
Concepts of Programmig Language Design

Semantics Exercises

Liam O’Connor-Davis, Gabriele Keller

December 5, 2024

1. Logical Formulae: Imagine we have a simple propositional expression language1:

> Prop ⊥ Prop

e1 Prop e2 Prop

e1 ∧ e2 Prop

e1 Prop

¬e1 Prop

(a) The big-step semantics is given as

• The set of evaluable expressions: E = {e | e Prop}
• The set of values: V = {True, False}

and the ⇓-relation, defined by the following rules:

>⇓True
True

⊥⇓False
False

e1⇓True
¬e1⇓False

Not1
e1⇓False
¬e1⇓True

Not2
e1⇓False

e1 ∧ e2⇓False
And1

e1⇓True e2⇓v
e1 ∧ e2⇓v

And2

Determine a small step (SOS) semantics for the language Prop.

i. Identify the set of states Q, the set of initial states I, and the set of final states F .

Solution: The set of states Q is simply the set of all expressions Prop. F =
{>,⊥}. I = Q.

ii. Provide inference rules for a relation 7→ : Q × Q, which performs one step only of
the expression evaluation.

Solution:

a 7→ a′

¬a 7→ ¬a′
SOS-Not1 ¬> 7→ ⊥

SOS-Not2 ¬⊥ 7→ >
SOS-Not3

a 7→ a′

a ∧ b 7→ a′ ∧ b
SOS-And1 > ∧ b 7→ b

SOS-And2 ⊥ ∧ b 7→ ⊥
SOS-And3

(b) Long, but not difficult: We shall now prove that the reflexive, transitive closure of 7→,
?7→ , is implied by the big-step semantics above.

?7→ is defined by the following rules:

e1
?7→ e1

Refl∗
e1 7→ e2 e2

?7→ z

e1
?7→ z

Trans∗

1Yes, the grammar is ambiguous, but assume it’s just a symbolic representation of abstract syntax.

1



i. First prove the following transitivity lemma:

p
?7→ q q

?7→ r

p
?7→ r

Transitive

Solution: We will proceed by rule induction on the first premise, that p
?7→ q.

Base case (from rule Refl∗). Substituting p = q (from rule Refl∗) into our
proof goal, we get:

q
?7→ q q

?7→ r

q
?7→ r

Goal

Which is trivially true.
Inductive case (from rule Trans∗). We know p 7→ p′ (∗), p′ ?7→ q (∗∗), and

q
?7→ r (∗∗∗). We must show that p

?7→ r, given the inductive hypothesis:

p′
?7→ q q

?7→ r

p′
?7→ r

IH

We can now show our goal:

p 7→ p′
(∗) p′

?7→ q
(∗∗)

q
?7→ r

(∗∗∗)

p′ 7→ r
IH

p
?7→ r

Trans∗

ii. Now prove the following two lemmas about Not:

e1
?7→>

¬e1
?7→⊥

Lemma-Not1
e1

?7→⊥
¬e1

?7→>
Lemma-Not2

Solution:

Proof of Lemma-Not1. We proceed by rule induction on the premise, that x
?7→

>, with the goal of proving that ¬x ?7→ ⊥.
Base Case (from Refl∗), where > ?7→ >, we must show that ¬> ?7→ ⊥:

¬> 7→ ⊥
SOS-Not2

⊥ ?7→ ⊥
Refl∗

¬> ?7→ ⊥
Trans∗

Inductive Case (from Trans∗), where x 7→ x′ (∗) and x′
?7→ >(∗∗), we must show

that ¬x ?7→ ⊥, with the inductive hypothesis that x′
?7→ > =⇒ ¬x′ ?7→ ⊥.

x 7→ x′
(∗)

¬x 7→ ¬x′
SOS-Not1

x′
?7→ >

(∗∗)

¬x′ ?7→ ⊥
I.H

¬x ?7→ ⊥
Trans∗

Proof of Lemma-Not2 is very similar and is omitted.

iii. Now prove the following lemmas about And:

e1
?7→⊥

e1∧e2
?7→⊥

Lemma-And1
e1

?7→>
e1∧e2

?7→ e2
Lemma-And2

Page 2



Solution:

Proof of Lemma-And1. We proceed by rule induction on the premises that x
?7→

⊥, with the goal of proving that x ∧ y ?7→ ⊥.
Base Case (from Refl∗), where ⊥ ?7→ ⊥, we must show that ⊥ ∧ y ?7→ ⊥:

