NI
= ¥ = Utrecht University

N

Revision:
Judgements, Inference Rules & Proofs

Concepts of Programming Language Design 2024/2025

Gabriele Keller
Tom Smeding

e Formalisation of programming languages (PLs)

* t0 reason about PLs, we need a language in which we can describe PLs and
their properties

* a language to talk about other languages is called a meta-language
* 10 be sufficiently precise, we need a formal language
¢ This is what we need to be able to describe:

* language grammar syntax
* SCOPINg rules static semanties

* type systems static semanties

*x execution behaviour alg namLe semeantles

Fortunately, we can use natural deduction/inference rules for all of these tasks!!

Utrecht University

Definition: Judgement

A judgement is a statement asserting a certain property for an object

Examples

3+4x5 s a valid arithmetic expression

the string "'madam” is a palindrome

0.21312423 is a floating point value

the number 3 Is even

A formal notation: we denote that property A holds for object s by writing s A
formally, sis an element of a universe U (a set) where

- AcUandse A

Utrecht University

Definition; Inference Rules

Given judgements J, J;, J2 up to J,, an inference rule is an implication of the form:
If Ji, Jo, up to J, are inferable, then J is inferable

A formal notation: we denote an inference rule formally by writing

JZ, J2 Jn
J

Terminology:

- We call J; to J, the premises of the rule and
- Jits conclusion

- if a rule has no premise, it is called an axiom

Utrecht University

* Using inference rules to define the set of natural numbers

- to assert that 5 is a natural number, we write 5 Nat

* Inference rules to define this judgement

- “0 is a natural number” (axiom) 0 Nat (Nat-1)

- "if zis a natural number, then (s z) is a natural number (s for successor)

r Nat
(s) Nat

(Nat-2)

* this set of rules characterises the set of syntactic objects

Nat =40, (s 0), (s(s 0)), (s(s(s 0))),....}

% Utrecht University

* Using inference rules to define the set of even and odd natural numbers

*xn Fven and n Odd

* Inference rules used to define the judgement

*“0 is even” (axiom)

0 Fven

* “if nis even, then s(s(n)) is even” n EBven
(s(s n)) Even

n FEven
* “if nis even, then (s n) is odd” (sn) Odd

Utrecht University

e A judgement states that a certain property holds for a specific object (which
corresponds to a set membership)

e More generally, judgements express a relationship between a number of objects
(n-ary relations)

e Examples:

- 4 divides 16 (binary relationship)
- ail s a substring ofmail (binary)
- 3 plus 5 equals 8 (tertiary)

¢ |nfix Notation to denote binary relations

- 4 dwv 16

- ail substr mail

Utrecht University

Definition: A binary relation R is
symmetric, iff for all a, b, aRb implies bRa
reflexive, iff for all a, aRa holds

transitive, iff for all @, b, ¢, aRband bRc implies aRc

Definition:

A relation which is symmetric, reflexive, and transitive is called an equivalence
relation.

Utrecht University

e Example

- how can we define the ’less than’ relation on natural numbers inductively?

- < C Nat X Nat

n Nat n< m

0< (s n) (s n) < (s m)

Utrecht University

e \What we covered:
- definitions of sets/properties using judgements
- using inference rules to describe the elements of a set
e \Vhat we want to do
- how can we formally show that an object is an element of such a set?
» a natural number is odd or even
» a program is valid in a particular language

e Natural deduction; to show that s A holds
1) find a rule whose conclusion matches s A

2) show that the precondition of the rule holds

3) continue until all preconditions have been reduced to axioms

Utrecht University

* Example: show that (s(s(s(s 0)))) iseven

e | et’s start informally

- (s(s(s(s 0)))) isevenif (s(s 0)) is even
- (s(s 0)) isevenif0iseven
- 0 IS even

e Note: the preconditions of the rules we use become proof obligations

Utrecht University

Fven
(Even-1) " Even-
0 Even (s(sn)) FEven (ven 2)

