
Revision:
Judgements, Inference Rules & Proofs

Gabriele Keller
Tom Smeding

Concepts of Programming Language Design 2024/2025

• Formalisation of programming languages (PLs)

★ to reason about PLs, we need a language in which we can describe PLs and
their properties

★ a language to talk about other languages is called a meta-language

★ to be sufficiently precise, we need a formal language

• This is what we need to be able to describe:

★ language grammar syntax

★ scoping rules static semantics

★ type systems static semantics

★ execution behaviour dynamic semantics

 Fortunately, we can use natural deduction/inference rules for all of these tasks!!

Our Toolbox

Definition: Judgement

A judgement is a statement asserting a certain property for an object

Judgements and Inference Rules

Examples

- 3+4*5 is a valid arithmetic expression

- the string “madam” is a palindrome

- 0.21312423 is a floating point value

- the number 3 is even

A formal notation: we denote that property A holds for object s by writing s A

formally, s is an element of a universe U (a set) where

- A ⊆ U and s ∈ A

Definition: Inference Rules

Given judgements J, J1, J2 up to Jn, an inference rule is an implication of the form:

If J1, J2, up to Jn are inferable, then J is inferable

Inference Rules

J1, J2 ... Jn

J
Terminology:

- We call J1 to Jn the premises of the rule and

- J its conclusion

- if a rule has no premise, it is called an axiom

A formal notation: we denote an inference rule formally by writing

• Using inference rules to define the set of natural numbers

- to assert that 5 is a natural number, we write

• Inference rules to define this judgement

- “0 is a natural number” (axiom)

- ”if x is a natural number, then (s x) is a natural number (s for successor)

★this set of rules characterises the set of syntactic objects

Nat = {0, (s 0), (s(s 0)), (s(s(s 0))),}

x Nat
(s x) Nat

Examples

5 Nat

0 Nat

• Using inference rules to define the set of even and odd natural numbers

★n Even and n Odd

• Inference rules used to define the judgement

★“0 is even” (axiom)

★“if n is even, then s(s(n)) is even”

★“if n is even, then (s n) is odd”

Examples

0 Even

n Even
(s(s n)) Even

n Even

(s n) Odd

• A judgement states that a certain property holds for a specific object (which
corresponds to a set membership)

• More generally, judgements express a relationship between a number of objects
(n-ary relations)

• Examples:

- 4 divides 16 (binary relationship)

- ail is a substring of mail (binary)

- 3 plus 5 equals 8 (tertiary)

• Infix notation to denote binary relations

- 4 div 16

- ail substr mail

Judgements revisited

Definition: A binary relation R is

symmetric, iff for all a, b, aRb implies bRa

reflexive, iff for all a, aRa holds

transitive, iff for all a, b, c, aRb and bRc implies aRc

Relations

Definition:

A relation which is symmetric, reflexive, and transitive is called an equivalence
relation.

Relations

• Example

- how can we define the ’less than’ relation on natural numbers inductively?

- < ⊆ Nat ⨉ Nat

(s n) < (s m)

n < m

0 < (s n)

n Nat

• What we covered:

- definitions of sets/properties using judgements

- using inference rules to describe the elements of a set

• What we want to do

- how can we formally show that an object is an element of such a set?

‣ a natural number is odd or even

‣ a program is valid in a particular language

• Natural deduction: to show that s A holds

1) find a rule whose conclusion matches s A

2) show that the precondition of the rule holds

3) continue until all preconditions have been reduced to axioms

Proofs by natural deduction

• Example: show that (s(s(s(s 0)))) is even

• Let’s start informally

- (s(s(s(s 0)))) is even if (s(s 0)) is even

- (s(s 0)) is even if 0 is even

- 0 is even

• Note: the preconditions of the rules we use become proof obligations

Natural deduction	

Derivation Tree

 (s(s(s(s 0)))) Even

0 Even
n Even

(s(s n)) Even
(Even-1) (Even-2)

 (s(s 0)) Even
(Even-2)

0 Even
(Even-2)

(Even-1)

n

Or as regular proof, listing proof assumptions, goals, and steps:

0 Even
n Even

(s(s n)) Even
(Even-1) (Even-2)

Proof:

[G] (s(s(s(s 0)))) Even

Begin

1. {Even-1, Even-2} (s(s 0)) Even

2. {1, Even-2} (s(s(s(s 0))))) Even

End

• Example: take the set of properly matched parentheses

M = {ε, (), (()), ()(), (()()),()()(),...}

• Informally

‣ the empty string (denoted by ε) is in M

‣ if s1 and s2 are in M, so is s1s2 (concatenation)