⊥ ∧ y 7→ ⊥
SOS-And3

⊥ ?7→ ⊥
Refl∗

⊥ ∧ y ?7→ ⊥
Trans∗

Inductive Case (from Trans∗), where x 7→ x′ (∗) and x′
?7→ ⊥(∗∗), we must show

that x ∧ y ?7→ ⊥, with the inductive hypothesis that x′
?7→ ⊥ =⇒ x′ ∧ y ?7→ ⊥.

x 7→ x′
(∗)

x ∧ y 7→ x′ ∧ y
SOS-And1

x′
?7→ ⊥

(∗∗)

x′ ∧ y ?7→ ⊥
I.H

x ∧ y ?7→ ⊥
Trans∗

Proof of Lemma-And2 is very similar, and is therefore omitted.

iv. Using these lemmas or otherwise, show that E ⇓ V implies QE
?7→ QV , where QE is

the state corresponding to the expression E and QV is the final state corresponding
to the value V .

Solution: We define QTrue = >, QFalse = ⊥, and QE = E for all expressions E.
We proceed by rule induction on the rules of ⇓.

Base case (from rule True). We must show that > ?7→ QTrue, i.e > ?7→ > which
is true by rule Refl∗.
Base case (from rule False) We must show that ⊥ ?7→ QFalse, i.e ⊥ ?7→ ⊥ which
is true by rule Refl∗.
Not cases:
Inductive case (from rule Not1). We must show, assuming x ⇓ True (∗) and

¬x ⇓ False, that ¬x ?7→ ⊥.
We have the I.H x ⇓ V =⇒ x

?7→ QV for any V . Unifying with (∗) we can

conclude x
?7→ >. By Lemma-Not1, we can conclude that ¬x ?7→ ⊥ as required.

Inductive case (from rule Not2). We must show, assuming x ⇓ False (∗) and

¬x ⇓ True, that ¬x ?7→ >.
We have the I.H x ⇓ V =⇒ x

?7→ QV for any V . Unifying with (∗) we can

conclude x
?7→ ⊥. By Lemma-Not2, we can conclude that ¬x ?7→ > as required.

And Cases:
There are two inductive cases for And. One where x ∧ y ⇓ False and one for
x ∧ y ⇓ True. Our inductive hypotheses are always:

x ⇓ V
x

?7→ QV

IH1
y ⇓ V
y

?7→ QV

IH2

Inductive Case 1. We know that x ∧ y ⇓ False. We must show that x ∧ y ?7→ ⊥.
There are two ways that x ∧ y ⇓ False (our assumption) could be true. One
is via rule And1 where x ⇓ False (∗), and the other is via rule And2, where
x ⇓ True (∗∗) and y ⇓ False (∗∗∗).
The first case is easily proven:

Page 3



x ⇓ False
(∗)

x
?7→ ⊥

IH1

x ∧ y ?7→ ⊥
Lemma-And1

The second case requires a little more fiddling:

x ⇓ True
(∗∗)

x
?7→ >

IH1

x ∧ y ?7→ y
Lemma-And2

y ⇓ False
(∗∗∗)

y
?7→ ⊥

IH2

x ∧ y ?7→ ⊥
Transitive

Inductive Case 2
The only way for x ∧ y ⇓ True to hold is if both x ⇓ True (∗) and y ⇓ True (∗∗)
(from rule And2).

We have to show that x ∧ y ?7→ >, as shown:

x ⇓ True
(∗)

x
?7→ >

IH1

x ∧ y ?7→ y
Lemma-And2

y ⇓ True
(∗∗)

y
?7→ >

IH2

x ∧ y ?7→ >
Transitive

Thus, by induction, we have shown that E ⇓ V =⇒ E 7→ QV

(c) Suppose we wanted to add quantifiers and variables to our logic language:

e Prop

∃(x.x) Prop

e Prop

∀(x.e) Prop

x is a variable name

x Prop

It is no longer as easy to write static semantics for this language, as the formula may
not be decidable, however we can still write static checkers that perform analysis on
a more superficial level. Write a static semantics judgement for this language, written
` e Ok (with whatever context you like before the ` ), that ensures that there are no
free variables in a given logical formula. Remember that a free variable is a variable that
is not bound by a quantifier or lambda.

