
Concepts of Programming Language Design
Semantics
Gabriele Keller
Tom Smeding

• So far

- Judgements and inference rules

- Rule induction

- Inference rules

- Grammars specified using inference rules

- Judgements and relations

- First- and higher-order abstract syntax

- Substitution

• Next up

- Static semantics

- Dynamic semantics

Where we are

• What is static semantics?

- properties of a program apparent without executing the program

- can be checked by a compiler (or external tool such as lint)

- depends on the programming language (e.g. scoping)

• Example of static properties

- does the program contain undefined/out of scope occurrences of variables?

- is the program type correct?

- does it contain dead code, usage of uninitialised variables?

• Arithmetic example language

- there is only one type (Int), so not much to check

- but we can check scoping (are all variables defined?)

Static Semantics

• Inference rules to check scoping

- judgement e ok: e contains no free variables

- how can we define this using inference rules?

Scoping

• Recall the rules to check if expressions are syntactically correct:

 t1 expr t2 expr
(Let t1 (id.t2)) expr

 i ∈Int
(Num i) expr

 t1 expr t2 expr

(Times t1 t2) expr

 t1 expr t2 expr

(Plus t1 t2) expr

id expr

• Inference rules to check scoping

- judgement e ok: e contains no free variables

- we need to remember which variables are defined in the current context

- key idea: we use an environment to keep track of all bound variables

‣ for now, the environment is just a set of variable names

- composite judgement:

‣ {x1, x2,..., xn} ⊢ e ok

‣ assuming the variables x1 to xn are bound, e ok holds

Scoping

{y} ⊢ (Let y (x. Plus x y)) ok

{} ⊢ (Plus (Num 1) (Num 3)) ok

{x,y,z} ⊢ (Let y (x. Plus x y)) ok

• Inference rules:

Scoping

𝚪 ⊢ t1 ok {x} ∪ 𝚪 ⊢ t2 ok
𝚪 ⊢ (Let t1 (x.t2)) ok

𝚪 ⊢ (Num i) ok

𝚪 ⊢ t1 ok 𝚪 ⊢ t2 ok

𝚪 ⊢ (Plus t1 t2) ok
𝚪 ⊢ t1 ok 𝚪 ⊢ t2 ok

𝚪 ⊢ (Times t1 t2) ok

𝚪 ⊢ x ok

x ∊ 𝚪

• Example: Let (Num 5) (x.(Plus x x))

 Let (Num 5) (x.(Plus x y))

• What is dynamic semantics?

- specifies the program execution process

- may include side effects and computed values

- there are various kinds of dynamic semantics

‣ denotational

‣ operational

‣ axiomatic

• Denotational Semantics:

- Idea: syntactic expressions are mapped to mathematical objects, e.g.,

‣ mapping to lambda-calculus

‣ fix-point semantics over complete partial orders (CPOs)

Dynamic Semantics

• Axiomatic Semantics

- Idea: statements over programs in the form of axioms describing logic
program properties

- Hoare’s calculus

- Dijkstra’s Weakest Precondition (WP) calculus

- Traditionally used for program verification

Semantics

{P} prgrm {Q}

Hoare triple

P: precondition
Q: postcondition

{P[x:=E]} x:=E {P}

rule for assignment

{Q} s2{R}

{P} s1;s2{R}

{P} s1{Q}

sequence of statements

 wp (x:=E, R) = R[x:=E]

rule for assignment

 wp (s1;s2, R) = wp(s1,wp(s2,R))

sequence of statements

 wp (prgm, Q) = P
What is the weakest

precondition P such that after
executing prgm, Q holds?

• Operational Semantics

- Idea: defines semantics in terms of an abstract machine

- ‘imaginary’ machine with a set of basic instructions and possible states

- map program constructs to machine instructions, state transitions

- There are two main forms:

‣ small step semantics or structural operational semantics (SOS): step by
step execution of a program

‣ big step, natural or evaluation semantics: specifies result of execution of
complete programs/subprograms

- we will be looking at both, small step as well as big step semantics

Semantics

Structural /Single Step Operational Semantics

Definition: Transition Systems

A transition system specifies the step-by-step evaluation of a program and
consists of

‣ a set of states S of an abstract computing device

‣ a set of initial states I⊆S

‣ a set of final state F⊆S, and

‣ a relation ↦ ⊆ S×S describing the effect of a single evaluation step on
state s

Back to our arithmetic expression example:
• what should evaluation look like?

