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• Formalisation of programming languages (PLs) 

★ to reason about PLs, we need a language in which we can describe PLs and 
their properties 

★ a language to talk about other languages is called a meta-language 

★ to be sufficiently precise, we need a formal language 

• This is what we need to be able to describe: 

★ language grammar syntax 

★ scoping rules  static semantics 

★ type systems  static semantics 

★ execution behaviour dynamic semantics 

 Fortunately, we can use natural deduction/inference rules for all of these tasks!!

Our Toolbox



Definition: Judgement 

A judgement is a statement asserting a certain property for an object

Judgements and Inference Rules

Examples 

- 3+4*5 is a valid arithmetic expression 

- the string “madam” is a palindrome 

- 0.21312423 is a floating point value 

- the number 3 is even

A formal notation: we denote that property A holds for object s by writing s A 

formally, s is an element of a universe U (a set) where 

- A ⊆ U and s ∈ A 



Definition: Inference Rules 

Given judgements J, J1, J2 up to Jn, an inference rule is an implication of the form: 

If J1, J2, up to Jn are inferable, then J is inferable 

Inference Rules

J1, J2  ...  Jn

J
Terminology:  

- We call J1 to Jn the premises of the rule and 

- J its conclusion 

- if a rule has no premise, it is called an axiom

A formal notation: we denote an inference rule formally by writing



• Using inference rules to define the set of natural numbers

- to assert that 5 is a natural number, we write           

• Inference rules to define this judgement

- “0 is a natural number” (axiom) 

- ”if x is a natural number, then (s x) is a natural number (s for successor) 

★this set of rules characterises the set of syntactic objects 

Nat = {0, (s 0), (s(s 0)), (s(s(s 0))), ....}

x Nat
(s x) Nat

Examples

   
5 Nat

   
0 Nat



• Using inference rules to define the set of even and odd natural numbers

★n Even and n Odd 

• Inference rules used to define the judgement

★“0 is even” (axiom) 

★“if n is even, then s(s(n)) is even” 

★“if n is even, then (s n) is odd”

Examples

0 Even

n Even
(s(s n)) Even

n Even

(s n) Odd



• A judgement states that a certain property holds for a specific object (which 
corresponds to a set membership) 

• More generally, judgements express a relationship between a number of objects 
(n-ary relations) 

• Examples: 

- 4 divides 16 (binary relationship) 

- ail is a substring of mail (binary) 

- 3 plus 5 equals 8 (tertiary) 

• Infix notation to denote binary relations 

-  4 div 16 

- ail substr mail

Judgements revisited



Definition: A binary relation R is 

symmetric, iff for all a, b,  aRb implies bRa 

reflexive, iff for all a,  aRa holds 

transitive, iff for all a, b, c,   aRb and bRc implies aRc 

Relations

Definition:  

A relation which is symmetric, reflexive, and transitive is called an equivalence 
relation.



Relations

• Example 

- how can we define the ’less than’ relation on natural numbers inductively? 

- <   ⊆    Nat ⨉ Nat

(s n) <  (s m)

n <  m

0 <  (s n)

n Nat   



• What we covered: 

- definitions of sets/properties using judgements 

- using inference rules to describe the elements of a set 

• What we want to do 

- how can we formally show that an object is an element of such a set? 

‣ a natural number is odd or even 

‣ a program is valid in a particular language 

• Natural deduction: to show that s A holds 

1) find a rule whose conclusion matches s A 

2) show that the precondition of the rule holds 

3) continue until all preconditions have been reduced to axioms

Proofs by natural deduction



• Example: show that  (s(s(s(s 0)))) is even 

• Let’s start informally 

- (s(s(s(s 0)))) is even if (s(s 0)) is even 

- (s(s 0)) is even if 0 is even 

- 0 is even 

• Note: the preconditions of the rules we use become proof obligations

Natural deduction	



Derivation Tree

 (s(s(s(s 0))))  Even

0 Even
n Even

(s(s n)) Even
(Even-1) (Even-2)

 (s(s 0))      Even
(Even-2)

0 Even
(Even-2)

(Even-1)

n



Or as regular proof, listing proof assumptions, goals, and steps:

0 Even
n Even

(s(s n)) Even
(Even-1) (Even-2)

Proof: 

[G]  (s(s(s(s 0)))) Even  

Begin 

1. {Even-1, Even-2} (s(s 0)) Even 

2. {1, Even-2} (s(s(s(s 0))))) Even 

End



• Example: take the set of properly matched parentheses 

M = {ε, (), (()), ()(), (()()),()()(),...} 

• Informally 

‣ the empty string (denoted by ε) is in M 

‣ if s1 and s2 are in M, so is s1s2 (concatenation) 

