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1. Strange Loops: The following system, based on a system called MIU, is perhaps famously mentioned in
Douglas Hofstadter’s book, Godel, Escher, Bach (see, for example, “MU puzzle” on Wikipedia).

MI MIU (MIU-1)
+I MIU

2+IU MIU (MIU-2)

Mx MIU

Mz MIU (MIU-3)

rIITy MIU

Uy MIU (MIU-4)

2UUy MIU

ry MIU (MIU-5)

(a) Is MUII MIU derivable? If so, show the derivation tree. If not, explain why not.

Solution:

MI MIU1

MIT MIU

MITII MIU
MIIIIIIII MIU o
MITIIITIITU MIU 4

MITIIITIUU MIU 5

MIITII MIU 4
MUII MIU

+IU MIU
(b) Is IITIU admissible? Is it derivable? Justify your answer.
x

Solution: It is not derivable, but it is admissible. It is not derivable because there is no way to
construct a tree that looks like this:

+IU MIU

+I MIU
It is, however, admissible because it does not change the language MIU. There is no string = that

could be judged x MIU with this rule that could not be so judged without it. We could show this
by proving the rule using rule induction.

(c) Tricky: Perhaps famously, MU MIU is not admissible. Prove this using rule induction. Hint: Try
proving something related to the number of Is in the string.



Solution: We will prove that the number of Is in any string in MIU is not divisible by three.
Seeing as MU has zero Is (a multiple of three), if we prove the above, we prove that MU is not
admissible.

Base Case (From rule 1). We see that the string MI has only one I, which is not a multiple of
three, hence we have shown our goal.

Inductive case (From rule 2). Given that the number of Is in zI is not divisible by three (our
inductive hypothesis), we can easily see that the number of Is in 2IU is identical and therefore is
similarly not divisible by three.

Inductive case (From rule 3). Let n be the number of Is in Mz. Our inductive hypothesis is that
3 tn. The number of Is in Mzxz, clearly 2n, is similarly indivisible, i.e 31n = 3t 2n.

Inductive case (From rule 4). Let n be the number of Is in #IIIy. Our inductive hypothesis is
that 3 1 n. The number of Is in 2Uy, clearly n — 3, is similarly indivisible, i.e 3{n = 31 (n—3)
Inductive case (From rule 5). Given that the number of Is in 2UUy is the same as the number of
Is in 2y, our inductive hypothesis trivially proves our goal.

Thus, by induction, no string in MIU has a number of Is divisible by three. Therefore, MU MIU
is not admissible. O

(d) Here is another language, which we’ll call MI:

MI-1
MI MI ( )
Mx MI
Mrax MI (M-2)
rITIIIIIy MI
ra2a2iy V2 (MI-3)

zy MI

i. Prove using rule induction that all strings in MI could be expressed as follows, for some &k and
some 4, where 28 — 6i > 0 (where C" is the character C repeated n times):

M I2k—6i

Solution:
Base case (From rule A). MI =M 12" =61 when 2% — 6i = 1, i.e when k = 0 and i = 0.
Inductive case (From rule B) Given that Mz = MI%"~% (our inductive hypothesis), we must

show that Mzz = MI2 =% for some k and some i. As z = 12" ~6b (from 1.H), it is easy to see
that zo = 12(2°-60) = 12°7'=6(20) — 12°=6i for k = ¢ + 1 and i = 2b.

Inductive case (from rule C) Given that zIIIIIIy = M I2"~% (our inductive hypothesis). We
must show that zy =M 12°=6i for some k and i. It should be clear to see that this rule simply
subtracts six I characters, and therefore zy = MI2" =60+ hence k = q and i = b+ 1.