‣ if s is in M, so is (s)

• Definition as BNF (Backus–Naur form)

‣ M ::= ε | MM | (M)

Grammars as inference rules

Definition by inference rules

(1) the empty string is in M

(2) if s1 and s2 are in M, so is s1s2
(concatenation)

(3) if s is in M, so is (s)

Grammars as inference rules

ε M

s1 M s2 M
s1s2 M

s M
(s) M

(M-3)

(M-1)

(M-2)

Side note: colour scheme

• Show that () (()) M

Natural deduction

() (()) M

() M (()) M

() M
ε M

ε M

{ {
 s1 s2

• But what happens if we start with Rule (3) instead?

• if we’re running into a `dead end’ trying to prove a judgement, it doesn’t mean
that this judgement is not derivable

ε M

s1 M s2 M
s1s2 M

s M
(s) M

(M-3)

(M-1)

(M-2)
(M-2)

(M-3)

(M-3)

(M-3)

(M-1)

(M-1)

• What happens if we add the following rule to the system?

Admissible and derivable rules

‣ this rule is derivable wrt to the original three - it’s the same as applying Rule (3)
twice - adding it to the rules would not add any new objects to M

And this?

‣ this rule is admissible wrt to the original three rules, because it doesn’t add
any new objects to M, but it is not derivable (not just a combination of the
original rules)

And this?

‣ not admissible: we could derive)(M using this rule!

s M
((s)) M

()s M
s M

(s) M
s M

• What we covered so far:

- definitions of sets/properties using judgements

- using inference rules to describe the elements of a set

- how to formally show that a particular object is an element of such a set using
natural deduction

- derivable, admissible and inadmissible rules

• Today

- proofs by rule (natural) induction

- simultaneous inductive definitions

Overview

We call a set of inference rules an inductive definition of a judgement if the rules
are exhaustive; i.e,

- if a judgement holds, it can be inferred from the rules, and

- if a judgement can be inferred, it holds

• Example: Rules (1)-(3) of M are an inductive definition of the set of perfectly
matched parentheses:

‣ for every string s of properly matched parenthesis, we can infer s M

‣ whenever we can infer s M, s really is a string of properly matched
parentheses

• If we want to show that a property holds for every element of an inductively
defined set, how can we do this?

Rule Induction

Rule Induction (structural induction)

ε M

s1 M s2 M
s1s2 M

s M
(s) M

(M-3)

(M-1)

(M-2)

Definition: Rule Induction

Given a set of rules R, we can prove inductively that a property P holds for all
judgements that can be inferred from R:

For each rule of the form

show that
if P holds for the objects in J1 to Jn, then P holds for the object in J.

Rule Induction

J1, J2, ... ,Jn

J

Base cases and induction steps:
- axioms form the base case of the induction
- all other rules form the induction steps
- the Ji become the Induction Hypotheses

• We have two rules which define the natural numbers:

Rule Induction over Natural Numbers

 Therefore, if we can show that a property P

holds for 0 and

holds for (s n) if (under the assumption that) it holds for n

we have shown that it holds for any n in Nat

Induction over natural numbers is just a special case of rule induction!

x Nat
(s x) Nat

0 Nat

Rule Induction over Natural Numbers

• In other words: we have

• If we can prove that the following rules hold:

• then we know that for every x Nat there has to be a proof of the form

0 P

x P
(s x) P

(P-1)

(P-2)

x Nat

⠇

x P
(P-2)

(P-1)

⠇which can be rewritten to

• therefore any object Nat in has to also be in P

by replacing every
Nat judgement with
a P judgement

x Nat
(s x) Nat

0 Nat

• Same for M:

Rule Induction over M

• If we can show that these rules hold:

• Then s M implies s P because we can rewrite any proof for s M
in one for s P

ε M

s1 M s2 M
s1s2 M

s M
(s) M

(M-3)

(M-1)

(M-2)

ε P

s1 P s2 P
s1s2 P

s P
(s) P

(P-3)

(P-2)

(P-1)

• Show that: if s M is inferable by rules (M-1)-(M-3), then s has the same number of
opening and closing parenthesis

• let open(s) be the number of left parens and close(s) the number of right parens

Rule induction example

• Show that if s M holds then open(s) = close(s)

