
Concepts of Programming Language Design
Subtyping
Gabriele Keller
Tom Smeding

Overview

semantic features

tools to talk about languages

static & dynamic
scoping

static & dynamic
typing

language concepts

functional

procedural/imperative

higher & first-order syntax

big step and small step operational
semantics

abstract machines

inference rules, induction

(algebraic) data types

partial application/function closures

value & type environments

control stacks

parametric polymorphism/
generics

explicit & implicit
typing

sub typing

• Why subtyping?

- eliminates the need to explicitly convert between elements of different types

 1 +Float 1.565

- can be used to express program properties

- essential in OO-languages: closely related to the subclass-relationship

• Subtype relation

- τ ≤ σ : τ is a subtype of σ

- what does it mean for a type τ to be a subtype of another type σ?

‣ wherever a value of type σ is required, we can use a value of type
instead τ

Subtyping

Int Float

note that we’re overloading notation here: we used ‘≤’ for
‘is less general’ previously!

• Subset interpretation
- if τ ≤ σ, then every value τ of is also a value of σ,

- e.g.,
‣ even integers ≤ integers

‣ non-empty lists ≤ lists

‣ squares ≤ rectangles ≤ polygons
• Coercion interpretation

- if then every value τ of can be coerced to a value of type σ in a unique way

- e.g.,
‣ Int ≤ Float (e.g., 3 to 3.0)

‣ Char ≤ String (e.g., ‘w’ to “w”)

• The subclass relationship in OO is a special form of subtyping, but we
will cover it separately

Two different forms of subtyping

• MinHs extensions:

- Add type Float

- Add operations +Float , *Float and so on

• We want to be able to write

- 1 +Float 1.1232312
- 1.7 +Float 5
- 1 +Float 5

• How can we implement a coercion interpretation?
- dynamic resolution
‣ floating point operation dynamically checks whether operands can be coerced

to Float, and coerces on the fly
- static resolution
‣ type checker inserts coercions at compile time

Adding Subtyping to MinHs

• Coercion vs subset interpretation

- coercion interpretation is more expressive than subset interpretation

- we discuss coercion interpretation in more detail

• Soundness of subtyping

- the subtyping relation needs to meet certain formal properties

- otherwise, type safety will be compromised

Properties of Subtyping

• Required properties: reflexivity and transitivity

Properties of Subtyping

τ ≤ τ

τ1 ≤ τ3

τ1 ≤ τ2 τ2 ≤ τ3

• Subset interpretation

‣ reflexivity and transitivity follow from properties of subset relation

• Coercion interpretation

‣ reflexivity (coercion function is the identity), transitivity (coercion function by
composing the two coercion functions)

• Coherence: a subtyping relationship must be coherent

- this means, the coerced value has to be unique

- if a value can be coerced in two ways, both must yield the same result

- example:

‣ assume: Int ≤ Float, Int ≤ String, Float ≤ String

‣ consider print (3::Int)

‣ what might go wrong here?

• direct coercion: “3“

• coercion via Float: “3.0”

Properties of Subtyping

• Coercions might hide actual programming bugs

• Coercion behaviour unexpected, may differ from language to language

Examples:

‣ JS vs PHP:

(“5” > “11” ? “TRUE” : “FALSE”)

(“0” ? “TRUE” : “FALSE”)

Problems with automatic coercion

JS: compares strings alph. : “True”

PHP: converts, then compares: “False"

JS: non-null object: “True”

PhP:converts to o: “False”

• The rule of subsumption - implicit subtyping

Subsumption

 Γ ⊢ e : σ
 τ ≤ σ Γ ⊢ e : τ

• The rule of subsumption - explicit subtyping (with cast expression (σ))

 Γ ⊢ (σ) e : σ

 τ ≤ σ Γ ⊢ e : τ

• If Int ≤ Float, what is then then relationship between the following types:

(Int * Int)

(Float * Int)

(Int * Float)

(Float * Float)

• How about sums?
• Subtyping rules for products and sums:

Composite Types and Subtyping

(τ1 * τ2) ≤ (σ1 * σ2)
τ1 ≤ σ1 τ2 ≤ σ2

(τ1 + τ2) ≤ (σ1 + σ2)
τ1 ≤ σ1 τ2 ≤ σ2

• What is the relationship between the following types:

 Int ➔ Int

 Float ➔ Int

 Int ➔ Float

 Float ➔ Float

• Given a coercion function intToFloat:: Int ➔ Float, can we define coercion
functions of the following types:

Composite Types and Subtyping

 (Int ➔ Int) ➔ (Float ➔ Int)

 (Float ➔ Int) ➔ (Int ➔ Float)

 (Int ➔ Float) ➔ (Float ➔ Float)

(Float ➔ Float) ➔ (Int ➔ Int)

....

• What is the relationship between the following types:

 Int ➔ Int

 Float ➔ Int

 Int ➔ Float

 Float ➔ Float

• Subtyping rules for function types

Composite Types and Subtyping

(τ1 ➔ τ2) ≤ (σ1 ➔ σ2)
σ1 ≤ τ1 τ2 ≤ σ2

• Rules specifying how a type constructor interacts with subtyping are called variance
principles

• If a constructor preserves subtyping, it is called co-variant

- the sum and product constructor are co-variant in both arguments

• If a constructor inverts subtyping, it is called contra-variant

- the function type constructor is contra-variant in the first argument

- and co-variant in the second argument

Composite Types and Subtyping

• What about array/reference types?

Variance

newIORef :: a -> IO (IORef a)
writeIORef :: a -> IORef a -> IO ()
readIORef :: IORef a -> IO a

• Is IORef co- or contra-variant?

Int ≤ Float
fRef :: IORef Float
iRef :: IORef Int

readIORef fRef
readIORef iRef

writeIORef (5.2423 :: Float) fRef
writeIORef (5.2423 :: Float) iRef

writeIORef (5 :: Int) iRef
writeIORef (5 :: Int) fRef

readIORef iRef
readIORef fRef

to get a FLOAT

we can read from iRef, and convert Int to Float

to store a Float

we cannot use an iRef to store a Float!

to store an Int

we can convert 5 to a Float, and store it in fRef

we cannot use an fRef to get an Int!

to get an Int

• What about array/reference types?

Variance

• If a constructor is neither co- nor contra-variant, it is called invariant

• Is IORef co- or contra-variant?

it’s neither co- nor contra-variant!

• Java and C# have arrays as co-variant type constructors

• how is it handled?

newIORef :: a -> IO (IORef a)
writeIORef :: a -> IORef a -> IO ()
readIORef :: IORef a -> IO a

