

Revision: Judgements, Inference Rules & Proofs

Concepts of Programming Language Design 2024/2025

Gabriele Keller Tom Smeding

- Formalisation of programming languages (PLs)
 - to reason about PLs, we need a language in which we can describe PLs and their properties
 - ★ a language to talk about other languages is called a meta-language
 - ★ to be sufficiently precise, we need a formal language
- This is what we need to be able to describe:
 - * language grammar syntax
 - * scoping rules static semantics
 - * type systems static semantics
 - * execution behaviour dynamic semantics

Fortunately, we can use natural deduction/inference rules for all of these tasks!!

Definition: Judgement

A judgement is a statement asserting a certain property for an object

Examples

- 3+4*5 is a valid arithmetic expression
- the string "madam" is a palindrome
- 0.21312423 is a floating point value
- the number 3 is even

A formal notation: we denote that property A holds for object s by writing s A

formally, s is an element of a universe U (a set) where

- $A \subseteq U$ and $s \in A$

Definition: Inference Rules

Given judgements J, J_1 , J_2 up to J_n , an inference rule is an implication of the form:

If J_1 , J_2 , up to J_n are inferable, then J is inferable

A formal notation: we denote an inference rule formally by writing

 $J_1, J_2 \dots J_n$ J

Terminology:

- We call J_1 to J_n the premises of the rule and
- *J* its conclusion
- if a rule has no premise, it is called an axiom

Examples

- Using inference rules to define the set of natural numbers
 - to assert that 5 is a natural number, we write
- Inference rules to define this judgement
 - "0 is a natural number" (axiom)
 - "if x is a natural number, then (s x) is a natural number (s for successor)

★this set of rules characterises the set of syntactic objects

 $Nat = \{0, (s 0), (s(s 0)), (s(s(s 0))),\}$

$$\frac{x \, Nat}{(s \, x) \, Nat} \, (Nat-2)$$

0 **Nat** (Nat-1)

5 *Nat*

Examples

• Using inference rules to define the set of even and odd natural numbers

$\star n \; Even$ and $n \; Odd$

- Inference rules used to define the judgement
 - ★ "0 is even" (axiom)

0 *Even*

\star "if *n* is even, then **s(s(***n***))** is even"

 $\frac{n \, Even}{(s(s \, n)) \, Even}$

\star "if *n* is even, then (**s** *n*) is odd"

(s*n*) *Odd*

n Even

Judgements revisited

- A judgement states that a certain property holds for a specific object (which corresponds to a set membership)
- More generally, judgements express a relationship between a number of objects (*n*-ary relations)
- Examples:
 - 4 divides 16 (binary relationship)
 - ail *is a substring of* mail (binary)
 - 3 *plus* 5 *equals* 8 (tertiary)
- Infix notation to denote binary relations
 - 4 *div* 16
 - ail *substr* mail

Relations

Definition: A binary relation **R** is

symmetric, iff for all a, b, $a\mathbf{R}b$ implies $b\mathbf{R}a$

reflexive, iff for all a, $a\mathbf{R}a$ holds

transitive, iff for all a, b, c, $a\mathbf{R}b$ and $b\mathbf{R}c$ implies $a\mathbf{R}c$

Definition:

A relation which is symmetric, reflexive, and transitive is called an **equivalence** relation.

Relations

• Example

- how can we define the 'less than' relation on natural numbers inductively?
- $< \subseteq Nat \times Nat$

- What we covered:
 - definitions of sets/properties using judgements
 - using inference rules to describe the elements of a set
- What we want to do
 - how can we formally show that an object is an element of such a set?
 - ▶ a natural number is odd or even
 - ▶ a program is valid in a particular language
- Natural deduction: to show that $s \mathbf{A}$ holds
 - **1)** find a rule whose conclusion matches s A
 - 2) show that the precondition of the rule holds
 - 3) continue until all preconditions have been reduced to axioms