• Proof outline: we have to consider three cases (one case per rule). If s M was
inferred using
‣ Rule (M-1), then s = ε
‣ Rule (M-2), then s = s1s2, for some s1 M and s2 M
‣ Rule (M-3), then s = (s1) for some s1 M

Rule induction example

• That is, we need to show that these three rules/lemmata hold:

ε M

s1 M s2 M
s1s2 M

s M
(s) M

(M-3)

(M-1)

(M-2)

open (ε) = close (ε) (lemma 1)

• Proof outline: we have to consider three cases (one case per rule). If s M was
inferred using
‣ Rule (M-1), then s = ε
‣ Rule (M-2), then s = s1s2, for some s1 M and s2 M
‣ Rule (M-3), then s = (s1) for some s1 M

Rule induction example

open (ε) = close (ε)

• That is, we need to show that these three rules/lemmata hold:

ε M

s1 M s2 M
s1s2 M

s M
(s) M

(M-3)

(M-1)

(M-2)

(lemma 1)

open (s1) = close (s1) open (s2) = close (s2)
open (s1s2) = close (s1s2) (lemma 2)

• Proof outline: we have to consider three cases (one case per rule). If s M was
inferred using
‣ Rule (M-1), then s = ε
‣ Rule (M-2), then s = s1s2, for some s1 M and s2 M
‣ Rule (M-3), then s = (s1) for some s1 M

Rule induction example

open (ε) = close (ε)

open (s1) = close (s1) open (s2) = close (s2)
open (s1s2) = close (s1s2)

• That is, we need to show that these three rules/lemmata hold:

ε M

s1 M s2 M
s1s2 M

s M
(s) M

(M-3)

(M-1)

(M-2)

(lemma 1)

(lemma 2)

open (s) = close (s)
open ((s)) = close ((s)) (lemma 3)

Subproof for Rule (1):

[G] open (ε) = close (ε)

Proof

ε M

s1 M s2 M
s1s2 M

s M
(s) M

(M-3)

(M-1)

(M-2)

• Subproof case for Rule (2):

[IH1] open (s1) = close (s1)

[IH2] open (s2) = close (s2)

[G] open (s1s2) = close (s1s2)

Proof

ε M

s1 M s2 M
s1s2 M

s M
(s) M

(M-3)

(M-1)

(M-2)

• Subproof case for Rule (3):

[IH] open (s) = close (s)

[G] open ((s)) = close ((s))

Proof

ε M

s1 M s2 M
s1s2 M

s M
(s) M

(M-3)

(M-1)

(M-2)

• Consider the following grammar (in BNF)

 Expr → Int | (Expr) | Expr + Expr | Expr * Expr

where Int is the set of integer constants

• It corresponds to the following inference rules

Simultaneous Inductive Definitions

• Infer 1 + 2 * 3 Expr

Simultaneous Inductive Definitions

 1 Expr 2*3 Expr
1+2*3 Expr

 1 Int 2 Expr 3 Expr
 2 Int 3 Int

 1+2 Expr 3 Expr
 3 Int 1 Expr 2 Expr

 1 Int 2 Int

1+2*3 Expr

• The grammar is ambiguous!

‣ we usually don’t want ambiguous grammars, as they lead to ambiguous interpretations of
the program

• We need alternative inference rules to reflect the fact that

• addition and multiplication are left associative

1 * 2 * 3 = (1 * 2) * 3

• multiplication has a higher precedence than addition

• Alternative inference rules

Simultaneous Inductive Definitions

e1 + e2

can be any kind
of arith. expr

can be any kind
of arith. expr

but not a sum!

SExpr PExpr

 e1 SExpr e2 PExpr

e1 + e2 SExpr

What should e1 and e2 look like so that we can split at that + symbol?

• Alternative inference rules

Simultaneous Inductive Definitions

can be any kind
of arith. expr

but not a sum

only number
or

parenthesised
expression

 e1 PExpr e2 FExpr

e1 * e2 PExpr

e1 * e2

PExpr FExpr

Simultaneous Inductive Definitions

1+ 2*3

1+ 2 + 3

SExpr

PExpr

2*3

1+ 2*3*9

3*9

2*(3+9)

FExpr

(3+9)
3

9

• Alternative inference rules

Simultaneous Inductive Definitions

‣ SExpr corresponds to Expr in the
previous definition

‣ FExpr and PExpr are auxiliary properties
to define SExpr

- FExpr ⊆ PExpr ⊆SExpr

‣ Simultaneous inductive definition: SExpr
depends on PExpr, PExpr on FExpr,
which in turn depends on SExpr

