Concepts of
Subtyping

NI
= ¥ = Utrecht University

N

Programming Language Design

Gabriele Keller
Tom Smeding

higher & first-order syntax inference rules, induction

tools to talk about languages

abstract machines big step and small step operational

semantics

value & type environments

parametric polymorphism/

generics
control stacks
(algebraic) data types sub typing
partial application/function closures semantic features
functional static & dynamic static & dynamic
scoping typing
language concepts
explicit & implicit
procedural/imperative typing

Utrecht University

¢ \Vhy subtyping?
- eliminates the need to explicitly convert between elements of different types

—> 1 +F]_oa_t 1.565 —

(nt Float
- can be used to express program properties

- essential in OO-languages: closely related to the subclass-relationship

e Subtype relation note that we're overloading wotation here: we used ‘<’ for
/ ‘is less general’ previously!
- T=<0:.7 ISasubtype of o

- what does it mean for a type = to be a subtype of another type o”?

» wherever a value of type o is required, we can use a value of type

instead t
Utrecht University

e Subset interpretation

- If T = o,then every value T of is also a value of o,
- e.g.,

» even integers =< integers

» non-empty lists < lists

» squares = rectangles = polygons

e Coercion interpretation

- If then every value = of can be coerced to a value of type o in a unique way

- e.g.,
» Int =Float (e.g., 3103.0)

» Char = String (€.0., ‘w’ tO ‘“w”’)

* The subclass relationship in OO is a special form of subtyping, but we

will cover it separately e
Utrecht University

e MinHs extensions:

- Add type Float
- Add operations +ricat , *Float aNd SO ON

e \\Ve want to be able to write

- 1 +ri1oat 1.1232312
- 1.7 +Fi0at b

- 1 "'Float 5

e How can we implement a coercion interpretation?
- dynamic resolution
» floating point operation dynamically checks whether operands can be coerced

to Float, and coerces on the fly
- static resolution
Utrecht University

» type checker inserts coercions at compile time

e Coercion vs subset interpretation
- coercion interpretation is more expressive than subset interpretation
- we discuss coercion interpretation in more detalil

e Soundness of subtyping
- the subtyping relation needs to meet certain formal properties

- otherwise, type safety will be compromised

% Utrecht University

e Required properties: reflexivity and transitivity

TIST2 T2S T3

TIS T3

e Subset interpretation
» reflexivity and transitivity follow from properties of subset relation
e Coercion interpretation

» reflexivity (coercion function is the identity), transitivity (coercion function by
composing the two coercion functions)
% Utrecht University

e Coherence: a subtyping relationship must be coherent

- this means, the coerced value has to be unique
- If a value can be coerced in two ways, both must yield the same result

- example:

» assume: Int = Float, Int = String, Float = String
» consider print (3::Int)

» what might go wrong here?

e direct coercion: “n3zu

e coercionvia Float: “3.0"

Utrecht University

e Coercions might hide actual programming bugs

e Coercion behaviour unexpected, may differ from language to language

Examples:
» JS vs PHP:)
JS: compares strings alph. : “True”
(cc5n > ¢c11aa 7 “TRUE” . “FALSE”)
PHP: converts, thew compares: “False”
(<0 ? “TRUE” : “FALSE’))S: non-nuell objeat: “True”

PhP:converts to 0: “False”

Utrecht University

e The rule of subsumption - implicit subtyping

I'+He: 7t <o

I'e: o

e The rule of subsumption - explicit subtyping (with cast expression (o))

Utrecht University

¢ |f Int < Float, what is then then relationship between the following types:

(Int * Int)
(Float * Int)
(Int * Float)
(Float * Float)

e How about sums?

e Subtyping rules for products and sums:

T1 =01 T2=X02?

(771 * T2) = (01 * 02)

T1 =01 T2=X02

(77 + 72) = (o1 + 02)

Utrecht University

¢ \What is the relationship between the following types:

Int = Int
Float - Int
Int = Float

Float = Float

e (Given a coercion function intToFloat:: Int = Float, can we define coercion

functions of the following types:

(Int = Int) ->
(Float = Int) >
(Int = Float) >

(Float = Float) =

(Float = Int)
(Int = Float)
(Float = Float)

(Int =» Int)

Utrecht University

¢ \Vhat is the relationship between the following types:

Int =2 Int
Float - Int
Int = Float

Float = Float

e Subtyping rules for function types

O1=5T1 T2=X02

(7712 72) = (01> 02)

% Utrecht University

e Rules specifying how a type constructor interacts with subtyping are called variance
principles

e [f a constructor preserves subtyping, it is called co-variant

- the sum and product constructor are co-variant in both arguments
e |f a constructor inverts subtyping, it is called contra-variant

- the function type constructor is contra-variant in the first argument

- and co-variant in the second argument

Utrecht University

e \What about array/reference types?

newIORef 11 a -> I0 (IORef a)
writeIORef :: a -> I0Ref a -> I0 ()
readI0ORef :: I0Ref a -> I0 a

e |S TORef CcO- or contra-variant?

Int =< Float

fRef :: I0ORef Float
iRef :: I0ORef Int

readI0ORef fRef to get a FLOAT

readI0ORef iRef we can read from LRef, and convert (nt to Float

writeIORef (5.2423 :: Float) fRef to store a Float

writeIORef (5.2423 :: Float) iRef we cannot use an iRef to store a Float!
writeIORef (5 :: Int) iRef to store an nt

writeIORef (5 :: Int) fRef we can convert 5 to a Float, and store it in fref
readI0Ref iRef to get an Int

readIORef fRef we cannot use an fRef to get an tnt!

Utrecht University

e \Vhat about array/reference types?

newIORef 11 a -> I0 (IORef a)
writeIORef :: a -> I0ORef a -> I0 ()
readI0ORef :: I0ORef a -> I0 a

e |s TORef CO- or contra-variant?

it’s neither co- nor contra-variant!

e |[f a constructor is neither co- nor contra-variant, it is called invariant

e Java and C# have arrays as co-variant type constructors

e how is it handled?

% Utrecht University

