Concepts of Programming Language Design

Overloading (via

vpe Classes)

NI
= ¥ = Utrecht University

N

Gabriele Keller
Tom Smeding

higher & first-order syntax inference rules, induction

tools to talk about languages

abstract machines big step and small step operational

semantics

value & type environments

parametric polymorphism/

generics
control stacks
(algebraic) data types type classes/overloading
partial application/function closures semantic features
ILAGHOTE] o 00 . static & dynamic static & dynamic
inheritance/subclassing scoping slie

method overloading
language concepts

explicit & implicit
procedural/imperative typing

Utrecht University

e Parametric polymorphism enables us to implement functions which work on
any types:

map :: forall a. forall b. (a-> b) -> [a] -> [b]

e Subtyping to use operators/functions on arguments which can be coerced to the
correct type:

1Int +Float 2Int

e Overloading to use operators/functions on arguments on different types:

Utrecht University

show 1

show [1]

‘‘ag’ == ‘‘bs”’
== 2

e Adhoc polymorphism/overloading enables us to implement functions which work
on a set of types

- + operator in C#

- works on integral and floating point numeric types, strings

- + operator in Haskell, works on all types which are in type class Num

Utrecht University

e Methods in C# can be overloaded with implementations of different parameter
type (different result type not sufficient!)

e Method overloading is resolved at compile time using the type information

public int Add(int a, int b)
{
int sum = a + b;
return sum;

}

public float Add(float a, float b)
{
float sum = a + b;
return sum,;

public int Add(int a, int b, int c)
{
int sum = a + b + c;
return sum,

}
e \Ve already looked at how to resolve method overloading for class methods

e search through the class table to find appropriate definition i
Utrecht University

e \What happens if overloading overlaps due to generics?

public static bool Check<T>(T t){
return true;

+

public static bool Check(U t)
{

return false;

+

public static bool Wrapper<T>(T t) {
return Check(t) ;

+

Check (new U());
Wrapper <U>(new UQ));

Utrecht University

e Core |ldea behind overloading via type classes:
- group together types sharing a set of operations in a class of types
> a class for arithmetic operations
> a class for comparing values for equality
> a class of types convertible to string representation
- the operations defined by a type class are called class methods
- related to the idea of abstract base classes/protocol oriented programming
- first used in the language definition of Haskell
- ConceptsC++

- partially in Rust, Scala

Utrecht University

¢ [ype classes are sets
- type classes are sets of types
- types are sets of values

e Example:

- the type class Num

Num

» the type Int, Float, Double (and other numeric types) are in the type class
Num

» the class methods of Num are all arithmetic operations
- the type class Eq
» the types that can be compared for equality are in the type class of Eq

Utrecht University

» the class methods of Eq are == and /=

e Num ¢ means that the type tis in the type class Num

e For example
- Num Float

- Num Int
- Eq (Int, Float)

e Asignature f :: V¥V t. Num ¢ => 7 means
- f has type T under the condition that ¢ is a member of type class Num

e For example

- (+) :: ' Va.Numa =>a > a = a
- (==):: YV a.Eq a =>a = a - Bool
-1 +: V a.Num a => a

e Schematic Types
- Is ((1::Int) + (1.0::Float)) a type correct expression?

- No, type scheme of (+) requires both arguments to be of the same type

Utrecht University

e Polymorphic MinHs with type classes

Predicates Tt = (ClassName t
Polytypes o = 7 |vildent.o|m = o
Monotypes T = Bool|Int| T = 72

% Utrecht University

e How does object-based overloading get resolved dynamically?
- objects encode which method to apply

- e.9., Java/C#/C++ objects have pointer to a vtable (virtual method table,
dispatch table), which contains all the methods of the class

- would not work with MinHs, as of an overloaded function need not be an
object

% Utrecht University

e Still, we can draw an inspiration

- key idea:
» type checker not only checks, but adjusts the code:

» passes a table with methods of the type class as an extra argument to an
overloaded function (we call such a table a dictionary)

» overloaded function picks the appropriate function instance from the dictionary

- dictionary (simplified) for Eq Int is a pair of the functions (==) on Int and (/=) on
Int

» Eq Int is (==mt, /=Iat)
- overloaded function as projection

» function (==) projects the first component of the pair representing the Eq
dictionary

» function (/=) projects the second component of the pair representing the Eq

dictionary
Utrecht University

Overloading Resolved

(==) ‘a’ ‘b’ ~ selectEqual ((==)char, (/=)char) ‘a’ ‘b’
selectEqual = fst

foo :: Eq p => Num p =>p -> p -> p
foo a b =
if (a == b)
then a + 1
else b

foo :: EgqDict p -> NumDict p -> p ->p -> p
foo eqDict numDict a b =
if (selectEqual eqDict a b)
then (selectAdd numDict a 1)

else b
N
§ N % Utrecht University

NS

e Dictionary translation: the code generation of the type checker to resolve
overloading is called dictionary translation

- changes the type of the overloaded function

» removes type classes, replaces by dictionary
- adds code (dictionary passing and projection)
- it's a type preserving translation

» type of the full expression does not change

e Jypes after the dictionary translation: type of (==) after the dictionary translation:
- EQDict a » a =2 a = Bool
- Where EqDict a stands for the type of the dictionary of Eq a

- instead of source type: Eq a => a » a = Bool

Utrecht University