Thus, all strings in MI can be expressed as M 126 where 2F — 6i > 0 O

ii. We will now prove the opposite claim that, for all k& and i, assuming 2¥ — 6i > 0:
M 126 MI

To prove this we will need a few lemmas which we will prove separately.
«) Prove, using induction on the natural number k (i.e when k£ = 0 and when k = k' + 1), that

M 12" MI

Solution:
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Base case (when k =0). We have to show MI MI, which is true by rule A.
Inductive case (when k = k" + 1) We have to show M12" "' MI, with the inductive
hypothesis that M12" MI. Equivalently, we have to show M12" 12" MI, as follows:

—IL.H
MI2" MI B
M12* 12¥" MI

Therefore, by induction on the natural number k, we have shown Vk.M 12" MI. O

B) Prove, using induction on the natural number 4, that M I¥ MI implies M I¥~% MI, assuming
k — 61> 0.

Solution:

Base case (when i = 0). We must show that M I¥ MI implies M I¥=0 MI, which is obvi-
ously a tautology.

Inductive case (when i = i’ + 1) We must show that MI¥ MI implies M I¥=6(+1) MI,
given the inductive hypothesis that M I*~6 MI. Note that our LH can be restated as
MIIIIII I*~6('+1) MI due to our assumption that k — 6(i/ + 1) > 0. With this, we can
prove our goal as shown:

_ I.H
MIIIITI IF—6(+1) MI C

M kaﬁ(i’ﬁ”l) MI

Therefore, our goal is shown by induction.

Hence, as we know M12° MI for all k from lemma «, we can conclude from lemma [ that
M 12" =61 MT for all k and all i where 2¥ — 6i > 0 by modus ponens.

These two parts prove that the language MI is exactly characterised by the formulation M 12" =61 where
2k — 6i > 0. A very useful result!
iii. Hence prove or disprove that the following rule is admissible in MI:

Mra MI

WM (LEMMAL)

Solution: We know from part i that Mzz MI — 22 = 12° =61 for some k and some i where
2k —6i > 0.

This rule is not admissible as it adds strings to the language. As 2% — 6 = 10, we know MI'°
is in the language. This rule would make MI® a string in the language which it is not as there
is no k and i such that 2 — 6i = 5.

iv. Why is the following rule not admissible in MI?

xy MI

—— LEMMA
rITIIIIIy MI ( 2)

Solution: The rule is not admissible as it adds strings to the language. This allows us to add
six I characters to any string in MI and judge it in MI, which results in additional strings. For
example, applying the rule to MI (which is in MI), gives us M I7, when our existing formulation

of MI(M 12°=6%) clearly only allows for even amounts of Is.

v. Prove that, for all s, s MI = s MIU. You can prove it using the characterisation we have
already developed, or directly by induction.
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Solution:

Using the characterisation We shall show that all strings in M1, characterised by M 12" -6i
where 2% — 6i > 0, are also in MIU. That is, we shall show that M 12°-6i MTU.
To start, we shall prove inductively on &k that M 12 MIU for all k.

Base case (Where k = 0). We must show MI MIU, which we know trivially from rule 1.
Inductive case (where k = k' +1). We must show M I MIU, given the inductive hypothesis
that MI2" MIU. Note we can restate our proof goal as MI2" 12 MIU

MI° MIU

M 12" 12¥ MIU
Thus we have shown by induction that M 12" MIU for all k.

Next we must prove that M I¥ MIU implies M I¥~6* MIU for all 4, assuming k — 6i > 0.

Base case (where i = 0), we must show that M I¥ MIU implies M I*~° MIU, which is trivially
a tautology.

Inductive case (where i = i + 1) we must show that M IF=6('+1) MIU given the inductive
hypothesis M I¥=6¢ MIU. As we know k—6(i'+1) > 0, we can restate our inductive hypothesis
as MITIIII I¥—6(/+1) MIU, and easily prove our goal:

_ I.H
MIIIIII IF—6(+D) MIU 4

MUIII I*—6(“+1) MIU
Myy 1h—60'+1) MIU
M IF=60 D) MIU

Thus, by modus ponens we can see that M 12°=6i MTU for all k and i where 28 — 6i > 0. As
this is the exact characterisation of MI, we have proven that s MI — s MIU for all s. [