Solution: The context shall be a set (environment) of variable names, denoted Γ.

v ∈ Γ

Γ ` v Ok
LookupEnv

Γ ∪ {v} ` x Ok

Γ ` ∃v. x Ok
Exists

Γ ∪ {v} ` x Ok

Γ ` ∀v. x Ok
Forall

Γ ` x Ok

Γ ` ¬x Ok
Not

Γ ` x Ok Γ ` y Ok

Γ ` x ∧ y Ok
And

2. Bizarro-Poland: Imagine we have a reverse Polish notation calculator language. Reverse
Polish notation is an old calculator format that does not require the use of parenthetical
expressions. To achieve this, it moves all operators to post-fix, rather than in-fix order. E.g
1 + 2 becomes 1 2 +, or 1 − (3 + 2) becomes 1 3 2 + −. These calculators evaluated these
expressions by pushing symbols onto a stack until an operator was encountered, when two
symbols would be popped off and the result of the operation pushed on. The grammar is
easily defined:

x ∈ N
x Symbol

x ∈ {+,−, /, ∗}
x Symbol

Page 4



ε RPN

x Symbol xs RPN

x xs RPN

(a) The issue is that this grammar allows for invalid programs (such as 1 + 2 or − + ∗).
i. Write some static semantics inference rules for a judgement ` e Ok to ensure that

programs are well formed.

Solution: We will equip our rules with context that includes the number of
values that are available on the stack.
The empty program is only valid if there is exactly one value left on the stack -
this means the program will evaluate to one result:

1 ` ε Ok
Empty

Prepending a number to a program means that one less value is required on the
stack:

x ∈ N (n+ 1) ` xs Ok

n ` x xs Ok
Num

Prepending a symbol will require two values on the stack, and produce one value.
The structure of the rule we write reflects this:

x ∈ {+,−, ∗, /} (n+ 1) ` xs Ok

(n+ 2) ` x xs Ok
Op

ii. Show that ` 1 3 2 +− Ok.

Solution:

1 ` ε Ok
Empty

2 ` − Ok
Op

3 ` +− Ok
Op

2 ` 2 +− Ok
Num

1 ` 3 2 +− Ok
Num

0 ` 1 3 2 +− Ok
Num.

(b) We will now define some big-step evaluation semantics for this calculator. It may be
helpful to read the program from right-to-left rather than left-to-right.

i. Identify the set of evaluable expressions E, and the set of result values V .

Solution: The set E is simply the set of all e such that e RPN. V is the set of
all stacks, defined as follows:

◦ Stack
x ∈ N xs Stack

x . xs Stack

ii. Define a relation ⇓ : E × V which evaluates RPN programs.

Solution: The empty program evaluates to the empty stack:

ε ⇓ ◦
BS-Empty

The non-empty program ending in an operator performs the operation on the

Page 5



stack resulting from the previous symbols:

xs ⇓ a . b . s x ∈ {+,−, /, ∗}
xs x ⇓ (a x b) . s

BS-Op

The non-empty program ending in a number simply pushes a number onto the
stack from the previous symbols:

xs ⇓ s x ∈ Z
xs x ⇓ x . s

BS-Num

(c) Now we will try small-step semantics.

Our states Q will be of the form s ` p where s is a stack of natural numbers and p is an
RPN program.

Initial states are all states of the form ◦ ` p.

Final states are all states of the form n . ◦ ` ε.

i. Define a relation 7→ : Q×Q, which evaluates one step of the calculation.

Solution: Numbers simply push to the stack:

x ∈ N
s ` x xs 7→x . s ` xs

SS-Num

Operations simply pop two elements from the stack and operate on them.

x ∈ {+,−, ∗, /}
a . b . s ` x xs 7→ a x b . s ` xs

SS-Op

(d) Now we will prove small step and big step equivalent.

i. Show using rule induction on ⇓ that, for all expressions e, if e⇓v then Qe
!7→Qv

(where Qe and Qv are initial and final states respectively corresponding to e and v).
Hint: You may find it helpful to assume the following lemma (A proof of it is provided
in the solutions):

◦ ` xs
?7→ v ` ε

◦ ` xs x
?7→ v ` x

Append

It is worth noting that the lemma Transitive from Question 1 applies here also.

Solution: We shall define Qe as ◦ ` e, and Qv as v ` ε.

