

Concepts of Programming Language Design Semantics

Gabriele Keller Tom Smeding

So far

- Judgements and inference rules
- Rule induction
- Inference rules
- Grammars specified using inference rules
- Judgements and relations
- First- and higher-order abstract syntax
- Substitution
- Next up
 - Static semantics
 - Dynamic semantics

- What is static semantics?
 - properties of a program apparent without executing the program
 - can be checked by a compiler (or external tool such as lint)
 - depends on the programming language (e.g. scoping)
- Example of static properties
 - does the program contain undefined/out of scope occurrences of variables?
 - is the program type correct?
 - does it contain dead code, usage of uninitialised variables?
- Arithmetic example language
 - there is only one type (*Int*), so not much to check
 - but we can check scoping (are all variables defined?)

Scoping

- Inference rules to check scoping
 - judgement *e ok*: *e* contains no free variables
 - how can we define this using inference rules?

• Recall the rules to check if expressions are syntactically correct:

$i \in Int$	$t_1 expr$ $t_2 expr$	$t_1 \ \boldsymbol{expr} t_2 \ \boldsymbol{expr}$
(Num i) expr	(Plus t ₁ t ₂) expr	(Times $t_1 t_2$) $expr$

 $t_1 expr$ $t_2 expr$ (Let t_1 (*id*. t_2)) expr

id expr

Scoping

- Inference rules to check scoping
 - judgement *e* ok: *e* contains no free variables
 - we need to remember which variables are defined in the current context
 - key idea: we use an *environment* to keep track of all bound variables
 - for now, the environment is just a set of variable names
 - composite judgement:
 - ▶ { x_1 , x_2 ,..., x_n } ⊢ e ok
 - assuming the variables x_1 to x_n are bound, $e \ ok$ holds

 $\{y\} \vdash (\text{Let } y (x. \text{ Plus } x y)) ok$

{} \vdash (Plus (Num 1) (Num 3)) ok

 $\{x, y, z\} \vdash (\text{Let } y (x. \text{ Plus } x y)) ok$

Scoping

• Inference rules:

 $\Gamma \vdash (\text{Num } i) ok$

$$\Gamma \vdash t_1 \ ok \quad \Gamma \vdash t_2 \ ok \quad \Gamma \vdash t_1 \ ok \quad \Gamma \vdash t_2 \ t_2$$

$$\frac{\Gamma \vdash t_1 \ ok}{\Gamma \vdash (\text{Let} \ t_1 \ (x.t_2)) \ ok} \qquad \qquad x \in \Gamma$$

$$\frac{x \in \Gamma}{\Gamma \vdash x \ ok}$$

• Example: Let (Num 5) (x.(Plus x x))

Let (Num 5) (x. (Plus x y))

Dynamic Semantics

- What is dynamic semantics?
 - specifies the program execution process
 - may include side effects and computed values
 - there are various kinds of dynamic semantics
 - denotational
 - ▶ operational
 - ▶ axiomatic
- Denotational Semantics:
 - Idea: syntactic expressions are mapped to mathematical objects, e.g.,
 - mapping to lambda-calculus
 - ▶ fix-point semantics over complete partial orders (CPOs)

Semantics

- Axiomatic Semantics
 - Idea: statements over programs in the form of axioms describing logic program properties
 - Hoare's calculus

 $\{P\} s_1\{Q\} \{Q\} s_2\{R\}$ Hoare triple ${P[x:=E]} x:=E {P}$ $\{P\} s_1; s_2\{R\}$ *{P} prgrm {Q}* sequence of statements P: precondition rule for assignment Q: postcondítion - Dijkstra's Weakest Precondition (WP) calculus wp(x:=E, R) = R[x:=E] $wp(s_1;s_2, R) = wp(s_1, wp(s_2, R))$ wp(prqm, Q) = PWhat is the weakest precondition P such that after sequence of statements rule for assignment executing prgm, @holds?

- Traditionally used for program verification

- Operational Semantics
 - Idea: defines semantics in terms of an abstract machine
 - 'imaginary' machine with a set of basic instructions and possible states
 - map program constructs to machine instructions, state transitions
 - There are two main forms:
 - small step semantics or structural operational semantics (SOS): step by step execution of a program
 - big step, natural or evaluation semantics: specifies result of execution of complete programs/subprograms

Utrecht University

- we will be looking at both, small step as well as big step semantics

Structural /Single Step Operational Semantics

Definition: Transition Systems

A *transition system* specifies the step-by-step evaluation of a program and consists of

- ▶ a set of states *S* of an abstract computing device
- \blacktriangleright a set of initial states $I \subseteq S$
- ▶ a set of final state $F \subseteq S$, and
- A relation → ⊆ S×S describing the effect of a single evaluation step on state s

Back to our arithmetic expression example:

• what should evaluation look like?