• The principle of rule induction extends to
simultaneous inductive definitions

• To prove a property P of a term in SExpr, we
need to show that
‣ it holds for all integer values
‣ if it holds for two terms e1 and e2, it holds for

e1 + e2

‣ if it holds for two terms e1 and e2, it holds for
e1 * e2

‣ if it holds for a term e, it holds for (e)

Rule Induction and Simultaneous Inductive Definitions

Example: derive () MM is also ambiguous:

Ambiguous Grammars

ε ε M
(ε ε) M

ε M ε M

(M-3)

(M-2)

(M-1) (M-1)

ε M
(ε) M

(M-3)

(M-1)ε M

s1 M s2 M
s1s2 M

s M
(s) M

(M-3)

(M-1)

(M-2)

empty string problem (ε = ε ε = ε ε ε =)

• How can we solve this?

- we regard the expressions as a
possibly empty list L of nested
parenthesised expressions N

Ambiguous Grammars

• L corresponds to M in the
previous definition, N is just an
auxiliary construct

• L is defined in terms on N, and
vice versa

• this is another example of a
simultaneous inductive definition

Ambiguous Grammars

L

N

ε

()

(())

(()())

()()

(())()

(())()(())

N is a subset of L, as

s N
s L

is derivable

• do both set of rules really define the same language? Is L = M?

• we need to show that they are indeed the same, we need to show that s M if
and only if (iff) s L:

(1) s M implies s L (i.e., M ⊆ L)

(2) s L implies s M (i.e., L ⊆ M)

Ambiguous Grammars

• we can use rule induction

• Part (1) of proof: show that s M implies s L (M ⊆ L)

• one case per inference rule of M

(1) s = ε (base case)

(2) s = s1s2 for some s1 M and s2 M (induction step 1)

(3) s = (s1) for some string s1 M (induction step 2)

Proving L = M

• Subproof 1 : s = ε

Proof
[A] ε M

[G] ε L

Begin
1. {L-1} ε L

End

Proving L = M

• Proof that s M implies s L (M ⊆ L)

• Subproof 3 : s = (s1) for some string s1 M

Proof
[IH] s1 L

[G] (s1) L

Begin

End

Proving L = M

• Proof that s M implies s L (M ⊆ L)

(s1) L

(s1) N ε L
(L-2)

s1 L
(N-1)

(I.H.)
(L-1)

• Subproof 2 : s = s1s2 for some strings s1 M and s2 M

Proof
[IH-1] s1 L
[IH-2] s2 L
[G] s1 s2 L
Begin

Proving L = M

• Proof that s M implies s L (M ⊆ L)

 s1s2 L
s1 N s2 L(L-2)

????
(IH-2)

doesn’t work - we can’t be sure
that s1 is actually in N!

• To summarise, we have

- s1 L (I.H.-1)

- s2 L (I.H.-2), and need to show that this implies

‣ s1s2 L

Proving L = M

 s1 L s2 L
 s1s2 L

• unfortunately, we can’t directly derive it from any of the rules we have

• can we again use induction to prove the lemma:

Proving L = M

• How can we prove this by rule induction?

• There are two options - we can either prove it if by induction over s1 or s2

• As it was s1 which caused the problem, it indicates that we should do
induction over s1

 s1 L s2 L
 s1s2 L

• Prove:
s L t L

st L
for all s L and all t L :

• Subproof 1 : s = ε

Proof
[A] t L

[G] εt L

Begin
1. {A, εt = t} εt L

End

• Prove:
s L t L

st L

s1s2t’ L
s1 N s2t’ L

(L-2)
(A1)

s2 L t’L
(IH)

(A2) (A3)

for all s L and all t L :

• Subproof 2 : s = s1s2 , with s1 N and s2 L

Proof
[A1] s1 N

[A2] s2 L

[IH] for all t’ L :

[G] for all t’ L :

Begin
Subproof
[A3] t’ L

[G] s1s2t’ L

s2 L t’ L
s2t’ L

s1s2 L t’ L
s1s2t’ L

• Summary so far:
- we showed that if s M, then s L by rule induction over s

‣ base case was easy
‣ for the inductive step, we first had to prove the lemma

using case distinction over s1

- we still need to show that if s L, then s M

Proving L = M

 s1 L s2 L
 s1s2 L