Base case (from rule BS-Empty). Where e = ε and v = ◦. We must show

◦ ` ε ?7→ ◦ ` ε, trivially true by rule Refl∗.
Inductive case (from rule BS-Num). Knowing the following:

• v = x . v′

• e = xs x

• x ∈ N

• xs ⇓ v′ (∗)

Page 6



And equipped with the inductive hypothesis that xs ⇓ v′ =⇒ ◦ ` xs ?7→ v′ ` ε,
we must show that ◦ ` xs x ?7→ x . v′ ` ε.

xs ⇓ v′
(∗)

◦ ` xs ?7→ v′ ` ε
IH

◦ ` xs x ?7→ v′ ` x
Append

v′ ` x 7→ x . v′ ` ε
SS-Num

◦ ` xs x ?7→ x . v′ ` ε
Trans∗

Inductive case (from rule BS-Op). Knowing the following:

• v = a x b . v′

• e = xs x

• x ∈ {+,−, ∗, /}

• xs ⇓ a . b . v′ (∗)

And armed with the inductive hypothesis that xs ⇓ a . b . v′ =⇒ ◦ ` xs ?7→
a . b . v′ ` ε, we must show that ◦ ` xs x ?7→ (a x b) . v′ ` ε.

xs ⇓ a . b . v′
(∗)

◦ ` xs ?7→ a . b . v′ ` ε
IH

◦ ` xs x ?7→ a . b . v′ ` x
Append

a . b . v′ ` x 7→ (a x b) . v′ ` ε
SS-Num

◦ ` xs x ?7→ (a x b) . v′ ` ε
Trans∗

Thus we have shown by induction that the big step semantics map to the small
step semantics.

We still need to prove Append. We proceed by structural induction on xs,
however we will strengthen our proof goal to the more general rule below:

s ` xs ?7→ v ` ε
s ` xs x ?7→ v ` x

Append’

This trivially implies Append by setting s = ◦.

Base case (when xs = ε). We must show, assuming s ` ε
?7→ v ` ε, then s `

x
?7→ v ` x. Seeing as there is no state q such that s ` ε 7→ q, the only way

s ` ε ?7→ v ` ε (our assumption) could be true is if it was so by rule Refl∗, and

hence v = s. Thus we can conclude that s ` x ?7→ s ` x by rule Refl∗.
Inductive case (when xs = a as). We must show, assuming s ` a as ?7→ v ` ε(∗),
that s ` a as x ?7→ v ` x. Our inductive hypothesis is that s′ ` as ?7→ v′ ` ε =⇒
s′ ` as x ?7→ v′ ` x. There are two cases. One where a is a number and one
where a is an operator. We will deal with a ∈ N first.

s ` a as x 7→ a . s ` as x
SS-Num a . s ` as ?7→ v ` ε

(∗)

a . s ` as x ?7→ v ` x
IH

s ` a as x ?7→ v ` x
Trans∗2

The rule Trans∗2 is trivially derivable from Transitive, Trans∗, and Refl∗.
The case where a is an operator is very similar, just with different stacks.

ii. Show using rule induction on
?7→ that, for all expressions e and values v, if Qe

?7→ Qv

Page 7



then e⇓v. It may be useful to assume the inverse of Append:

◦ ` xs x
?7→ v ` x

◦ ` xs
?7→ v ` ε

Append−1

Solution: We must show that ◦ ` e ?7→ v ` ε implies e ⇓ v

Refl∗ case (where e = ε and v = ◦). We must show that ε ⇓ ◦, trivially by rule
BS-Empty.
Trans∗ case (where e = xs x), we must show that ◦ ` xs x ?7→ v ` ε (∗) implies

xs x ⇓ v. We have the inductive hypothesis that ◦ ` xs ?7→ v′ ` ε implies xs ⇓ v′.
We proceed by case distinction on x.
In the case where x ∈ N, we can rewrite our assumption (∗) as ◦ ` xs x ?7→
x . v′ ` ε. We can begin deducing facts from our assumption (this is only
possible because the rules here are unambiguous - if there was another way of
deriving this assumption, this approach would be invalid):

...

◦ ` xs x ?7→ v′ ` x
Deduction

v′ ` x 7→ x . v′ ` ε
SS-Num

◦ ` xs x ?7→ x . v′ ` ε
Trans*

Hence, we can conclude from “reverse-engineering” our assumption here that
◦ ` xs x ?7→ v′ ` x.
Now we can try to prove our goal:

◦ ` xs x ?7→ v′ ` x
Deduction

◦ ` xs ?7→ v′ ` ε
Append−1

xs ⇓ v′
IH

x ∈ N
xs x ⇓ x . v′

The case where x is an operator is very similar, only with different stacks.

(e) Show that your static semantics defined in (a) ensure that the program will evaluate to
a value. That is, show that ` e Ok =⇒ e⇓s, for some s. You may find it helpful to
generalise your proof goal before beginning induction.

Solution: We shall show that ` e Ok =⇒ ◦ ` e
?7→ s ` ε for some s, which is

equivalent to our goal above, as we have shown the isomorphism between big step
and small step semantics.

