
Concepts of Programming Language Design
Introduction
Gabriele Keller
Tom Smeding

Some admin issues

Before we get started

• Lectures & labs

- will usually be recorded, but not streamed

- usually, 2 x 45 min lecture, 45 min lab with exercises, questions, more on
demand, lab not recorded

- Tuesday lecture & lab: 13:15 - 17:00

- Thursday lecture & lab: 10:00 - 12:45

- on demand: Thu 9:00 - 10:00 for extra help before assignment deadlines,

Before we get started

• Course website:

- https://utrechtuniversity.github.io/infomcpd/index.html

- slides will be available on the website (will try and upload a draft version of
the slides before the lecture)

- course schedule and material

- link to lecture notes and repo for lecture notes (you can report typos and
such there)

- Blackboard

- you can mostly ignore it

- I’ll use it to communicate grades for the assignments

- for assignment 1 submissions

Course Website/Teams

https://utrechtuniversity.github.io/infomcpd/index.html

• MS Teams for communication

- you should have received an invitation to join the team, or use code
d7m6v3b

- questions about lecture, lecture notes, assignments via Teams

- questions for me: direct msg on Teams

- if you don’t get a reply in a (working) day, feel free to ping again

• Lecture notes

- link to the latest version on the course website

- report typos, also requests for more explanations/examples, via GitLab
- https://git.science.uu.nl/g.k.keller/mcpd-lecture-notes/

• Weekly exercises

- weekly exercises for the lab

Course Website/Teams

• Assessment :

- Practical part: counts for 50% of the mark

- three small programming exercises (to help you learn Haskell, some
concepts behind the lecture)

- auto-marked, with feedback about style, better solutions in the
lecture

- programming assignment in Haskell, implementing one of the
concepts, mainly auto marked

- Final exam counts for 50% of the mark

- one exam question will be about a language of your choice (out of
a fixed set of languages, more on that soon)

Course Organisation

Course Content

So many languages,
so little time!

Which languages should we look at?

??
?

Modern general purpose languages
share

many concepts

functionalOOimperative

garbage collected strongly typed

polymorphicstatically typed C#

functionalOOimperative

garbage collected strongly typed

polymorphicstatically typed C#

Python
functionalOOprocedural

garbage collected dynamically typed

interpretedduck typing

functionalOOimperative

garbage collected strongly typed

polymorphicstatically typed C#

Python
functionalOOprocedural

garbage collected dynamically typed

interpreted

JavaScript
functionalOOimperative

garbage collected
weakly typed

dynamically typed

functionalOOimperative

garbage collected strongly typed

polymorphicstatically typed C#

Python
functionalOOprocedural

garbage collected dynamically typed

interpreted

JavaScript
functionalOOimperative

garbage collected
weakly typed

dynamically typed

Swift
functionalOO

garbage collected
strongly typed

statically typed
algebraic data types

generics/polymorphism

functionalOOimperative

garbage collected strongly typed

polymorphicstatically typed C#

Python
functionalOOprocedural

garbage collected dynamically typed

interpreted

JavaScript
functionalOOimperative

garbage collected
weakly typed

dynamically typed

Swift
functionalOO

garbage collected
strongly typed

statically typed
algebraic data types

generics/polymorphism

Rust
strongly typed

statically typedownership types

generics/polymorphismgenerics/polymorphism
type classes/traits

functional/declarativeprocedural/imperative

object oriented

garbage collected

manual memory management

dynamically typed statically typed

 algebraic data types

generics/polymorphism

strongly typed weakly typed

ownership types

type classes/traits

pattern matching

overloading

lazy/strict

We’ll look at the

general concepts
programming languages are based on!

• The aim of this course is to

- help you to understand and master new programming languages
more quickly

- understand the trade off between programming languages/features

- reason (formally and informally) about programs and programming
language features

- give you the tools to understand the design and, to some extend,
implementation of programming languages

- provide a look ‘under the hood’ of high-level languages

Aim of this course

To describe and prove properties of programming
languages:

predicate logic, inductive definitions and inference
rules (natural deduction)

Implementation language for projects, exercises,
examples:

 Haskell

We analyse and (in some cases) implement a variety of
simple languages which showcase different PL concepts

Languages we use

Implementation of Programming Languages

machine language

assembly language

?

(dis)assembler

hardware

High-level language

Implementation of Programming Languages

High-level language

program as input

compiler

generates machine
code

machine language
hardware

Implementation of Programming Languages

High-level program

interpreter executes
instructions of

high-level program

hardware
interpreter

Implementation of Programming Languages

High-level program

hardware

compiler

program as input

interpreter

intermediate language

generates intermediate
representation

`just in
time

compilation

Implementation of Programming Languages

High-level program

hardware

compiler

program as input

interpreter

intermediate language

generates intermediate
representation

virtual
machine

IR
can be viewed

as machine
language of

some
virtual machine

Implementation of Programming Languages

What are the pros and cons of each approach?

High-level language

compiler

machine language

hardware

High-level program

hardware

interpreter

High-level program

hardware

interpreter

compiler

intermediate language

JIT

• Examples for hybrid approaches using virtual machines:

- Java, with Java Virtual Machine and Bytecode

- .NET framework

- LLVM IR in the LLVM framework

- WebAssembly (WASM)

Implementation of Programming Languages

• Hybrid approach:

- intermediate language, with some primitive data types, memory model, and
interpreter

- also called a virtual machine

• Abstract machines

- like virtual machines, abstract machines are ‘imaginary machines’

- usually used to specify operational semantics of a language, investigate some
theoretical properties

- not necessarily possible to implement (efficiently)

Implementation of Programming Languages

• Preliminaries:

- predicate logic, inference rules, natural deduction

- Haskell intro/revision

• Static and dynamic semantics

- what is the static/dynamic semantics of a language?

- how can we specify the semantics of a language

- interaction between static and dynamic semantics

• Abstract machines

• Types

- different flavours of polymorphism, static & dynamic typing, linear types

- algebraic data types

- reference types

• Core languages: MinHs, TinyC, Featherweight Java

Topic overview

• We start with some theory revision

• introduction/revision of Haskell

This week

Register at

AI SINTERKLAAS
HACKATHON

About

Come along for...

November 28, 2024 @ UU, 13:00-17:00
November 29, 2024 @ Sue, 10:00 - 17:00

Learning the latest AI trends for
software development
Guest lectures from software
engineers, and other IT
professionals
Coding for a good cause

Free transport
from/to the
University - SUE
Free Lunch and
Dinner
Free drinks

Join us for the third edition of the UU-Sue Student
Hackathon! Get hands-on with the latest AI programming
tools, connect, and code together for a good cause!

Open to new and experienced programmers

In this 2-day event, you will learn how AI tools, like
Copilot and ChatGPT, are used in real-world software
development, and work in small teams on a hands-on
project guided by SUE engineers to build the necessary
code and algorithms to help Sinterklaas deliver presents
all around the country.

Enjoy networking opportunities throughout the event,
and as a bonus, your contributions will support a
charity focused on equal learning opportunities!