- Example: show that (s(s(s(s 0)))) is even
- Let's start informally
 - (s(s(s(s 0)))) is even if (s(s 0)) is even
 - (s(s 0)) is even if 0 is even
 - 0 is even
- Note: the preconditions of the rules we use become proof obligations

Or as regular proof, listing proof assumptions, goals, and steps:

 $\frac{n Even}{(s(s n)) Even} (Even-2)$

Proof:

[G] (s(s(s(s 0)))) **Even**

Begin

- 1. {*Even-1*, *Even-2*} (s(s 0)) *Even*
- 2. $\{1, Even-2\}$ (s(s(s(s 0)))) **Even**

End

Grammars as inference rules

• Example: take the set of properly matched parentheses

- Informally
 - the empty string (denoted by ε) is in M
 - if s_1 and s_2 are in **M**, so is s_1s_2 (concatenation)
 - if s is in M, so is (s)
- Definition as BNF (Backus–Naur form)

• $M ::= \varepsilon \mid MM \mid (M)$

Definition by inference rules

(1) the empty string is in ${old M}$

(2) if s_1 and s_2 are in M, so is s_1s_2 (concatenation)

(3) if s is in M, so is (s)

$$\varepsilon M$$
 (M-1)

$$\frac{s_1 \mathbf{M} \quad s_2 \mathbf{M}}{s_1 s_2 \mathbf{M}} \quad (M-2)$$

$$\frac{s M}{(s) M} \qquad (M-3)$$

Side note: colour scheme

 \bullet Show that () (()) \boldsymbol{M}

• But what happens if we start with Rule (3) instead?

 if we're running into a `dead end' trying to prove a judgement, it doesn't mean that this judgement is not derivable
 Utrecht University • What happens if we add the following rule to the system?

s **M** ((s)) **M**

 this rule is derivable wrt to the original three - it's the same as applying Rule (3) twice - adding it to the rules would not add any new objects to M

And this? (

 this rule is admissible wrt to the original three rules, because it doesn't add any new objects to *M*, but it is not derivable (not just a combination of the original rules)

And this?

(s) **M** s **M**

▶ not admissible: we could derive) (*M* using this rule!

- What we covered so far:
 - definitions of sets/properties using judgements
 - using inference rules to describe the elements of a set
 - how to formally show that a particular object is an element of such a set using natural deduction
 - derivable, admissible and inadmissible rules

Today

- proofs by rule (natural) induction
- simultaneous inductive definitions

Rule Induction

We call a set of inference rules an inductive definition of a judgement if the rules are exhaustive; i.e,

- if a judgement holds, it can be inferred from the rules, and
- if a judgement can be inferred, it holds

- Example: Rules (1)-(3) of *M* are an inductive definition of the set of perfectly matched parentheses:
 - for every string s of properly matched parenthesis, we can infer s M
 - whenever we can infer s M, s really is a string of properly matched parentheses
- If we want to show that a property holds for every element of an inductively defined set, how can we do this?

Rule Induction (structural induction)

$$\overline{\varepsilon M}$$
 (M-1)

$$\frac{s_1 \ \boldsymbol{M}}{s_1 s_2 \ \boldsymbol{M}} (M-2)$$

$$\frac{s \mathbf{M}}{(s) \mathbf{M}} \quad (M-3)$$

Rule Induction

Definition: Rule Induction

Given a set of rules R, we can prove inductively that a property P holds for all judgements that can be inferred from R:

 J_1, J_2, \dots, J_n

J

For each rule of the form

show that

if P holds for the objects in J_1 to J_n , then P holds for the object in J.

Base cases and induction steps:

- axioms form the base case of the induction
- all other rules form the induction steps
- the J_i become the Induction Hypotheses

Rule Induction over Natural Numbers

• We have two rules which define the natural numbers:

$$\frac{1}{(s x) Nat} (Nat-2)$$

Therefore, if we can show that a property \boldsymbol{P}

holds for 0 and

holds for (s n) if (under the assumption that) it holds for n

we have shown that it holds for any *n* in *Nat*

Induction over natural numbers is just a special case of rule induction!

