambiguity and Simultaneity: Here is a simple grammar for a functional programming language 1:

x ∈ N
x Expr

(E-1)

e1 Expr e2 Expr

e1e2 Expr
(E-2)

e Expr

λe Expr
(E-3)

e Expr

(e) Expr
(E-4)

(a) Is this grammar ambiguous? If not, explain why not. If so, give an example of an expression that has
multiple parse trees.

1if you’re interested, it’s called lambda calculus, with de Bruijn indices syntax, not that it’s relevant to the question!

Page 6



Solution: Yes, the expression 1 2 3 could be parsed two different ways, i.e:

1 Expr
Var.

2 Expr
Var.

1 2 Expr
Appl.

3 Expr
Var.

1 2 3 Expr
Appl.

Or:

1 Expr
Var.

2 Expr
Var.

3 Expr
Var.

2 3 Expr
Appl.

1 2 3 Expr
Appl.

(b) Develop a new (unambiguous) grammar that encodes the left associativity of application, that is 1 2

3 4 should be parsed as ((1 2) 3) 4 (modulo parentheses). Furthermore, lambda expressions should
extend as far as possible, i.e λ 1 2 is equivalent to λ (1 2) not (λ 1) 2.

Solution:

x ∈ N
x AExpr

AVar.
e1 PExpr e2 AExpr

e1e2 PExpr
AAppl.

e LExpr

λe LExpr
AAbs.

e LExpr

(e) AExpr
AParen.y

e PExpr

e LExpr
Shunt1

e AExpr

e PExpr
Shunt2

(c) Tricky Prove that all expressions in your grammar are representable in Expr, that is, that your
grammar describes only strings that are in Expr.

Solution: We shall prove the following simultaneously:

• x LExpr⇒ x Expr

• x PExpr⇒ x Expr

• x AExpr⇒ x Expr

Proof. Base case (From rule AVar., where x AExpr for some x ∈ N). We must show x Expr,
trivial by rule Var.

Inductive case. (From rule AAppl., where e1e2 PExpr. By inversion on rule AAppl., we deduce
e1 PExpr (∗), and e2 AExpr (∗∗). We have the inductive hypotheses e1 AExpr ∨ e1 PExpr ∨
e1 LExpr =⇒ e1 Expr (I.H1) and e2 AExpr ∨ e2 PExpr ∨ e2 LExpr =⇒ e2 Expr (I.H2).
By lifting the three disjunctions out of the implications, we get six implications, essentially saying
that if e1 or e2 is either PExpr, LExpr, or AExpr, then it is Expr.

We must show that e1e2 Expr.

e1 LExpr
(∗)

e1 Expr
IH1

e2 AExpr
(∗∗)

e2 Expr
IH2

e1e2 Expr

Inductive case. (From rule AAbs., where λx LExpr). We can deduce by inversion of rule AAbs.
that x LExpr. Applying one of our inductive hypotheses x LExpr =⇒ x Expr to this, we can
deduce that x Expr, and then we can apply forwards the rule Abs. to prove our goal: λx Expr.

Inductive case. (From rule AParen., where (x) AExpr). We can deduce by inversion that
x LExpr. Using one of the I.H, we get x Expr, then by rule Paren. we show our goal (x) Expr.

The inductive case for the rules Shunt1 and Shunt2 are trivial as they do not alter the expression.

Page 7



Thus, by induction, s LExpr ∨ s PExpr ∨ s AExpr =⇒ s Expr. We can state this more
succinctly thanks to the Shunt rules as s LExpr =⇒ s Expr.

Page 8


