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1. Extending MinHs: Add let-bindings (with a single binding, like in our arithmetic expression language)
to MinHs and extend the static semantics accordingly.

How would the static semantics rule change if we extend the scope of the bound variable to the right hand
side of the binding (like in Haskell)?

Does the following expression type check according to your rules?
let

f = recfun g (Int -> Int) x = if x == 0 then 0 else 1 + f (x-1)
in f 1

If not, is this fixable?
2. Type safety in MinHs : Give a (partial) proof for type safety in MinHs. For a full proof, we need to
show that
e Progress: If we can derive k¢ : 7, then either ¢ is a final value, or there is ¢’ such that ¢ — ¢’
e Preservation: If ¢ — ¢/, and Fe:7 then Fe':7

Give for both progress and preservation all the base cases for the proof, and all inductive cases for if-
expressions.

3. Equational reasoning in (purely) functional languages. In Haskell, computations which depend
on an explicit state (such as computations of type I0) can be composed in a user-friendly way using the
do-notation. However, this notation can be used for any type constructor m for which we can define the
function return :: a -> m a and the infix operator (>>=) :: m a -> (a -> m b) -> m b such that
the following equalities hold:

e return a >>= f is equivalent to £ a
e m >>= return is equivalent to m

e (m >>= f) >>= gisequivalent tom >>= (\x -> £ x >>= g)
For the type constructor Maybe we can define these functions as follows:

data Maybe a = Nothing | Just a

return :: a —> Maybe a
return a = Just a

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
(>>=) Nothing f = Nothing
(>>=) (Just a) £ =f a

Show that the equalities listed above (also called Monad laws) indeed hold for any type correct application.