Rule Induction over Natural Numbers

• In other words: we have

$$\frac{x \, Nat}{(s \, x) \, Nat} \, (Nat-2)$$

• If we can prove that the following rules hold:

$$\frac{x P}{(s x) P} \quad (P-2)$$

then we know that for every x Nat there has to be a proof of the form

therefore any object Nat in has to also be in P

Rule Induction over M

• Same for *M*:

$$\overline{\varepsilon M}$$
 (M-1)

$$\frac{s_1 \boldsymbol{M} \quad s_2 \boldsymbol{M}}{s_1 s_2 \boldsymbol{M}} \quad (M-2)$$

$$\frac{s M}{(s) M} \quad (M-3)$$

• If we can show that these rules hold:

$$\varepsilon P$$
 (P-1)

$$\frac{s_1 \mathbf{P} \quad s_2 \mathbf{P}}{s_1 s_2 \mathbf{P}} \quad (P-2)$$

$$\frac{s \mathbf{P}}{(s) \mathbf{P}} \quad (P-3)$$

Then *s M* implies *s P* because we can rewrite any proof for *s M* in one for *s P*

- Show that: if *s M* is inferable by rules (*M*-1)-(*M*-3), then *s* has the same number of opening and closing parenthesis
- let open(s) be the number of left parens and close(s) the number of right parens

$open(\epsilon)=0$	(open-1)
open(s) = 1 + open(s)	(open-2)
open()s) = open(s)	(open-3)
$open(s_1s_2) = open(s_1) + open(s_2)$	(open-4)

 $\begin{aligned} close(\epsilon) &= 0 & (close-1) \\ close((s) &= close(s) & (close-2) \\ close()s) &= 1 + close(s) & (close-3) \\ close(s_1s_2) &= close(s_1) + close(s_2) & (close-4) \end{aligned}$

• Show that if $s \mathbf{M}$ holds then open(s) = close(s)

- Proof outline: we have to consider three cases (one case per rule). If s M was
 inferred using
 - Rule (*M*-1), then $s = \varepsilon$
 - Rule (M-2), then $s = s_1 s_2$, for some $s_1 M$ and $s_2 M$
 - Rule (M-3), then $s = (s_1)$ for some $s_1 M$
- That is, we need to show that these three rules/lemmata hold:

$$open \ \overline{(\varepsilon)} = close \ (\varepsilon) \qquad (lemma \ 1) \qquad \qquad \overline{\varepsilon \ M} \qquad (M-1)$$

$$\frac{s_1 \ \boldsymbol{M} \quad s_2 \ \boldsymbol{M}}{s_1 s_2 \ \boldsymbol{M}} \ (M-2)$$

- Proof outline: we have to consider three cases (one case per rule). If s M was
 inferred using
 - Rule (*M*-1), then $s = \varepsilon$
 - Rule (M-2), then $s = s_1 s_2$, for some $s_1 M$ and $s_2 M$
 - Rule (M-3), then $s = (s_1)$ for some $s_1 M$
- That is, we need to show that these three rules/lemmata hold:

$$open \ (\varepsilon) = close \ (\varepsilon) \qquad (lemma \ 1) \qquad \qquad \boxed{\varepsilon \ M} \qquad (M-1)$$

$$open (s_1) = \underline{close (s_1)} \quad open (s_2) = close (s_2) \qquad \underline{s_1 \ M} \quad \underline{s_2 \ M} \\ open (s_1s_2) = close (s_1s_2) \quad (lemma \ 2) \qquad \underline{s_1s_2 \ M}$$