Using straight forward induction (solution provided by Ramén Rico Cuevas)
e Base case: s is in MIvia rule (A), then s = MI also in MIU via rule 1.
e Inductive case 1: s is in Mlvia rule (B), then 3x.s = Mzz, with

— (A1) Mz Mi
— (IH) Mz MTI implies Mz MIU

Mx MI I HAl
Mx MIU 3

Mzxz MIU
e Inductive case 2: s is in MIvia rule (B), then 3x.y.s = zy with

— (A1)ZIIIIIIy MI
— (IH) 2IIIIIIy MI implies zIIIIIIy MIU

2IIIIIIy A
2IIIIIIy MIU
2UIIIy MIU
zUUy MIU

xy MIU

IH

4

4

5

2. Counting Sticks: The following language (also presented in a similar form by Douglas Hofstadter, but
the original invention is not his) is called the ®U system. Unlike the MIU language discussed above, this

Page 4



language is not comprised of a single judgement, but of a ternary relation, written = ® y ¥ z, where x, y
and z are strings of hyphens (i.e ‘-’), which may be empty (€¢). The system is defined as follows:

ed V¥ x (@¥-1)

Py Wz

—_— OV —2
-t &y V-2 ( )

(a) Prove that —— ® ——= U ————- ]

Solution:

(b) Is the following rule admissible? Is it derivable? Explain your answer

-r ®y W -z

OV — 2/
Py Uz ( )

Solution: It is not derivable (as it cannot be shown with a proof tree), but it is admissible. We
know this because the language definition for @V is unambiguous, so the only way for -x ® y U -z
to hold is if this was established by rule I. Therefore, we can deduce that + ® y ¥ z, as this is
the premise of rule I. We can often “flip” or invert rules in this way, but only if the language
definition is unambiguous.

(¢) Show that = ® € U z, for all hyphen strings =, by doing induction on the length of the hyphen string
(where © = € and = = -2/).

Solution:

Base case (where © = ¢). We must show that € ® € U €, which is trivially true by rule B.

Inductive case (where x = -2’) We have the inductive hypothesis 2/ ® € ¥ 2/, and must show that
-2/ ® ¢ U -z/. Our goal trivially reduces to our induction hypothesis by rule I.

Therefore we have shown = ® € W « for all by induction on . O

(d) Show that if ~2 ® y U z then « ® -y U z, for all hyphen strings =, vy and z, by doing a rule induction
on the premise.

Solution:

Base case. (From rules B and I, where - ® y ¥ -y). We must show that e ® -y ¥ -y, which is
trivially true by rule B.
Inductive case. (From rule I, where ——2" ® y ¥ -2’ (x)). We have the inductive hypothesis:

- oy
———I.H
@ -y

We must show that -2/ ® -y ¥ -2/,

-y W —2/(*) 7

- ®y W
. I.H
-y W 7
- D -y U -2

Thus we have shown by induction that if -2 ® y ¥ z then x ® -y ¥ z, for all hyphen strings =, v

and z.
O
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(e) Show that © ® y ¥ z implies y ¢ = U =.

Solution: We show this by rule induction on the premise with the rules of ®W.

Base case. (From rule B, where ¢ ® y ¥ y). We must show that y ® ¢ ¥ y. We proved this, most
fortunately, above in part (c).

Inductive case. (From rule I, where -2" ® y ¥ —2’ (x) ). We have the inductive hypothesis:

Oy W
——FI.H
y® a2

We must show that y ® -2/ ¥ -2/,

(%)

- ®y v -2 &
o ®y W
' 1.H
y® a2 W 7
_. ! .
y P a /\IJ ° (d)
y® -2 U -z
Thus we have shown by induction that + ® y ¥ z implies y ® = U 2. O
(f) Have you figured out what the ®W system actually is? Prove that if = ® =¥ U - then » = -1V

T

(where =" is a hyphen string of length ).

Solution: We proceed by rule induction on the premise.

