
Concepts of Programming Language Design

Syntax Exercises

Liam O’Connor-Davis
Gabriele Keller

November 19, 2024

1. Here is a concrete syntax for specifying binary logic gates with convenient if− then− else

syntax. Note that the else clause is optional, which means we must be careful to avoid
ambiguity – we introduce mandatory parentheses around nested conditionals:

> Output ⊥ Output α Input β Input

c Input t IExpr e Expr

if c then t else e Expr

c Input t IExpr

if c then t Expr

x Output

x IExpr

e Expr

(e) IExpr

e IExpr

e Expr

If an else clause is omitted, the result of the expression if the condition is false is defaulted
to ⊥. For example, an AND or OR gate could be specified like so:

AND : if α then (if β then >)

OR : if α then > else (if β then >)

Or, a NAND gate:

if α then (if β then ⊥ else >) else >

(a) Devise a suitable abstract syntax A for this language.

Solution: This is one possible solution. It can be even simpler, as for the abstract
syntax, it’s not even necessary to distinguish between input and output. This then
leads to expressions which are correct according to the abstract syntax, but don’t
correspond to correct expressions in the concrete syntax, but this is not a problem.

x ∈ {a, b}
x Input

x ∈ {T, F}
x Output

c Input t A e A

(If c t e) A

x Output

(Out x) A

(b) Write rules for a parsing relation (↔) for this language.

1



Solution:

> Output↔(Out T)
Top

⊥ Output↔(Out F)
Bot

α Input↔A
Inputα

β Input↔B
Inputβ

c Input ↔c′t IExpr ↔t′e Expr↔e′

if c then t else e Expr ↔(If c′ t′ e′)
If1

c Input ↔c′t IExpr ↔t′

if c then t Expr↔(If c′ t′) F
If2

e Expr↔e′

(e) IExpr↔e′
Paren

e Output↔ e′

e IExpr↔ e′
Shunt1

e IExpr↔e′

e Expr↔e′
Shunt2

(c) Here’s the parse derivation tree for the NAND gate above:

α Input↔

β Input↔
⊥ Output↔
⊥ IExpr↔

> Output↔
> IExpr↔
> Expr↔

if β then ⊥ else > Expr↔
(if β then ⊥ else >) IExpr↔

> Output↔
> IExpr↔
> Expr↔

if α then (if β then ⊥ else >) else > Expr↔

Fill in the right-hand side of this derivation tree with your parsing relation, labelling
each step as you progress down the tree.

Solution: (We drop the Out operator here to make the solution more compact)

α Input↔A

β Input↔B
⊥ Output↔F
⊥ IExpr↔F

> Output↔T
> IExpr↔T
> Expr↔T

if β then ⊥ else > Expr↔(If B F T)

(if β then ⊥ else >) IExpr↔(If B F T)

> Output↔T
> IExpr↔T
> Expr↔T

if α then (if β then ⊥ else >) else > Expr↔(If A ((If B F T)) T)

2. Here is a first order abstract syntax for a simple functional language, Lc. In this language, a
lambda term defines a function. For example, (Lambda "x" (Var "x")) is the identity function,
which simply returns its input.

e1 Lc e2 Lc

(App e1 e2) Lc

x VarName e Lc

(Lambda x e) Lc

x VarName

(Var x) Lc

(a) Give an example of name shadowing using an expression in this language, and provide
an α-equivalent expression which does not have shadowing.

Solution: A simple example is (Lambda x ((Lambda x ((Var x))))). Here, the name
x is shadowed in the inner binding.

An α-equivalent expression without shadowing would use a different variable y, i.e

(Lambda x ((Lambda y ((Var y)))))

(b) Here is an incorrect substitution algorithm for this language:

((App e1 e2))[v := t] 7→ (App (e1[v := t]) (e2[v := t]))
((Var v))[v := t] 7→ t
((Lambda x e))[v := t] 7→ (Lambda x (e[v := t]))

Page 2



What is wrong with this algorithm? How can you correct it?

Solution: The substitution doesn’t deal with name clashes. The rule for lambdas
should look like this:

((Lambda x e))[v := t] 7→


(Lambda x (e[v := t])) if x 6= v and x /∈ FV (t)

(Lambda x e) if x = v

undefined otherwise

(c) Aside from the difficulties with substitution, using arbitrary strings for variable names
in first-order abstract syntax means that α-equivalent terms can be represented in many
different ways, which is very inconvenient for analysis. For example, the following two
terms are equivalent, but have different representations:

(Lambda "x" ((Lambda "y" ((App ((Var "x")) ((Var "y")))))))

(Lambda "a" ((Lambda "b" ((App ((Var "a")) ((Var "b")))))))

One technique to achieve canonical representations (i.e α-equivalence is the same as
equality) is called higher order abstract syntax (HOAS). Explain what HOAS is and
how it solves this problem.

Solution: Higher order abstract syntax encodes abstraction in the meta-logic level,
or in the language implementation, rather than as a first-order abstract syntax con-
struct.

