
INFOMCPD Concepts of program design 2022–2023

Sample Exam

2023

Name:

Student number:

Please read the following instructions carefully:

• Fill in your name and student number above. Be prepared to identify yourself with your student card when
you submit your exam.

• You are allowed to bring two single sided or one double sided A4 sheet of handwritten notes. You are forbidden
from accessing any other external material, additional notes, electronic material, or online resources.

• Answer each open question in the space provided, if possible. Otherwise, use the space on the last pages marked
’Overflow’. Write clearly and legibly.

• A maximum of 100 points can be obtained by the questions on this exam. The final score is calculated by
dividing the total number of points scored by 10.

Please do not write in the space below.

Question Points Score

Part 1: Multiple Choice and Short Answer Questions 30

Part 2: Inference rules and induction 25

Part 3: Semantics, Procedural Programming 20

Part 4: Abstract Machines 25

Total: 100

INFOMCPD Concepts of program designSample Exam, Page 1 of 8 2023

Part 1: Multiple Choice and Short Answer Questions

(a) (3 points) Which of the following statements are incorrect (multiple answers possible)?

© If a set S is inductively defined by a set R of inference rules, then s ∈ S implies s S is
derivable using the rules in R.

© If a set S is inductively defined by a set R of inference rules, then s S is derivable with
the rules only if s is an element of the set S.

© If a set S is inductively defined by a set R of inference rules, then there is only one way
to derive s S using the rules in R.

© If a set S is inductively defined by a set R of inference rules, then removing any rule from
R would mean that there exists at least on element s in S, for which we cannot derive
s S anymore using only the remaining rules.

© If a set S is inductively defined by a set R of inference rules, then R contains exactly one
axiom.

© None of the above.

(b) (3 points) Which of the following statements are incorrect (multiple answers possible)?

© A parser translates the concrete syntax representation of a program into an internal
representation in abstract syntax.

© A parser translates the first-order abstract syntax representation of a program into an
internal representation in higher-order abstract syntax.

© Higher-order abstract syntax is necessary for programming languages which support
higher-order functions.

© Higher-order abstract syntax has a built-in notion of variables.

© None of the above.

(c) (3 points) Which of the following statements are incorrect (multiple answers possible)?

© Most programming languages, including C# and Haskell, support dynamic scoping.

© Only object oriented language support dynamic scoping.

© In a type-safe language, all computations have to terminate.

© To show that a language is type safe, it is sufficient to prove progress and preservation.

© Dynamically typed languages can be type safe.

(d) (3 points) Which of the following statements are incorrect (multiple answers possible)?

© Small step semantics rules are in general more detailled than big step sematics rules.

© It is not possible to model evaluation order with big step semantics.

© Both small step and big step semantics are so-called operational semantics.

© Function closures are necessary when we want to implement a language with partial
application of functions using environment semantics.

© Function closures are necessary when we want to implement a language with partial
application of functions with explicit control flow.

© None of the above.

(e) (3 points) Give an example of two non-identical, but α-equivalent MinHs expressions.

INFOMCPD Concepts of program designSample Exam, Page 2 of 8 2023

(f) (6 points) Give the most general type of the following polymorphic, implicitly typed MinHs expres-
sions, if it exists. If not, explain briefly why.

1. InL (InR 5)

2. recfun f x = case x of

InL y -> y

InR z -> z

3. recfun cmp g =

recfun cmp’ f =

recfun cmp’’ x = g (f x)

or, equivalently, if we can have multiple parameters to functions:

recfun cmp g f x = g (f x)

(g) (6 points) For which of the following types can we write a total, terminating, polymorphic MinHs
function? If such a function exists, provide the definition, otherwise just write “No”.

1. (a * b) -> (a + b)

2. () -> (a + b)

3. (a -> b) -> (b -> a)

(h) (3 points) Consider the following Haskell type constructor:

data Mysterious a = Mysterious (a -> a)

Is Mysterious co-, contra, or invariant with respect to subtyping?

INFOMCPD Concepts of program designSample Exam, Page 3 of 8 2023

Part 2: Inference rules and induction

The set strings of strings B is inductively defined by the following set of rules:

Z B
(B1)

s B

sI B
(B2)

sI B

s0 B
(B3)

(a) (3 points) Using the inference rules given above, show that Z0I B is derivable.

(b) (5 points) Is the following rule derivable, admissible, or not admissible with respect to the inductive
definition of B given above? Explain briefly.

s B

s0 B
(1)

(c) (3 points) The function value maps strings in B to natural numbers:

value (Z) = 0
value (s0) = 2 ∗ value(s)
value (sI) = 2 ∗ value(s) + 1

Examples:

value (ZI) = 1
value (ZI0) = 2
value (ZII) = 3
value (ZI0I) = 5

The following inference rules define a relation ⊕ ∈ B × B, such that (x ⊕ y) is derivable if and
only if value(y) = value(x) + 1.