‣ if s is in M, so is (s) 

• Definition as BNF (Backus–Naur form)  

‣ M ::=  ε | MM  | (M)

Grammars as inference rules



Definition by inference rules 

(1) the empty string is in M  

(2) if s1 and s2 are in M, so is s1s2 
(concatenation) 

(3) if s is in M, so is (s)

Grammars as inference rules

ε   M

s1 M    s2 M
s1s2 M

s M    
(s) M

(M-3)

(M-1)

(M-2)



Side note: colour scheme



• Show that () (()) M  

Natural deduction

() (()) M

() M (())  M

() M
ε  M

  
ε M

  
   

{ {
    s1    s2

• But what happens if we start with Rule (3) instead? 

• if we’re running into a `dead end’ trying to prove a judgement, it doesn’t mean 
that this judgement is not derivable

ε   M

s1 M    s2 M
s1s2 M

s M    
(s) M

(M-3)

(M-1)

(M-2)
(M-2)

(M-3)

(M-3)

(M-3)

(M-1)

(M-1)



• What happens if we add the following rule to the system?

Admissible and derivable rules

‣ this rule is derivable wrt to the original three - it’s the same as applying Rule (3) 
twice - adding it to the rules would not add any new objects to M

And this?

‣ this rule is admissible wrt to the original three rules,  because it doesn’t add 
any new objects to M, but it is not derivable (not just a combination of the 
original rules)

And this?

‣ not admissible: we could derive )( M  using this rule!

s M    
((s)) M

()s M    
s M

(s) M    
s M



• What we covered so far:


- definitions of sets/properties using judgements 

- using inference rules to describe the elements of a set 

- how to formally show that a particular object is an element of such a set using 
natural deduction 

- derivable, admissible and inadmissible rules 

• Today


- proofs by rule (natural) induction 

- simultaneous inductive definitions

Overview



We call a set of inference rules an inductive definition of a judgement if the rules 
are exhaustive; i.e, 

- if a judgement holds, it can be inferred from the rules, and 

- if a judgement can be inferred, it holds 

• Example: Rules (1)-(3) of M are an inductive definition of the set of perfectly 
matched parentheses: 

‣ for every string s of properly matched parenthesis, we can infer s M 

‣ whenever we can infer s M, s really is a string of properly matched 
parentheses 

• If we want to show that a property holds for every element of an inductively 
defined set, how can we do this?

Rule Induction



Rule Induction (structural induction)

ε   M

s1 M    s2 M
s1s2 M

s M    
(s) M

(M-3)

(M-1)

(M-2)



Definition: Rule Induction 

Given a set of rules R, we can prove inductively that a property P holds for all 
judgements that can be inferred from R: 

For each rule of the form 

show that 
if P holds for the objects in  J1 to Jn, then P holds  for the object in J.

Rule Induction

J1, J2,  ...  ,Jn

J

Base cases and induction steps: 
- axioms form the base case of the induction 
- all other rules form the induction steps  
- the Ji become the Induction Hypotheses 



• We have two rules which define the natural numbers:

Rule Induction over Natural Numbers

 Therefore, if we can show that a property P  

holds for 0 and 

holds for (s n)  if (under the assumption that) it holds for n  

we have shown that it holds for any n in Nat 

Induction over natural numbers is just a special case of rule induction!

x Nat
(s x) Nat

   
0 Nat



Rule Induction over Natural Numbers

• In other words: we have

• If we can prove that the following rules hold:

• then we know that for every x Nat  there has to be a proof of the form 

0 P

x P
(s x)  P

(P-1)

(P-2)

x Nat 

⠇

x P 
(P-2)

(P-1)

⠇which can be rewritten to

• therefore any object Nat  in has to also be in P

by replacing every 
Nat judgement with 
a P judgement

x Nat
(s x) Nat

   
0 Nat



• Same for M:

Rule Induction over M

• If we can show that these rules hold:

• Then s M implies s P  because we can rewrite any proof for s M 
in one for s P 

ε   M

s1 M    s2 M
s1s2 M

s M    
(s) M

(M-3)

(M-1)

(M-2)

ε   P

s1 P    s2 P
s1s2 P

s P    
(s) P

(P-3)

(P-2)

(P-1)



• Show that: if s M is inferable by rules (M-1)-(M-3), then s has the same number of 
opening and closing parenthesis 

• let open(s) be the number of left parens and  close(s) the number of right parens

Rule induction example

• Show that if s M holds then open(s) = close(s)