Let (Num 5) (x. (Plus x x))

• States:

▶ the set of all well-formed arithmetic expressions

 $\boldsymbol{S} = \{ e \mid \exists \Gamma . \Gamma \vdash \boldsymbol{e} \boldsymbol{ok} \}$

- Initial States:
 - ▶ the set of all closed, well formed arithmetic expressions:

 $I = \{ e \mid \{ \} \vdash e \ ok \}$

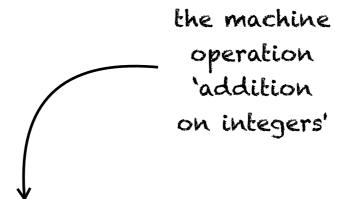
- Final States:
 - values

 $F = \{ (\text{Num } i) \mid i \text{ Int} \}$

- Operations of the abstract machines:
 - addition & multiplication
 - ▶ substitution

Evaluation Strategy

- We need to fix an evaluation strategy
- Example: addition



(Plus (Num n) (Num m)) \mapsto

(Plus (Num n) e_2) \mapsto

(Plus $e_1 e_2$) \mapsto

multiplication can be defined similarly

• Evaluating let-expressions

let $x = e_1$ in e_2 (Let e_1 ($x.e_2$))

Eager or strict evaluation:

- \blacktriangleright evaluate the right-hand side of binding e_1 to value v
- \blacktriangleright substitute the value v for the bound variable x, and
- evaluate the body $e_2[x := v]$

Lazy evaluation

- substitute expression e_1 for the bound variable x, and
- evaluate the body $e_2[x := e_1]$

Eager or strict evaluation:

(Let (Num n) ($x.e_2$)) $\mapsto e_2[x := Num n]$

 $(\text{Let } e_1 (x.e_2)) \mapsto (\text{Let } e_1' (x.e_2))$

Lazy evaluation

(Let e_1 (x. e_2)) $\mapsto e_2$ [x := e_1]

Small Step Semantics

 One steps corresponds to finding the left-most subtree that can be simplified by using one of the axioms

$$(\text{Plus (Num } n) (\text{Num } m)) \mapsto (\text{Num } (n + m))$$

$$e_2 \mapsto e_2'$$

$$(\text{Plus (Num } n) e_2) \mapsto (\text{Plus (Num } n) e_2')$$

$$e_1 \mapsto e_1'$$

$$(\text{Plus } e_1 e_2) \mapsto (\text{Plus } e_1 e_2')$$

$$(\text{Let (Num } n) (x \cdot e_2)) \mapsto e_2 [x := \text{Num } n]$$

$$\frac{e_1 \mapsto e_1'}{(\text{Let } e_1 (x \cdot e_2)) \mapsto (\text{Let } e_1' (x \cdot e_2))}$$

Definition

```
An execution sequence s_0, s_1, \ldots, s_n
```

▶ is *maximal* if there is no s_{n+1} such that $s_n \mapsto s_{n+1}$

▶is complete if $s_n \in F$

• Stuck States:

- every complete execution sequence in a system is maximal, but
- not every maximal sequence is complete. Why?
 - there may be states for which no follow up state exists, but which are not in *F*
 - we call such a state a stuck state
 - stuck states correspond to (non-handled) run-time errors in a program

- Type safety (preview):
 - a type-safe language does not have stuck states
 - a stuck state in the abstract machine correspond to undefined behaviour of a program
 - every statically correct program evaluates to a final state
 - we look into type safety in more detail later

- Small step semantics:
 - specify how each evaluation step alters the state of the machine
- Big step semantics:
 - specify how evaluation of a complex program proceeds based on the evaluation of its components

• Evaluation relation

also called big step or natural semantics. Consists of

▶ a set of evaluable expressions *E*

 \blacktriangleright a set of values V (often, but not necessarily, a subset of E),

basic operations, and

▶ an "evaluates to" relation $\Downarrow \subseteq E \times V$ defined in terms of sub results, and how they combine via the basic operations