Z⊕ ZI

s B

s0⊕ sI
s⊕ s′

sI⊕ s′0
Show that ZII⊕ ZI00 is derivable.

(d) (8 points) Using rule induction, show that for all strings s and s′, s ⊕ s′ implies

value(s) + 1 = value(s ′)

(e) (6 points) Provide the inference rules to define a relation / ∈ B×B , such that (x / y) is derivable
if and only if value(y) < value(x). You can define it using ⊕, or from scratch.

INFOMCPD Concepts of program designSample Exam, Page 4 of 8 2023

Part 3: Semantics, Procedural Programming

Consider the following language, TinyW, which is a simple subset of TinyC. A program here is just a
statement, which can contain, of course, many other statements:

prgm ::= stmt
vdecs ::= ε | vdec vdecs
vdec ::= int Ident = v;
stmt ::= expr; | { vdecs stmts } | while (expr) stmt
stmts ::= ε | stmt stmts
expr ::= v | Ident | expr1 + expr2 | Ident = expr

The statics semantics checks that all variables in the program are in scope, and it works like the static
semantics rules for TinyC.

The big step semantics is also a simpler version of TinyC’s semantics. Statements and expression are
evaluated in the context of a store (or environment) state to a result integer value and environment.
The initial state consists of an initially empty environment and the main statement.

Looking up a variable is written g@x = 5, where x is a variable in the environment g, and 5 is the result
of the lookup. To set the value of the variable x to 5 we write g@x← 5, and g.int x = 5 to add a new
declaration int x = 5 to the environment g. Lookup retrieves the rightmost occurence, and update also
affects only the rightmost occurence of a variable. For example, (int x = 5.int x = 10)@x results in the
value 10, and (int x = 5.int x = 10)x← 20 in the environment (int x = 5.int x = 20).

(g, e) ⇓ (g′, v1) (g′, e2) ⇓ (g′′, v2)

(g, e1+e2)⇓ (g′′, v1 + v2)
addition

(g.l, ss) ⇓ (g′.l′, v)

(g, {l ss}) ⇓ (g′, v)
blocks

(g, s) ⇓ (g′, v) (g′, ss) ⇓ (g′′, v′)

(g, s ss) ⇓ (g′′, v′)
sequence of statements

(g, ε) ⇓ (g, 0;)
empty sequence

g@x = v

(g, x) ⇓ (g, v)
variables

(g, e) ⇓ (g′.v)

(g, x=e) ⇓ (g′@x← v, v)
assignment

(g, e) ⇓ (g′, 0)

(g, while(e)s) ⇓ (g′, 0;)
while-1

(g, e) ⇓ (g′, v), v 6= 0 (g′, s; while(e)s) ⇓ (g′′, v)

(g, while(e)s)⇓ (g′′, v)
while-2

(a) (8 points) We add another type of expression to the language, namely postfix increment :

expr ::= Ident++

It increments the value of variable Ident by one, and evaluates to the original value of the variable
(i.e., value before the increment).

Provide the big step dynamic semantics rule for postfix increment.

INFOMCPD Concepts of program designSample Exam, Page 5 of 8 2023

(b) (6 points) Are the following two code snippets semantically equivalent (that is, result in the same
state and value) for every statement s?

while (x++)

s

and

while (x)

{x = x + 1; s }

Explain your answer briefly.

(c) (6 points) When we added reference types to TinyC, we introduced a second type of storage in
addition to the stack g, namely the heap h.

Why was this necessary? Give an example program which would not evaluate properly if we store
both the reference and the referenced int value in g.

INFOMCPD Concepts of program designSample Exam, Page 6 of 8 2023

Part 4: Abstract Machines

Consider the boolean expression language Ex, whose higher-order abstract syntax is given below:

c ∈ {True, False}
c Ex

e1 Ex e2 Ex

(Or e1 e2) Ex

e Ex

(Not e) Ex

e Ex

(Exists (x.e)) Ex x Ex

whose big step semantics is provided below:

True ⇓ True False ⇓ False
e1 ⇓ True

(Or e1 e2) ⇓ True
e1 ⇓ False e2 ⇓ v

(Or e1 e2) ⇓ v

e ⇓ False
(Not e) ⇓ True

e ⇓ True
(Not e) ⇓ False

(Or (e[x := True]) (e[x := False])) ⇓ v
(Exists (x.e)) ⇓ v

(a) (6 points) Evaluate the expression

(Exists (x. (Not x)))

using the semantics above. Provide the derivation.

(b) (7 points) Is the language type safe? Explain your answer briefly.

Note: you can view Ex as (only) type here. That is, every expression e for which e Ex is derivable
has the type Ex.

(c) (12 points) Provide an equivalent small step environment semantics in the style of the E-machine.
That is, all the rules should be axioms, and it should handle variables via environments, not
substitution.

State clearly what are the possible initial states of the machine, and the possible final states are.

INFOMCPD Concepts of program designSample Exam, Page 7 of 8 2023

Overflow