Even-1
0 Even ()

(Even-2)
(s(s 0)) Even

(s(s(s(s 0)))) Even
n

(Even-2)

% Utrecht University

(Even-1) n Bven _
0 Even (s 1)) Buen (EV6Y

Proof:
G] (s(s(s(s 0)))) Ewven

Begin
1. {Even-1, Even-2} (s(s 0)) Ewven
2. {1, Even-2} (s(s(s(s 0))))) Even

End

Utrecht University

e Example: take the set of properly matched parentheses

M={e, O, (0), OO, (OO),000,...}

¢ |nformally
» the empty string (denoted by €) is in M
» if s;and sz are in M, SO is s;sp (concatenation)

» ifsisin M, sois (s)

e Definition as BNF (Backus—Naur form)

» M= | MM | (M)

% Utrecht University

Definition by inference rules

(1) the empty string is in M c v (M-1)
si M so M
(2) if s;and sz are in M, SO iS s152 5150 M (M-2)
(concatenation)
M
5 (M-3)
(s) M

(3)if sisin M, sois (s)

Utrecht University

the name of the rule we define here:

variables/placeholders for
objects of the judgement

M-1
e M ()
S1 M S9 M
M-
S180 M (M-2)
s M

/——> (s) M (M-3)

part of the term/string

the name (or symbol) of the judgement

% Utrecht University

e Show that () (()) M

(M-1) e M (M-I
(M-1) “ M (-3
g =2 OM s M s M
- - S S
OM (O) M — (M-2)
(M-2) s1so M
Q (if)_’) M
51 82 s M
(s) M (M=3)

e But what happens if we start with Rule (3) instead”

e |f we're running into a dead end’ trying to prove a judgement, it doesn’t mean
that this judgement is not derivable # Utrecht University

e \What happens if we add the following rule to the system®?
s M

((s)) M

» this rule is derivable wrt to the original three - it’s the same as applying Rule (3)
twice - adding it to the rules would not add any new objects to M

And this? Os M
s M

» this rule is admissible wrt to the original three rules, because it doesn’t add
any new objects to M, but it is not derivable (not just a combination of the

original rules)

And this? (s) M
s M

» not admissible: we could derive) (M using this rule!

Utrecht University

« What we covered so far:

definitions of sets/properties using judgements

using inference rules to describe the elements of a set

how to formally show that a particular object is an element of such a set using
natural deduction

derivable, admissible and inadmissible rules
- Today
- proofs by rule (natural) induction

- simultaneous inductive definitions

Utrecht University

We call a set of inference rules an inductive definition of a judgement if the rules
are exhaustive; I.e,

- If a judgement holds, it can be inferred from the rules, and

- If a judgement can be inferred, it holds

e Example: Rules (1)-(3) of M are an inductive definition of the set of perfectly
matched parentheses:

» for every string s of properly matched parenthesis, we can infer s M

» whenever we can infer s M, s really is a string of properly matched
parentheses

¢ |f we want to show that a property holds for every element of an inductively

defined set, how can we do this? b
Utrecht University

M M
S (M-2)
s180 M
M
) (M-3)
(s) M

Utrecht University

Definition: Rule Induction

Given a set of rules R, we can prove inductively that a property P holds for all
judgements that can be inferred from R:

For each rule of the form Ji, Jo . Jn

J

show that
if P holds for the objects in J; to J,, then P holds for the object in J.

Base cases and induction steps:
- axioms form the base case of the induction
- all other rules form the induction steps
- the J; become the Induction Hypotheses

Utrecht University

¢ \\Ve have two rules which define the natural numbers:

(Nat-1)
0 Nat
r Nat
(s) Nat N2

Therefore, if we can show that a property P

holds for 0 and
holds for (s n) if (under the assumption that) it holds for n

we have shown that it holds for any n in Nat

Induction over natural numbers is just a special case of rule induction!

