
Concepts of Programming Language Design
Overloading (via Type Classes)
Gabriele Keller
Tom Smeding

Overview

semantic features

tools to talk about languages

static & dynamic
scoping

static & dynamic
typing

language concepts

functional

procedural/imperative

higher & first-order syntax

big step and small step operational
semantics

abstract machines

inference rules, induction

(algebraic) data types

partial application/function closures

value & type environments

control stacks

parametric polymorphism/
generics

explicit & implicit
typing

type classes/overloading

OO
inheritance/subclassing

method overloading

• Parametric polymorphism enables us to implement functions which work on
any types:

Ad hoc polymorphism vs parametric polymorphism

 map :: forall a. forall b. (a-> b) -> [a] -> [b]

• Subtyping to use operators/functions on arguments which can be coerced to the
correct type:

 1Int +Float 2Int

• Overloading to use operators/functions on arguments on different types:

show 1
show [1]
“as” == “bs”
1 == 2

Ad hoc polymorphism vs parametric polymorphism

• Adhoc polymorphism/overloading enables us to implement functions which work
on a set of types

- + operator in C#

- works on integral and floating point numeric types, strings

- + operator in Haskell, works on all types which are in type class Num

• Methods in C# can be overloaded with implementations of different parameter
type (different result type not sufficient!)

• Method overloading is resolved at compile time using the type information

Method overloading in C#

public int Add(int a, int b)
 {
 int sum = a + b;
 return sum;
 }

public float Add(float a, float b)
 {
 float sum = a + b;
 return sum;
 }

public int Add(int a, int b, int c)
 {
 int sum = a + b + c;
 return sum;
 }

 • We already looked at how to resolve method overloading for class methods

• search through the class table to find appropriate definition

Interaction between overloading and generics in C#

public static bool Check<T>(T t){
 return true;
}

public static bool Check(U t)
{
 return false;
}

public static bool Wrapper<T>(T t) {
 return Check(t);
}

Check (new U());
Wrapper <U>(new U());

• What happens if overloading overlaps due to generics?

• Core Idea behind overloading via type classes:

- group together types sharing a set of operations in a class of types

‣ a class for arithmetic operations

‣ a class for comparing values for equality

‣ a class of types convertible to string representation

- the operations defined by a type class are called class methods

- related to the idea of abstract base classes/protocol oriented programming

- first used in the language definition of Haskell

- ConceptsC++

- partially in Rust, Scala

Type Classes and Overloading

• Type classes are sets

- type classes are sets of types

- types are sets of values

• Example:

- the type class Num

‣ the type Int, Float, Double (and other numeric types) are in the type class
Num

‣ the class methods of Num are all arithmetic operations

- the type class Eq

‣ the types that can be compared for equality are in the type class of Eq

‣ the class methods of Eq are == and /=

Haskell: Overloading via Typeclasses

Int

Float

Double

Num

…

• Num t means that the type t is in the type class Num

• For example
- Num Float

- Num Int

- Eq (Int, Float)

• A signature f :: ∀ t. Num t => τ means

- f has type τ under the condition that t is a member of type class Num

• For example
- (+) :: ∀ a.Num a => a ➔ a ➔ a
- (==):: ∀ a.Eq a => a ➔ a ➔ Bool
- 1 :: ∀ a.Num a => a

• Schematic Types
- Is ((1::Int) + (1.0::Float)) a type correct expression?
- No, type scheme of (+) requires both arguments to be of the same type

Notation

• Polymorphic MinHs with type classes

Typing Rules for Type Classes

Predicates π ::= ClassName τ
Polytypes σ ::= τ | ∀ Ident. σ | π ⇒	σ
Monotypes τ ::= Bool | Int |	τ ➔ τ2

• How does object-based overloading get resolved dynamically?

- objects encode which method to apply

- e.g., Java/C#/C++ objects have pointer to a vtable (virtual method table,
dispatch table), which contains all the methods of the class

- would not work with MinHs, as of an overloaded function need not be an
object

Overloading Resolved

• Still, we can draw an inspiration
- key idea:

‣ type checker not only checks, but adjusts the code:

‣ passes a table with methods of the type class as an extra argument to an
overloaded function (we call such a table a dictionary)

‣ overloaded function picks the appropriate function instance from the dictionary

- dictionary (simplified) for Eq Int is a pair of the functions (==) on Int and (/=) on
Int

‣ Eq Int is (==Int, /=Int)

- overloaded function as projection

‣ function (==) projects the first component of the pair representing the Eq
dictionary

‣ function (/=) projects the second component of the pair representing the Eq
dictionary

Overloading Resolved

Overloading Resolved

(==) ‘a’ ‘b’ selectEqual ((==)Char, (/=)Char) ‘a’ ‘b’⤳

foo :: EqDict p -> NumDict p -> p -> p -> p
foo eqDict numDict a b =
 if (selectEqual eqDict a b)
 then (selectAdd numDict a 1)
 else b

selectEqual = fst

foo :: Eq p => Num p => p -> p -> p
foo a b =
 if (a == b)
 then a + 1
 else b

• Dictionary translation: the code generation of the type checker to resolve
overloading is called dictionary translation

- changes the type of the overloaded function

‣ removes type classes, replaces by dictionary

- adds code (dictionary passing and projection)

- it’s a type preserving translation

‣ type of the full expression does not change

• Types after the dictionary translation: type of (==) after the dictionary translation:

- EqDict a ➔ a ➔ a ➔ Bool

- where EqDict a stands for the type of the dictionary of Eq a

- instead of source type: Eq a => a ➔ a ➔ Bool

Overloading Resolution