- Proof outline: we have to consider three cases (one case per rule). If s M was
 inferred using
 - Rule (*M*-1), then $s = \varepsilon$
 - Rule (M-2), then $s = s_1 s_2$, for some $s_1 M$ and $s_2 M$
 - Rule (M-3), then $s = (s_1)$ for some $s_1 M$
- That is, we need to show that these three rules/lemmata hold:

$$open (s_1) = \underline{close (s_1)} \quad open (s_2) = close (s_2) \qquad \underline{s_1 \ M} \quad \underline{s_2 \ M} \\ open (s_1s_2) = close (s_1s_2) \quad (lemma \ 2) \qquad \underline{s_1s_2 \ M}$$

$$open(s) = close(s)$$

 $open((s)) = close((s))$ (lemma 3)

Subproof for Rule (1):

[G] open $(\varepsilon) = close(\varepsilon)$

$$open(\epsilon) = 0$$
 (open-1)

$$open((s) = 1 + open(s)$$
 (open-2)
 $open()s) = open(s)$ (open-3)

$$open(s_1) = open(s_1)$$
 (open s)
 $open(s_1s_2) = open(s_1) + open(s_2)$ (open 4)

$$close(\epsilon) = 0$$
 (close-1)

$$close((s) = close(s)$$
 (close-2)
 $close()s) = 1 + close(s)$ (close-3)

$$close(s_1s_2) = close(s_1) + close(s_2)$$
 (close-4)

$$\overline{\boldsymbol{\varepsilon} \ \boldsymbol{M}} \quad (M-1)$$

$$\frac{s_1 \ \boldsymbol{M} \quad s_2 \ \boldsymbol{M}}{s_1 s_2 \ \boldsymbol{M}} \ (M-2)$$

$$\frac{s \mathbf{M}}{(s) \mathbf{M}} \quad (M-3)$$

Subproof case for Rule (2):
[IH1] open (s₁) = close (s₁)
[IH2] open (s₂) = close (s₂)
[G] open (s₁s₂) = close (s₁s₂)

- $open(\epsilon) = 0$ (open-1) open((s) = 1 + open(s) (open-2)
- open((s) = 1 + open(s) open((s) = open(s) (open-3) (open-3)

$$open(s_1s_2) = open(s_1) + open(s_2)$$
 (open-4)

 $close(\epsilon) = 0$ (close-1)

$$close((s) = close(s) \qquad (close-2)$$

$$close()s) = 1 + close(s) \qquad (close-3)$$

$$close(s_1s_2) = close(s_1) + close(s_2) \qquad (close-4)$$

$$\overline{\varepsilon M}$$
 (M-1)

$$\frac{s_1 \boldsymbol{M} \quad s_2 \boldsymbol{M}}{s_1 s_2 \boldsymbol{M}} \quad (M-2)$$

$$\frac{s \mathbf{M}}{(s) \mathbf{M}} \quad (M-3)$$

• Subproof case for Rule (3):

 $[\mathsf{IH}] open (s) = close (s)$

$$[G] open((s)) = close((s))$$

$$open(\epsilon) = 0$$
 (open-1)

$$open((s) = 1 + open(s)$$
 (open-2)
 $open()s) = open(s)$ (open-3)

$$open(s_1s_2) = open(s_1) + open(s_2)$$
 (open-4)

$$close(\epsilon) = 0$$
 (close-1)

$$\begin{aligned} close((s) = close(s) & (close-2) \\ close()s) = 1 + close(s) & (close-3) \\ close(s_1s_2) = close(s_1) + close(s_2) & (close-4) \end{aligned}$$

$$\overline{\varepsilon M}$$
 (M-1)

$$\frac{s_1 \boldsymbol{M} \quad s_2 \boldsymbol{M}}{s_1 s_2 \boldsymbol{M}} (M-2)$$

$$\frac{s \mathbf{M}}{(s) \mathbf{M}} \quad (M-3)$$

• Consider the following grammar (in BNF)