First order abstract syntax might represent a term like λx.x as something like
(Lambda ”x” ((Var ”x”))), where literal variable name strings are placed in the ab-
stract syntax directly.

Higher order abstract syntax, however, would place a function inside the abstract
syntax, i.e (Lambda (λx. x)), where the variable x is a meta-variable (or a variable
in the language used to implement our interpreter, rather than the language being
implemented). This function is (extensionally) equal to any other α-equivalent func-
tion, and therefore we can consider two α-equivalent terms to be equal with HOAS,
assuming extensionality (that is, a function f equals a function g if and only if, for
all x, f(x) = g(x).

For example, a first order Haskell implementation of the above syntax might look
like this:

type VarName = String

data AST = App AST AST

| Var VarName

| Lambda VarName AST

test = Lambda "x" (Lambda "y" (App (Var "x") (Var "y")))

Whereas a higher order syntax might look like this:

data AST = App AST AST

| Lambda (AST -> AST)

test = Lambda $ \x -> Lambda $ \y -> App x y

There is no way in Haskell, for example, to determine that we used the names x

and y for those function arguments. The only way for a Haskell function f to be
distinguished from a function g is for f x to be different from g x for some x (i.e
extensionality). As α-equivalent Haskell functions cannot be so distinguished, we
must judge a term as equal to any other in its α-equivalence class.

Page 3



3. Consider the following two definitions of a simple expression language deeply embedded in
Haskell.

First order embedding:

data FOExpr

= FONum Int

| FOVar String

| FOPlus FOExpr FOExpr

| FOTimes FOExpr FOExpr

| FOLetBnd String FOExpr FOExpr

Higher order embedding:

data HOExpr

= HONum Int

| HOPlus HOExpr HOExpr

| HOTimes HOExpr HOExpr

| HOLetBnd HOExpr (HOExpr -> HOExpr)

(a) Define a function of type

foToHO :: FOExpr -> HOExpr

which converts a first order expression into the corresponding higher-order expression.

Solution:

data FOExpr

= FONum Int

| FOVar String

| FOPlus FOExpr FOExpr

| FOLet String FOExpr FOExpr

data HOExpr

= HONum Int

| HOPlus HOExpr HOExpr

| HOLet HOExpr (HOExpr -> HOExpr)

| HODummy String -- we need this dummy variable during conversion

foToHO :: FOExpr -> HOExpr

foToHO foExpr = foToHO' foExpr []

where

foToHO' (FONum n) _ = HONum n

foToHO' (FOVar str) env =

case lookup str env of

Just e -> e

Nothing -> error $ "expression not closed: var " ++

str ++ " occured freely"

foToHO' (FOPlus e1 e2) env =

HOPlus (foToHO' e1 env) (foToHO' e2 env)

foToHO' (FOLet str e1 e2) env =

HOLet (foToHO' e1 env) (\verb+\x+ -> foToHO' e2 ((str, x) : env))

hoToFO :: HOExpr -> FOExpr

hoToFO hoExpr = hoToFO' hoExpr 0

Page 4



where

hoToFO' (HONum n) _ = FONum n

hoToFO' (HODummy str) _ = FOVar str

hoToFO' (HOPlus e1 e2) varCnt =

FOPlus (hoToFO' e1 varCnt) (hoToFO' e2 varCnt)

hoToFO' (HOLet e1 e2) varCnt =

FOLet varName (hoToFO' e1 varCnt)

(hoToFO' (e2 (HODummy varName)) (varCnt + 1))

where

varName = "x" ++ show varCnt

evalHO :: HOExpr -> Int

evalHO (HONum n)

= n

evalHO (HOPlus e1 e2)

= evalHO e1 + evalHO e2

evalHO (HOLet e1 e2)

= evalHO (e2 e1)

evalFO :: FOExpr -> Int

evalFO foExpr = evalFO' foExpr []

where

evalFO' (FONum n) _ = n

evalFO' (FOVar str) env =

case lookup str env of

Just v -> v

Nothing -> error $ "expression not closed: var " ++ str ++

" occured freely"

evalFO' (FOPlus e1 e2) env

= evalFO' e1 env + evalFO' e2 env

evalFO' (FOLet str e1 e2) env

= evalFO' e2 ((str, evalFO' e1 env) : env)

(b) It is also possible to write a function of type

hoToFO :: HOExpr -> FOExpr

such that for all first order terms t with:

hoToFO (foToHO t) = t'

the term t’ is α-equivalent to t.

Hint: it is necessary to extend the data type of the higher-order representation with one
additional data constructor, which is used during the transformation.

(c) Not for all higher order terms h it will hold that

foToHO (hoToFO h) = h

Give a counter example for a term h for which this equality does not hold.

Solution: If the function in the higher-order let-binding expects the constructor, for
example, and returns a differnt expression depending on the constructor:

Page 5



HOLetBnd (HONum 3) f

where

f x = case x of

HONum n -> HONum (n+1)

_ -> x

Evaluating this expression results yields 4, but when converted to first-order and
then back, it evaluates to 3.

Page 6