Utrecht University

e |n other words: we have

(Nat-1)
0 Nat
r Nat
(s) Nat (Nat-2)
e [f we can prove that the following rules hold: 5 (P-1)
0
x P (-2
(sx) P

e then we know that for every Nat there has to be a proof of the form

(Nat-1) (P-1 Dby replacing every
which can be rewritten to Nat judgement with
(Nat-2) P-2) a P judgement
Nat
R z P

e therefore any object Nat In has to also be in P

Utrecht University

e Same for M: c v (M-1)

M M
o e (M-2)
s180 M
M
- (M-3)
(s) M
e |[f we can show that these rules hold: (P-1)
e P
P P
T (P-9)
180 P
s P
(P-3)
(s) P

e Then s M implies s P because we can rewrite any proof for s M
In one for s P

% Utrecht University

e Show that: if s M is inferable by rules (M-1)-(M-8), then s has the same number of
opening and closing parenthesis

* let open(s) be the number of left parens and close(s) the number of right parens

open(e) =0 (open-1)
open((s) = 1+ open(s) (open-2)
open() s) = open(s) (open-3)
open(sis2) = open(si) + open(ss) (open-4)
close(e) =0 (close-1)
close((s) = close(s) (close-2)
close()s) = 1+ close(s) (close-3)
close(s152) = close(s1) + close(ss) (close-4)

e Show that if s M holds then open(s) = close(s)

Utrecht University

e Proof outline: we have to consider three cases (one case per rule). If s M was
inferred using

» Rule (M-1), then s=¢

» Rule (M-2), then s = s1s2, for some s; M and ss M

» Rule (M-3), then s = (s;) for some s; M

e That is, we need to show that these three rules/lemmata hold:

open (€) = close (¢) (lemma 1) v (M-1)
M M
S1 $2 (M-2)
s1so M
M
(M)

() M i
Utrecht University

e Proof outline: we have to consider three cases (one case per rule). If s M was
inferred using

» Rule (M-1), then s=¢

» Rule (M-2), then s = s1s2, for some s; M and ss M

» Rule (M-3), then s = (s;) for some s; M

e That is, we need to show that these three rules/lemmata hold:

open (€) = close (¢) (lemma 1) v (M-1)
open (s;) = close (s1) open (s2) = close (s2) ssM_ s: M (M-2)
open (s:52) = close (5152) (lemma 2) s1s2 M
M
(M)

() M i
Utrecht University

e Proof outline: we have to consider three cases (one case per rule). If s M was
inferred using

>

>

>

RuU
Ru

Ru

e (M-1), t
e (M-2), t
e (M-9), 1

hen s = €
Nen s = s;89, for some s; M and so M

nen s = (s;) forsome s; M

e That is, we need to show that these three rules/lemmata hold:

open (€) = close (¢) (lemma 1) v (M-1)
open (s;) = close (s1) open (s2) = close (s2) ssM_ s: M (M-2)
open (s:52) = close (5152) (lemma 2) s1s2 M
s M
open (s) = close (s) (M-3)

open ((s)) = close ((s)) (lemma 3)

() M i
Utrecht University

Subproof for Rule (1):
[G] open (€) = close (€)

open(e) =0 (open-1)

open((s) = 1+ open(s) (open-2)
open() s) = open(s) (open-3)
open(sis,) = open(sy) + open(sz) (open-4)
close(e) = (close-1)
close((s) = close(s) (close-2)
close()s) = 1+ close(s) (close-3)
close(s1s2) = close(s1) + close(ss) (close-4)
e M (M-1)
st M so M
(M-2)
s1s2 M
s M
(M-3)
(s) M

Utrecht University

e Subproof case for Rule (2):
[IH1] open (s1) = close (s1)
[IH2] open (s2) = close (s2)

[G] open (s152) = close (s152)

open(e) =0 (open-1)

open((s) = 1+ open(s) (open-2)
open() s) = open(s) (open-3)
open(sis,) = open(sy) + open(sz) (open-4)
close(e) = (close-1)
close((s) = close(s) (close-2)
close()s) = 1+ close(s) (close-3)
close(s1s2) = close(s1) + close(ss) (close-4)
e M (M-1)
st M so M
(M-2)
s1s2 M
s M
(M-3)
(s) M