• Proof outline: we have to consider three cases (one case per rule). If s M was 
inferred using 
‣ Rule (M-1), then s = ε 
‣ Rule (M-2), then s = s1s2, for some s1 M and s2 M 
‣ Rule (M-3), then s = (s1) for some s1 M

Rule induction example

• That is, we need to show that these three rules/lemmata hold:

ε   M

s1 M    s2 M
s1s2 M

s M    
(s) M

(M-3)

(M-1)

(M-2)

open (ε) = close (ε)    (lemma 1)



• Proof outline: we have to consider three cases (one case per rule). If s M was 
inferred using 
‣ Rule (M-1), then s = ε 
‣ Rule (M-2), then s = s1s2, for some s1 M and s2 M 
‣ Rule (M-3), then s = (s1) for some s1 M

Rule induction example

open (ε) = close (ε)    

• That is, we need to show that these three rules/lemmata hold:

ε   M

s1 M    s2 M
s1s2 M

s M    
(s) M

(M-3)

(M-1)

(M-2)

(lemma 1)

open (s1) = close (s1)     open (s2) = close (s2)  
open (s1s2) = close (s1s2) (lemma 2)



• Proof outline: we have to consider three cases (one case per rule). If s M was 
inferred using 
‣ Rule (M-1), then s = ε 
‣ Rule (M-2), then s = s1s2, for some s1 M and s2 M 
‣ Rule (M-3), then s = (s1) for some s1 M

Rule induction example

open (ε) = close (ε)    

open (s1) = close (s1)     open (s2) = close (s2)  
open (s1s2) = close (s1s2)

• That is, we need to show that these three rules/lemmata hold:

ε   M

s1 M    s2 M
s1s2 M

s M    
(s) M

(M-3)

(M-1)

(M-2)

(lemma 1)

(lemma 2)

open (s) = close (s)   
open ((s)) = close ((s)) (lemma 3)



Subproof for Rule (1): 

[G] open (ε) = close (ε)

Proof

ε   M

s1 M    s2 M
s1s2 M

s M    
(s) M

(M-3)

(M-1)

(M-2)



• Subproof case for Rule (2):  

[IH1] open (s1) = close (s1) 

[IH2] open (s2) = close (s2) 

[G]  open (s1s2) = close (s1s2)

Proof

ε   M

s1 M    s2 M
s1s2 M

s M    
(s) M

(M-3)

(M-1)

(M-2)



• Subproof case for Rule (3):  

[IH] open (s) = close (s) 

[G]  open ((s)) = close ((s))

Proof

ε   M

s1 M    s2 M
s1s2 M

s M    
(s) M

(M-3)

(M-1)

(M-2)



• Consider the following grammar (in BNF) 

            Expr → Int | ( Expr ) | Expr + Expr | Expr * Expr 

where Int is the set of integer constants 

• It corresponds to the following inference rules

Simultaneous Inductive Definitions



• Infer 1 + 2 * 3 Expr

Simultaneous Inductive Definitions

 1 Expr                   2*3 Expr
1+2*3  Expr

 1 Int  2 Expr     3 Expr
 2 Int  3 Int

 1+2  Expr                   3 Expr
 3 Int 1 Expr     2 Expr

 1 Int  2 Int

1+2*3  Expr

• The grammar is ambiguous! 

‣ we usually don’t want ambiguous grammars, as they lead to ambiguous interpretations of 
the program 

• We need alternative inference rules to reflect the fact that 

• addition and multiplication are left associative 

1 * 2 * 3  = (1 * 2) * 3 

• multiplication has a higher precedence than addition



• Alternative inference rules

Simultaneous Inductive Definitions

e1       +     e2

can be any kind  
of arith. expr

can be any kind  
of arith. expr  

but not a sum! 

SExpr PExpr

 e1 SExpr     e2 PExpr

e1 + e2  SExpr

What should e1 and e2 look like  so that we can split at that + symbol?



• Alternative inference rules

Simultaneous Inductive Definitions

can be any kind  
of arith. expr 

but not a sum

only number 
or  

parenthesised 
expression 

 e1 PExpr     e2 FExpr

e1 * e2  PExpr

e1       *    e2

PExpr FExpr



Simultaneous Inductive Definitions

1+ 2*3 

1+ 2 + 3 

SExpr

PExpr

2*3 

1+ 2*3*9 

3*9 

2*(3+9) 

FExpr

(3+9) 
3 

9 



• Alternative inference rules

Simultaneous Inductive Definitions

‣ SExpr corresponds to Expr in the 
previous definition 

‣ FExpr and PExpr are auxiliary properties 
to define SExpr 

-  FExpr ⊆ PExpr ⊆SExpr 

‣ Simultaneous inductive definition: SExpr 
depends on PExpr, PExpr on FExpr, 
which in turn depends on SExpr 