 $Expr \rightarrow Int \mid (Expr) \mid Expr + Expr \mid Expr * Expr$

where *Int* is the set of integer constants

• It corresponds to the following inference rules

$\frac{i \in Int}{i \; Expr}$	(<i>E</i> -1)
e Expr (e) Expr	(<i>E</i> -2)
$\frac{e_1 \ \boldsymbol{E} \boldsymbol{x} \boldsymbol{p} \boldsymbol{r}}{e_1 \ \boldsymbol{+} \ e_2 \ \boldsymbol{E} \boldsymbol{x} \boldsymbol{p} \boldsymbol{r}}$	(E-3)
$\frac{e_1 \ \boldsymbol{E} \boldsymbol{x} \boldsymbol{p} \boldsymbol{r}}{e_1 \ \boldsymbol{*} \ e_2 \ \boldsymbol{E} \boldsymbol{x} \boldsymbol{p} \boldsymbol{r}}$	(<i>E</i> -4)

• Infer 1 + 2 * 3 *Expr*

1+2*3 **Expr**

1+2*3 **Expr**

- The grammar is ambiguous!
 - we usually don't want ambiguous grammars, as they lead to ambiguous interpretations of the program
- We need alternative inference rules to reflect the fact that
 - addition and multiplication are left associative

1 * 2 * 3 = (1 * 2) * 3

• multiplication has a higher precedence than addition

• Alternative inference rules

What should e_1 and e_2 look like so that we can split at that + symbol?

 $e_1 SExpr$ $e_2 PExpr$

 $e_1 + e_2$ **SExpr**

Simultaneous Inductive Definitions

• Alternative inference rules

$$e_1 PExpr$$
 $e_2 FExpr$

 $e_1 * e_2$ **PExpr**

Simultaneous Inductive Definitions

Simultaneous Inductive Definitions

• Alternative inference rules

$$\frac{e_{1} SExpr e_{2} PExpr}{e_{1} + e_{2} SExpr} \qquad (S-1)$$

$$\frac{e}{e_{1} PExpr} SExpr}{e SExpr} \qquad (S-2)$$

$$\frac{e_{1} PExpr e_{2} FExpr}{e_{1} * e_{2} PExpr} \qquad (P-1)$$

$$\frac{e}{e} FExpr}{e PExpr} \qquad (P-2)$$

$$\frac{e SExpr}{(e) FExpr} \qquad (F-1)$$

$$\frac{n \in Int}{n FExpr} \qquad (F-2)$$

- SExpr corresponds to Expr in the previous definition
- FExpr and PExpr are auxiliary properties to define SExpr
 - $FExpr \subseteq PExpr \subseteq SExpr$
- Simultaneous inductive definition: SExpr depends on PExpr, PExpr on FExpr, which in turn depends on SExpr

Rule Induction and Simultaneous Inductive Definitions

- The principle of rule induction extends to simultaneous inductive definitions
- To prove a property P of a term in SExpr, we need to show that
 - ▶ it holds for all integer values
 - if it holds for two terms e_1 and e_2 , it holds for $e_1 + e_2$
 - if it holds for two terms e₁ and e₂, it holds for
 e₁ * e₂
 - if it holds for a term e, it holds for (e)

$e_1 \; \boldsymbol{SExpr}$	$e_2 \ \boldsymbol{PExpr}$				
$e_1 + e_2$	SExpr				
e PExpr					
e SI	Expr				

 $\frac{e_1 \ \boldsymbol{PExpr} \quad e_2 \ \boldsymbol{FExpr}}{e_1 \ \boldsymbol{*} \ e_2 \ \boldsymbol{PExpr}}$