Utrecht University

e Subproof case for Rule (3):
[IH] open (s) = close (s)

[G] open ((s)) = close ((s))

open(e) =0 (open-1)

open((s) = 1+ open(s) (open-2)
open() s) = open(s) (open-3)
open(sis,) = open(sy) + open(sz) (open-4)
close(e) = (close-1)
close((s) = close(s) (close-2)
close()s) = 1+ close(s) (close-3)
close(s155) = close(sy) + close(ss) (close-4)
e M (M-1)
st M so M
(M-2)
s1s2 M
s M
(M-3)
(s) M

% Utrecht University

e Consider the following grammar (in BNF)
Expr — Int| (Expr) | Expr+ Expr| Expr * Expr
where Int is the set of integer constants

e |t corresponds to the following inference rules

1 € Int

E-1
1 Expr (E-1)
e Expr
E-2
(e) Expr (E-2)
e, Fxpr e, Expr (E-3)
e1 + ey Expr
e1 Expr e Expr (B-4)

e, * ey Expr

Utrecht University

e Infer1 + 2 x 3 Expr

1+2*x3 FExpr 1+2%3 Expr

e [he grammar is ambiguous!

» we usually don’t want ambiguous grammars, as they lead to ambiguous interpretations of
the program

¢ \We need alternative inference rules to reflect the fact that
e addition and multiplication are left associative

1 *x 2 %3 = (1 x2) x3

e multiplication has a higher precedence than addition

Utrecht University

e Alternative inference rules
What should ¢1 and e2 look like so that we can split at that + symbol?

, can be any kind
can be any kind of arith. expr

of arith. expr but not a sum!

N‘\?}ez + 624{/

SExpr PFExpr

er SExpr e PExpr

er + e2 SExpr

Utrecht University

e Alternative inference rules

can be any kind only number
of arith. expr or
but not a sum parenthesised
e * ey expression

PFExpr FEzxpr

e; PExpr e» FExpr

e; * eo PExpr

Utrecht University

1+ 2%3x%9

Utrecht University

e Alternative inference rules

e1 SExpr e; PExpr (S-1)
e1 +ey SExpr
LT ez SETp » SExpr corresponds to Exprin the
e I;Ewpr (S-2) previous definition
e SExpr
» FExpr and PExpr are auxiliary properties
to define SExpr
e, PExpr e; FExpr (P-1)
e1 * ey PExpr - FFExpr ¢ PExpr CSExpr
e FExpr (P-2) » Simultaneous inductive definition: SExpr
e PExpr depends on PExpr, PExpr on FExpr,
which in turn depends on SExpr
e SExpr (F-1)
(e) FExpr
n € Int (F—2)
n FExpr

Utrecht University

¢ [he principle of rule induction extends to
simultaneous inductive definitions

e [0 prove a property P of atermin SExpr, we
need to show that

» it holds for all integer values
» if it holds for two terms e; and ey, it holds for

e; + éo

» If It holds for two terms e; and ey, It holds for

1 * e

» if it holds for a term e, it holds for (e)

e1. SExpr e, PExpr
e1 + e SEmpr

e PExpr

e SExpr

e1 PExpr e; FExpr

e1 * ey PExpr

e FExpr

e PExpr

e SExpr
(e) FExpr

n € Int
n FExpr

Utrecht University

M is also ambiguous: Example: derive () M
M-1
e M () 0
e M
M M (M-3)
S1 S2 (M—Q) (&) M
s182 M
M
8 (M-3) (M-1)——(M-1)
() M e M e M
(M-2)
ce M
(M-35)
empty string problem (e = eec =ecce =) (e &) M

Utrecht University

e How can we solve this?