• The principle of rule induction extends to 
simultaneous inductive definitions 

• To prove a property P of  a term in SExpr, we 
need to show that  
‣ it holds for all integer values 
‣ if it holds for two terms e1 and e2, it holds for 

e1 + e2   

‣ if it holds for two terms e1 and e2, it holds for 
e1 * e2   

‣ if it holds for a term e, it holds for  (e)

Rule Induction and Simultaneous Inductive Definitions



Example: derive () MM is also ambiguous: 

Ambiguous Grammars

ε ε  M    
(ε ε) M

ε M           ε M

(M-3)

(M-2)

(M-1) (M-1)

ε M    
(ε) M

(M-3)

(M-1)ε   M

s1 M    s2 M
s1s2 M

s M    
(s) M

(M-3)

(M-1)

(M-2)

empty string problem (ε = ε ε = ε ε ε = .....)



• How can we solve this? 

- we regard the expressions as a 
possibly empty list L of nested 
parenthesised expressions N

Ambiguous Grammars

• L corresponds to M in the 
previous definition, N is just an 
auxiliary construct 

• L is defined in terms on N, and 
vice versa 

• this is another example of a 
simultaneous inductive definition



Ambiguous Grammars

L

N

ε

()

(())

(()())

()()

(())()

(())()(())

N is a subset of L, as 

s N 
s L 

is derivable



• do both set of rules really define the same language? Is L = M? 

• we need to show that they are indeed the same, we need to show that s M  if 
and only if (iff) s L: 

(1) s M implies s L (i.e., M ⊆ L) 

(2) s L implies s M (i.e., L ⊆ M) 

Ambiguous Grammars



• we can use rule induction 

• Part (1) of proof: show that s M implies s L (M ⊆ L) 

• one case per inference rule of M 

(1) s = ε     (base case) 

(2) s = s1s2 for some s1 M and s2 M  (induction step 1) 

(3) s = (s1) for some string s1 M  (induction step 2)

Proving L = M



• Subproof 1 : s = ε   

Proof 
[A]  ε M 

[G]  ε L 

Begin 
1. {L-1} ε L 

End

Proving L = M

• Proof  that s M implies s L (M ⊆ L)



• Subproof 3 : s = (s1) for some string s1 M  

Proof 
[IH] s1 L 

[G]  (s1) L 

Begin 

End

Proving L = M

• Proof  that s M implies s L (M ⊆ L)

(s1) L

(s1) N    ε L 
(L-2)

s1 L   
(N-1)

(I.H.)
(L-1)



• Subproof 2 : s = s1s2 for some strings s1 M  and  s2 M 

Proof 
[IH-1]   s1 L 
[IH-2]   s2 L 
[G]       s1 s2 L 
Begin 

Proving L = M

• Proof  that s M implies s L (M ⊆ L)

 s1s2 L
s1 N      s2 L(L-2)

????   
(IH-2)

doesn’t work - we can’t be sure 
that s1 is actually in N!



• To summarise, we have 

-  s1 L  (I.H.-1) 

-  s2 L  (I.H.-2), and need to show that this implies 

‣  s1s2 L

Proving L = M

 s1 L    s2 L
 s1s2 L

• unfortunately, we can’t directly derive it from any of the rules we have 

• can we again use induction to prove the lemma:



Proving L = M

• How can we prove this by rule induction?

• There are two options - we can either prove it if by induction over s1 or s2 

• As it was s1 which caused the problem, it indicates that we should do 
induction over s1

 s1 L    s2 L
 s1s2 L



• Prove:
s L      t L

st L
for all s L and all t L : 

• Subproof 1 : s = ε   

Proof 
[A]  t L 

[G]  εt L 

Begin 
1. {A, εt = t} εt L 

End



• Prove:
s L      t L

st L

s1s2t’  L
s1 N             s2t’ L

(L-2)
(A1)

s2 L    t’L
(IH)

(A2) (A3)

for all s L and all t L : 

• Subproof 2 : s = s1s2 , with s1 N and s2 L 

Proof 
[A1]  s1 N 

[A2]  s2 L 

[IH] for all t’ L : 

[G] for all t’ L : 

Begin 
Subproof 
[A3] t’ L 

[G] s1s2t’ L 

s2 L      t’ L
s2t’ L

s1s2 L      t’ L
s1s2t’ L



• Summary so far: 
- we showed that if s M, then s L by rule induction over s 

‣ base case was easy 
‣ for the inductive step, we first had to prove the lemma  

using case distinction over s1 

-  we still need to show that if s L, then s M 

Proving L = M

 s1 L    s2 L
 s1s2 L