Evaluation Semantics

- Arithmetic expression example (basic operations stay the same)
 - Set of evaluable expressions:
 - Set of values:

$$E = \{e \mid \{\} \vdash e \ ok\}$$
$$V = \{(\text{Num } i) \mid i \ Int\}$$

(Num n) \Downarrow (Num n)

$$\begin{array}{cccc} e_1 & \downarrow (\operatorname{Num} n_1) & e_2 & \downarrow (\operatorname{Num} n_2) \\ \hline & (\operatorname{Plus} e_1 & e_2) & \downarrow (\operatorname{Num} (n_1 + n_2)) \end{array} & \begin{array}{c} e_1 & \downarrow (\operatorname{Num} n_1) & e_2 & \downarrow (\operatorname{Num} n_2) \\ \hline & (\operatorname{Times} e_1 & e_2) & \downarrow (\operatorname{Num} (n_1 + n_2)) \end{array}$$

 $e_{1} \Downarrow (\operatorname{Num} n_{1}) e_{2} [x := (\operatorname{Num} n)] \Downarrow (\operatorname{Num} n_{2}) \qquad \text{or if we choose lazy evaluation:}$ $(\operatorname{Let} e_{1} (x \cdot e_{2})) \qquad \Downarrow (\operatorname{Num} n_{2})$ $e_{2} [x := e_{1}] \Downarrow (\operatorname{Num} n)$

(Let (Num n) (x. e_2)) \Downarrow (Num n)

P (P (T 5 3) 6) (T 2 4) U ?

• Small step vs bis step

- two different ways of specifying the operational semantics of a language
- small step provides more detail
 - ★ order of evaluation beyond data dependency (but this is not always necessary)
 - * necessary to model concepts like explicit concurrency
- big step semantics
 - ★ like a recursive interpreter
 - ★ more compact in general
 - * only provides information about terminating evaluations!

• Small step vs bis step

- are both definitions equivalent for our example?

```
▶ is e \mapsto e' if and only if e \Downarrow e'?
```


- Which cases do we need to consider to show that
 - $e \Downarrow$ (Num n) implies $e \bowtie!$ (Num n)?
 - (1) e = (Num n)[G] $e \mapsto ! (\text{Num } n)$ $e_1 \Downarrow (\text{Num } n_1) \qquad e_2 \Downarrow (\text{Num } n_2)$ (Plus $e_1 e_2 \Downarrow (\text{Num}(n_1+n_2))$)
 - (2) $e = (\text{Plus } e_1 e_2)$ with (Plus $e_1 e_2$) \Downarrow (Num (n_1+n_2))
 - [A1] $e_1 \Downarrow$ (Num n_1)
 - [A2] $e_2 \Downarrow$ (Num n_2)
 - [IH1] $e_1 \mapsto !$ (Num n_1)
 - [IH2] $e_2 \mapsto !$ (Num n_2)
 - [G] (Plus $e_1 e_2$) \mapsto ! (Num (n_1+n_2))

- Which cases do we need to consider to show that
 - $e \downarrow$ (Num n) implies $e \mapsto !$ (Num n)?

(1) e = (Num n)

```
holds since e \mapsto^{\emptyset} (Num n)
```

```
e_1 \stackrel{\Downarrow}{\leftarrow} (\operatorname{Num} n_1) \qquad e_2 \stackrel{\Downarrow}{\leftarrow} (\operatorname{Num} n_2) \\ \hline (\operatorname{Plus} e_1 e_2) \stackrel{\Downarrow}{\leftarrow} (\operatorname{Num} (n_1 + n_2))
```

```
(2) e = (Plus e_1 e_2) with (Plus e_1 e_2) \Downarrow (Num n)
```

```
► A1: e_1 \Downarrow (Num n_1)
```

- A1: $e_2 \Downarrow$ (Num n_2), $n_1+n_2=n$
- ► I.H.-1: $e_1 \mapsto !$ (Num n_1)
- ► I.H.-2: $e_2 \mapsto !$ (Num n_2)

- (2) e = (Plus $e_1 e_2$) with (Plus $e_1 e_2$) \Downarrow (Num n), $n_1+n_2=n$
 - ► A1: $e_1 \Downarrow$ (Num n_1)
 - ► A1: $e_2 \Downarrow$ (Num n_2), $n_1+n_2 = n$
 - ▶ I.H.-1: $e_1 \mapsto !$ (Num n_1)
 - ► I.H.-2: $e_2 \mapsto !$ (Num n_2)