- we regard the expressions as a
possibly empty list L of nested

parenthesised expressions N _ (L-1)
€ L
e L corresponds to M in the s1 N so L
previous definition, N is just an s159 L (L-2)
auxiliary construct
e L is defined in terms on N, and (N 1)
vice versa (s) N

e this is another example of a
simultaneous inductive definition

Utrecht University

N is a subset of L, as

s N

S
L (OO O 7

OO

IS derivable

(0O

Utrecht University

e do both set of rules really define the same language” Is L = M?

e We need to show that they are indeed the same, we need to show that s M if
and only if (iff) s L:

(1) s Mimplies s L (l.e., M < L)

(2) s Limplies s M (l.e., L € M)

I (L-1) e M (M-1)
s1 N so L ss M so M
} M-2
P~ (L-2) Y (M-2)
s L
(N-1) s M :
(s) N () M (M-3)

Utrecht University

e \We can use rule induction

e Part (1) of proof: show that s M implies s L (M < L)
e ONne case per inference rule of M
(1) s=¢€¢ (base case)
(2) 5= 5150 for some s; M and s; M (induction step 1)

(3) s = (s1) for some string s; M (induction step 2)

oI (L-1) e M (M-1)
S1 N S92 L st M so M
L-2 M-2
S1592 L () S182 M ()
s L Vb
(N -1) s M M- # Utrecht University
(s) N) M (M-3) v

e Proof that s Mimplies s L (M < L)

e Subproof1:s=¢

Proof
Al e M

Gl e L

Begin
1.{L-1} ¢ L

End

Utrecht University

e Proof that s Mimplies s L (M < L)

e Subproof 3 : s = (s;) for some string s; M

Proof
|H] sy L
G| (sp) L
Begin

(.H.) s; L

(N-1) (L-1)

(L-,Q) (s;) N &L
(s1) L

End

Utrecht University

e Proof that s Mimplies s L (M < L)

e Subproof 2 : s = s152 for some strings s; M and s; M

Proof

IH-1] s; L

||— -2] S2 L

G s1 82 L doesn’t work - we can't be sure
éégin that s; Ls ac’cu.aLLg tn NI

2777

L2) stN s2 L (H-2)

$180 L

Utrecht University

¢ [0 summarise, we have
- sy L (LH.-1)
- s2 L (l.H.-2), and need to show that this implies

» S182 L
¢ unfortunately, we can’t directly derive it from any of the rules we have

® can we again use induction to prove the lemma:
S1 L S92 L

S182 L

I (L-1) e M (M-1)
N L
S1 S9 (L-Q) S1 M S92 M (M—Q)
S189 L $152
s L
N-1 s M W
(s) N () (s) M (M-3) # Utrecht University

e How can we prove this by rule induction?

81L 82L

$180 L

e [here are two options - we can either prove it if by induction over s; or sg

e As it was s; which caused the problem, it indicates that we should do
Induction over s;

Utrecht University

e Prove:

forall s L and all ¢t L :

e Subproof1:s=¢

Proof
Al t L

G| et L

Begin
1.{A, et =t} et L

End

(s) N

s L

t L

st L

KN

Utrecht University

e Prove: . (L-I)

s L t L e L
forall s L and all ¢t L :
st L S1 N S9 L
' S1S592 L (L-Z)
e Subproof 2 : s = s1s2, with sy N and sz L
s L N-1
Proof (s) N (-)
Al]l s; N
A2] so L
_ so L t’ L
IH] forall ¢’ L : b L
s18o L t" L A2 ' (A3)
Glforall 'L : —— : A2 _s2 L B
s18ot” L A1) s, N sot’ I (IH)
Begin s180t” L (L-2)
Subproof
A3] t" L
G| s1s2t” L

N
‘-E;:S N % Utrecht University

KN

e Summary so far:
- we showed that if s M, then s L by rule induction over s

» base case was easy
S1 L S92 L

» for the inductive step, we first had to prove the lemma 7
S152

using case distinction over s;

- we still need to show that if s L, then s M

Utrecht University