 $\frac{e \ FExpr}{e \ PExpr}$

e SExpr (e) FExpr

 $\frac{n \in Int}{n \ FExpr}$

M is also ambiguous:

$$\begin{array}{c}
\hline \varepsilon \ \mathbf{M} & (M-1) \\
\hline s_1 \ \mathbf{M} & s_2 \ \mathbf{M} \\
\hline s_1 s_2 \ \mathbf{M} & (M-2) \\
\hline s_1 s_2 \ \mathbf{M} & (M-3) \\
\hline (s) \ \mathbf{M} & (M-3)
\end{array}$$

empty string problem ($\epsilon = \epsilon \ \epsilon = \epsilon \ \epsilon = \ldots$)

Example: derive () \boldsymbol{M}

Ambiguous Grammars

- How can we solve this?
 - we regard the expressions as a possibly empty list *L* of nested parenthesised expressions *N*
- *L* corresponds to *M* in the previous definition, *N* is just an auxiliary construct
- *L* is defined in terms on *N*, and vice versa
- this is another example of a simultaneous inductive definition

$$\frac{\overline{\epsilon L}}{\epsilon L} \qquad (L-1)$$

$$\frac{s_1 N s_2 L}{s_1 s_2 L} \qquad (L-2)$$

$$\frac{s L}{(s) N} \qquad (N-1)$$

Ambiguous Grammars

N is a subset of *L*, as

s N s L

is derivable

Ambiguous Grammars

- do both set of rules really define the same language? Is L = M?
- we need to show that they are indeed the same, we need to show that s M if and only if (iff) s L:
 - (1) $s \mathbf{M}$ implies $s \mathbf{L}$ (i.e., $\mathbf{M} \subseteq \mathbf{L}$)
 - (2) $s \mathbf{L}$ implies $s \mathbf{M}$ (i.e., $\mathbf{L} \subseteq \mathbf{M}$)

$$\overline{\epsilon L} \quad (L-1) \qquad \overline{\epsilon M} \quad (M-1)$$

$$\frac{s_1 N \quad s_2 L}{s_1 s_2 L} \quad (L-2) \qquad \frac{s_1 M \quad s_2 M}{s_1 s_2 M} \quad (M-2)$$

$$\frac{s L}{(s) N} \quad (N-1) \qquad \frac{s M}{(s) M} \quad (M-3)$$

- we can use rule induction
- Part (1) of proof: show that s M implies $s L (M \subseteq L)$
- ullet one case per inference rule of M
 - (1) $s = \varepsilon$ (base case)
 - (2) $s = s_1 s_2$ for some $s_1 M$ and $s_2 M$ (induction step 1)
 - (3) $s = (s_1)$ for some string $s_1 M$ (induction step 2)

$$\overline{\epsilon \ \boldsymbol{L}} \qquad (L-1) \qquad \qquad \varepsilon \ \boldsymbol{M} \qquad (M-1)$$

$$\frac{s_1 \mathbf{N} s_2 \mathbf{L}}{s_1 s_2 \mathbf{L}} (L-2) \qquad \frac{s_1 \mathbf{M} s_2 \mathbf{M}}{s_1 s_2 \mathbf{M}} (M-2)$$

$$\frac{s L}{(s) N} \quad (N-1) \qquad \qquad \frac{s M}{(s) M} \qquad (M-3)$$

- Proof that $s \mathbf{M}$ implies $s \mathbf{L} (\mathbf{M} \subseteq \mathbf{L})$
- Subproof 1 : $s = \varepsilon$

[Α] ε **Μ**

[G] ε **L**

Begin

1. {L−1} ε **L**

End

- Proof that s M implies $s L (M \subseteq L)$
- Subproof 3 : $s = (s_1)$ for some string $s_1 M$

 $[|\mathsf{H}] s_1 \mathbf{L}$

[G] (*s*₁) *L*

Begin

(I.H.)
$$s_1 L$$

 $(N-1)$ $(s_1) N \varepsilon L$ $(L-1)$
 $(L-2)$ $(s_1) L$

End

• Proof that $s \mathbf{M}$ implies $s \mathbf{L} (\mathbf{M} \subseteq \mathbf{L})$

• Subproof 2 : $s = s_1 s_2$ for some strings $s_1 M$ and $s_2 M$

Proof [IH-1] $s_1 L$ [IH-2] $s_2 L$ [G] $s_1 s_2 L$ Begin

doesn't work - we can't be sure that s_1 is actually in N!

