
Concepts of Programmig Language Design

MinHs Exercises

Gabriele Keller

November 6, 2024

1. Extending MinHs: Add let-bindings (with a single binding, like in our arithmetic expression language)
to MinHs and extend the static semantics accordingly.

How would the static semantics rule change if we extend the scope of the bound variable to the right hand
side of the binding (like in Haskell)?

Does the following expression type check according to your rules?

let

f = recfun g (Int -> Int) x = if x == 0 then 0 else 1 + f (x-1)

in f 1

If not, is this fixable?

Solution:
Γ ` e1 : τ1 Γ ∪ {x : τ1} ` e2 : τ2

Γ ` (Let e1 (x.e2)) : τ2

If x can occur in e1, then the user needs to provide the type for x, otherwise we would have to infer the
type, which is more complicated than type checking. Therefore, the concrete syntax could be something
like:

let

f : (Int -> Int) = recfun g (Int -> Int) x = if x == 0 then 0 else 1 + f (x-1)

in f 1

And the abstract syntax and inference rule (note that in the abstract syntax representation, it’s clear
that x is bound in e1 and e2):

Γ ∪ {x : τ1} ` e1 : τ1 Γ ∪ {x : τ1} ` e2 : τ2
Γ ` (Let τ1 (x.(e1, e2))) : τ2

2. Type safety in MinHs : Give a (partial) proof for type safety in MinHs. For a full proof, we need to
show that

• Progress: If we can derive `e : τ , then either e is a final value, or there is e′ such that e 7→ e′.

• Preservation: If e 7→ e′, and `e:τ then `e′:τ

Give for both progress and preservation all the base cases for the proof, and all inductive cases for if-
expressions.

Solution: Progress:

• Base cases: ` e : τ is derivable via an axiom only if e is either a number, boolean value or a
function. In all these cases, e is already a final value.

1



• Inductive case: e = (If e1 e2 e3) and ` (If e1 e2 e3) : τ . Since there is exactly one typing rule
for each form of expression, we can use rule inversion, and conclude the

A-1 ` e1 : Bool

By induction hypothesis, we know that either e1 is final, or there is e′1 with e1 7→ e′1. If it is final,
then it is either True or False, so e 7→ e2 or e 7→ e3. If it is not final, then (If e1 e2 e3) 7→
(If e′1 e2 e3), so the evaluation is not stuck.

Preservation:

• Base cases: all the cases where e 7→ e′ via an axiom. For example, addition where both arguments
are evaluated, if-expressions where the condition is fully evaluated. In each of these cases, we can
use rule inversion to show that the type stays the same.

• Inductive case: e = (If e1 e2 e3) 7→ (If e′1 e2 e3). Again, using rule inversion we know that if
` (If e1 e2 e3) : τ , then

A-1 ` e1 : Bool

A-2 ` e2 : τ

A-3 ` e3 : τ

Using (A-1) and the induction hypothesis, we have e′1 : Bool, and therefore with (A-2) and (A-3),
and the typing rule for if-expressions, we can derive ` (If e′1 e2 e3) : τ

3. Equational reasoning in (purely) functional languages. In Haskell, computations which depend
on an explicit state (such as computations of type IO) can be composed in a user-friendly way using the
do-notation. However, this notation can be used for any type constructor m for which we can define the
function return :: a -> m a and the infix operator (>>=) :: m a -> (a -> m b) -> m b such that
the following equalities hold:

• return a >>= f is equivalent to f a

• m >>= return is equivalent to m

• (m >>= f) >>= g is equivalent to m >>= (\x -> f x >>= g)

For the type constructor Maybe we can define these functions as follows:

data Maybe a = Nothing | Just a

return :: a -> Maybe a

return a = Just a

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

(>>=) Nothing f = Nothing

(>>=) (Just a) f = f a

Show that the equalities listed above (also called Monad laws) indeed hold for any type correct application.

Solution:

1. Show that return a >>= f is equal to f a

(return a >>= f)

= -- def of return

(Just a >>= f)

= -- def of (>>=)

f a

2. Show that m >>= return is equivalent to m

Page 2



-- case m = Nothing

Nothing >>= return

= -- def of (>>=)

Nothing

-- case m = Just a

Just a >>= return

= -- def of (>>=)

return a

= -- def of (return)

Just a

3. Show that (m >>= f) >>= g is equivalent to m >>= (\x -> f x >>= g)

-- case m = Nothing

{(Nothing >>= f) >>= g

= -- def of (>>=)

Nothing >>= g

= -- def of (>>=)

Nothing

= -- def of (>>=)

Nothing >>= (\x -> f x >>= g)

-- case m = Just a

(Just a >>= f) >>= g

= -- def of (>>=)

f a >>= g

= -- application

(\x -> f x >>= g) a

= -- def of (>>=)

Just a >>= (\x -> f x >>= g)

Page 3