Base case. (From rule B, where - ® -¥ ¥ -¥) we must show that -0 ® =¥ & -9tV Ag 0+ =y,
this trivially reduces to the premise.

Inductive case (From rule I, where = 1 & - & -*'+1 (x)), we have the inductive hypothesis that
- ® - U - = 2 =2/ +y. We must show that »' +1 = (2/ 4+ 1) + 4, or, equivalently, that

2 =2+
AL § —y @ 7+ (*)I
-z /(I) -y /\Ij -z IH
Z=x +vy
Thus we have shown by rule induction that the ®WV system is in fact unary addition. O

3. Ambiguity and Simultaneity: Here is a simple grammar for a functional programming language ':

reN
E-1
r Expr ( )
e1 Expr ey Expr (E-2)
eres Expr
e Expr
E-3
Ae Expr (E-3)
e Expr
A E-4
(e) Expr (E-4)

(a) Is this grammar ambiguous? If not, explain why not. If so, give an example of an expression that has
multiple parse trees.

Lif you’re interested, it’s called lambda calculus, with de Bruijn indices syntax, not that it’s relevant to the question!
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(b)

Solution: Yes, the expression 1 2 3 could be parsed two different ways, i.e:
VAR. VAR.
1 Expr 2 Expr
T F APPL. T E VAR.
LpT TpT AppPL.
123 Expr
Or: v v
AR. AR.
2 Expr 3 Expr
VAR. AppPL.
1 Expr 2 3 Expr
APPL.
123 Expr

Develop a new (unambiguous) grammar that encodes the left associativity of application, that is 1 2
3 4 should be parsed as ((1 2) 3) 4 (modulo parentheses). Furthermore, lambda expressions should
extend as far as possible, i.e A 1 2 is equivalent to A (1 2) not (A 1) 2.

Solution:
reN e1 PExpr e, AExpr e LExpr
——— AVAR. AAprPL. ——————AABS
x AExpr e1eo PExpr Ae LExpr
e LExpr e PExpr e AExpr
——————APAREN.y —————SHUNT SHUNT
(e) AExpr Y2 LExpr ! PEzxp 2

Tricky Prove that all expressions in your grammar are representable in Fxpr, that is, that your
grammar describes only strings that are in Expr.

Solution: We shall prove the following simultaneously:

o v LExpr = x Expr
o v PExpr = x Expr
o v AExpr = x Expr

Proof. Base case (From rule AVAR., where x A Expr for some x € N). We must show x Expr,
trivial by rule VAR.
Inductive case. (From rule AAPPL., where ¢,¢5 PExpr. By inversion on rule AAPPL., we deduce
¢; PExpr (%), and ¢; AExpr (xx). We have the inductive hypotheses ¢; AExprV ¢, PExprV
¢y LExpr = ¢y Ezpr (1.H;) and ¢o AExprV ¢y PEzprV ¢s LExpr —> ¢5 Exzpr (1.Hs).
By lifting the three disjunctions out of the implications, we get six implications, essentially saying
that if e; or e, is either PExpr, LExpr, or AEzpr, then it is Expr.
We must show that e;e, Expr.

o LB & ABapr

e zpr g, 2 TpT

e1 Expr eo Expr
eires Expr

IH,

Inductive case. (From rule AABs., where Ax LExpr). We can deduce by inversion of rule AABS.
that  LExpr. Applying one of our inductive hypotheses © LExpr —> x Expr to this, we can
deduce that z Expr, and then we can apply forwards the rule ABS. to prove our goal: Az Expr.

Inductive case. (From rule APAREN., where () AFEzpr). We can deduce by inversion that
x LEzpr. Using one of the L.H, we get © Expr, then by rule PAREN. we show our goal (z) Exzpr.

The inductive case for the rules SHUNT; and SHUNT; are trivial as they do not alter the expression.
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Thus, by induction, s LExprV s PExprV s AExpr —> s Expr. We can state this more
succinctly thanks to the SHUNT rules as s LExpr — s FExpr.

O
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