 $(L-2) \quad \frac{s_1 \ \boldsymbol{N}}{s_1 s_2 \ \boldsymbol{L}} \quad (H-2)$

Proving L = M

- To summarise, we have
 - *s*₁ *L* (I.H.-1)
 - $s_2 L$ (I.H.-2), and need to show that this implies

$\blacktriangleright s_1s_2 L$

- unfortunately, we can't directly derive it from any of the rules we have
- can we again use induction to prove the lemma:

$$\frac{s_1 \boldsymbol{L}}{s_1 s_2 \boldsymbol{L}}$$

$$\overline{\epsilon L} \quad (L-1) \qquad \overline{\epsilon M} \quad (M-1)$$

$$\frac{s_1 N \quad s_2 L}{s_1 s_2 L} \quad (L-2) \qquad \frac{s_1 M \quad s_2 M}{s_1 s_2 M} \quad (M-2)$$

$$\frac{s L}{(s) N} \quad (N-1) \qquad \frac{s M}{(s) M} \quad (M-3)$$

• How can we prove this by rule induction?

$$\begin{array}{c|c} s_1 \ \boldsymbol{L} & s_2 \ \boldsymbol{L} \\ \hline s_1 s_2 \ \boldsymbol{L} \end{array}$$

- There are two options we can either prove it if by induction over s_1 or s_2
- As it was s_1 which caused the problem, it indicates that we should do induction over s_1

• Prove:

for all $s \mathbf{L}$ and all $t \mathbf{L}$: $\frac{s \mathbf{L} + t \mathbf{L}}{st \mathbf{L}}$

• Subproof 1 : $s = \varepsilon$

Proof

[A] *t* **L**

[G] $\varepsilon t \mathbf{L}$

Begin

1. {A, $\varepsilon t = t$ } $\varepsilon t L$

End

$$\overline{\epsilon L} \qquad (L-1)$$

$$\frac{s_1 N \quad s_2 L}{s_1 s_2 L} \quad (L-2)$$

$$\frac{s L}{(s) N} \qquad (N-1)$$

• Prove:	+ T .	s L t L				$\overline{\epsilon \ L}$	(L-1)
		st L			$\underline{s_1}$	$egin{array}{c c} m{N} & s_2 & m{J} \\ s_1 s_2 & m{L} \end{array}$	L (<i>L-2</i>)
• Supproof 2 : $s = s_1$	s_2 , WILLI s_1 IN	and $s_2 \mathbf{L}$				$\frac{s L}{(s) N}$	(N-1)
[A1] $s_1 N$							
[A2] <i>s</i> ₂ <i>L</i>							
[IH] for all $t' \mathbf{L}$:	$\frac{s_2 \boldsymbol{L}}{s_2 t' \boldsymbol{L}}$						
[G] for all $t' \mathbf{L}$:	$rac{s_1s_2 \ oldsymbol{L}}{s_1s_2t' \ oldsymbol{L}}$		(A1)	(A2) 	\$2 L	$\frac{t'L}{pt'L}$	(A3) (IH)
Begin					2t' L	<u> </u>	-2)
Subproof							
[A3] <i>t</i> ' L							
$[G] \ s_1 s_2 t' \ \boldsymbol{L}$							

- Summary so far:
 - we showed that if s M, then s L by rule induction over s
 - base case was easy
 - for the inductive step, we first had to prove the lemma using case distinction over s_1
- $\begin{array}{c|c} s_1 \ \boldsymbol{L} & s_2 \ \boldsymbol{L} \\ \hline s_1 s_2 \ \boldsymbol{L} \end{array}$

- we still need to show that if $s \ L$, then $s \ M$