We shall start by generalising our goal to the more flexible n ` e Ok =⇒ v1 . v2 .
· · · . vn . ◦ ` e

?7→ s ` ε for some s and all v1 through vn. This trivially implies our
first goal by setting n = 0 .

Base case (where e = ε). We know n ` ε Ok, hence we can deduce that n = 1 from

rule Empty. Hence we must show that v1.◦ ` ε
?7→ s ` ε, for some s. This is trivially

true by rule Refl∗, where s = v1 . ◦.
Inductive case (where e = x xs and x ∈ N) We know that n ` x xs Ok, and we can
deduce by inversion of Num that (n + 1) ` xs Ok (∗). Our inductive hypothesis is

that (n+ 1) ` xs Ok =⇒ v′1 . · · · . v′n . v′n+1 . ◦ ` xs
?7→ s′ ` ε for some s′ and all v′0

through v′n.

Page 8



We can show our goal by setting our goal’s s = s′, the IH’s v′1 = x and v′i = vi−1 for
all subsequent i.

v1 . · · · . vn . ◦ ` x xs 7→ x . v1 . · · · . vn . ◦ ` xs
SS-Num

(n+ 1) ` xs Ok
(∗)

x . v1 . · · · . vn . ◦ ` xs
?7→ s′ ` ε

IH

v1 . v2 . · · · . vn . ◦ ` x xs
?7→ s′ ` ε

Trans∗2

The case where x is an operator is very similar, just different stacks.

Page 9



3. Dynamic semantics of a simple robot control language A robot moves along a grid
according to a simple program. The program consists of a possibly empty sequence of the
commands move and turn, separated by semicolons. Initially, the robot faces east and starts
at the grid coordinates (0,0). The command turn causes the robot to turn 90 degrees counter-
clockwise, and move to move one unit in the direction it is facing.

(a) Small step semantics: devise a set of small-step semantics rules for this language. This
means determining answers to the following questions:

• What is the set of states?

• Which of those states are final states, and which are initial states?

• What transitions exist between those states?

(b) Big step semantics: what would a suitable a set of big-step evaluation rules for this
language look like? In particular:

• What is the set of evaluable expressions?

• What is the set of values?

• How do evaluable expressions evaluate to those values?

Solution:

• The state can be described as a triple of current position of the robot in the 2D
plane, encoded as a vector in Z2, the direction it is facing, which can also be
encoded as a vector in Z2, and the sequence of instructions not yet executed.

• Initially, the robot faces east

(
1
0

)
, and is at position

(
0
0

)
. The final states are

those where the sequence of instructions is empty.

• Transitions:

(pos, dir , move; ins) 7→ (pos + dir , dir , ins)

(pos, dir , turn; ins) 7→ (pos,

(
0 −1
1 0

)
∗ dir , ins)

For a big step semantics, we can model the set of evaluatable expressions in the
same way as we did for the small step semantics. The values are just pairs of
position and direction. In this case, the big step semantics is not simpler than
the small step semantics. In fact, we have to add one rule, which explicitly
maps the empty instruction sequence to a final state.

(pos, dir, ◦) ⇓ (pos, dir)
(empty sequence)

(pos+ dir, dir, ins) ⇓ (pos′, dir′)

(pos, dir, move; ins) ⇓ (pos′, dir′)
(move)

(pos,

(
0 −1
1 0

)
∗ dir, ins) ⇓ (pos′, dir′)

(pos, dir, turn; ins) ⇓ (pos′, dir′)
(turn)

There are many other solutions to this problem. We could store the direction
as east, west and so on, and provide rules how turn affects the direction (i.e.,
from east to south, south to west, and so on.

Page 10



4. TinyC The semantics we defined for TinyC in the lecture is a call-by-value semantics. That
is, we only pass the value to the function.

Extend TinyC such that the type of a function parameter in a function declaration can be
preceeded by the keyword var so that this variable is passed by reference. For example,
evaluating the following TinyC program would result in the value 20:

int swap (var int a; var int b) {
int tmp = a;

a = b;

b = tmp;

return 0;

}

{
int x = 10;

int y = 20;

swap (x, y);

return (x);

}

• Which (if any) adjustments to the static semantics are necessary?

• How can you model this in the operational dynamic semantics?

Solution: Function calls have to be checked to ensure that only variable names, not gen-
eral expressions, can be at the position of call-by-reference parameters. If every reference
passed into a function has to be distinct, aliasing can be statically excluded, and the
dynamic semantics just needs to ensure that, upon returning from the function call, the
value of the references variable is updated.

However, if there is no such restriction, references have to be modelled in the dynamic
semantics using a mapping from location to value.

Page 11