Transition Systems

 Let (Num 5) (x.(Plus x x))

• States:
‣ the set of all well-formed arithmetic expressions

S = {e | ∃Γ.Γ⊢ e ok}

• Initial States:
‣ the set of all closed, well formed arithmetic expressions:

I = {e | {} ⊢ e ok}

• Final States:
‣ values

F = {(Num i) | i Int}

• Operations of the abstract machines:
‣ addition & multiplication
‣ substitution

Transition Systems

• We need to fix an evaluation strategy

• Example: addition

Evaluation Strategy

 (Plus (Num n) (Num m)) ↦ (Num (n + m))

 (Plus (Num n) e2) ↦ (Plus (Num n) e2’)

 e2 ↦ e2’

multiplication can be defined similarly

e1 ↦ e1’

 (Plus e1 e2) ↦ (Plus e1 e2’)

the machine
operation
‘addition

on integers'

• Evaluating let-expressions

let x = e1 in e2

Evaluation Strategy

Eager or strict evaluation:
‣ evaluate the right-hand side of binding e1 to value v

‣ substitute the value v for the bound variable x, and

‣ evaluate the body e2[x := v]
Lazy evaluation

‣ substitute expression e1 for the bound variable x, and

‣ evaluate the body e2[x := e1]

(Let e1 (x.e2))

Evaluation Strategy

Eager or strict evaluation:

Lazy evaluation

(Let (Num n) (x.e2)) ↦ e2 [x := Num n]

(Let e1 (x.e2)) ↦ (Let e1’ (x.e2))

e1 ↦ e1’

(Let e1 (x.e2)) ↦ e2 [x := e1]

Small Step Semantics

 (Plus (Num n) (Num m)) ↦ (Num (n + m))

e1 ↦ e1’

 (Plus (Num n) e2) ↦ (Plus (Num n) e2’)

 e2 ↦ e2’

 (Plus e1 e2) ↦ (Plus e1 e2’)

(Let (Num n) (x.e2)) ↦ e2 [x := Num n]

(Let e1 (x.e2)) ↦ (Let e1’ (x.e2))

e1 ↦ e1’

• One steps corresponds to
finding the left-most subtree
that can be simplified by using
one of the axioms

Small Step Semantics

Definition

An execution sequence s0, s1, ..., sn

‣is maximal if there is no sn+1 such that sn ↦ sn+1

‣is complete if sn ∈ F

• Stuck States:

- every complete execution sequence in a system is maximal, but

- not every maximal sequence is complete. Why?

‣ there may be states for which no follow up state exists, but which are not
in F

‣ we call such a state a stuck state

‣ stuck states correspond to (non-handled) run-time errors in a program

Transition System

• Type safety (preview):

- a type-safe language does not have stuck states

‣ a stuck state in the abstract machine correspond to undefined behaviour
of a program

- every statically correct program evaluates to a final state

- we look into type safety in more detail later

Transition System

• Small step semantics:

- specify how each evaluation step alters the state of the machine

• Big step semantics:

- specify how evaluation of a complex program proceeds based on the
evaluation of its components

Evaluation Semantics or Big Step Semantics

• Evaluation relation

also called big step or natural semantics. Consists of

‣ a set of evaluable expressions E

‣ a set of values V (often, but not necessarily, a subset of E),

‣ basic operations, and

‣ an “evaluates to” relation ⇓ ⊆ E × V defined in terms of sub results, and
how they combine via the basic operations

Evaluation Semantics or Big Step Semantics

• Arithmetic expression example (basic operations stay the same)

- Set of evaluable expressions:

- Set of values:

Evaluation Semantics

E = {e | {} ⊢ e ok}
V = {(Num i) | i Int}

(Plus e1 e2) ⇓

(Let e1 (x.e2))
 e2 [x := e1] ⇓ (Num n)

(Let (Num n) (x.e2))⇓ (Num n)

(Num(n1+n2))
 e1 ⇓ (Num n1) e2 ⇓ (Num n2)

⇓ (Num n2)

 e1 ⇓ (Num n1) e2 [x := (Num n)] ⇓ (Num n2) or if we choose lazy evaluation:

(Num n) ⇓ (Num n)

(Times e1 e2) ⇓ (Num(n1*n2))
 e1 ⇓ (Num n1) e2 ⇓ (Num n2)

Evaluation Semantics

P (P (T 5 3) 6) (T 2 4) ⇓ ?

Relating SOS and Evaluation Semantics

• Small step vs bis step

- two different ways of specifying the operational semantics of a language

- small step provides more detail

★ order of evaluation beyond data dependency (but this is not always
necessary)

★ necessary to model concepts like explicit concurrency

- big step semantics

★ like a recursive interpreter

★ more compact in general

★ only provides information about terminating evaluations!

Relating SOS and Evaluation Semantics

• Small step vs bis step

- are both definitions equivalent for our example?

‣ is e ↦! e’ if and only if e ⇓ e’ ?

Relating SOS and Evaluation Semantics

• Which cases do we need to consider to show that

- e ⇓ (Num n) implies e ↦! (Num n) ?

(1) e = (Num n)

[G] e ↦! (Num n)

(2) e = (Plus e1 e2) with (Plus e1 e2) ⇓ (Num (n1+n2))

[A1] e1 ⇓ (Num n1)

[A2] e2 ⇓ (Num n2)

[IH1] e1 ↦! (Num n1)

[IH2] e2 ↦! (Num n2)

[G] (Plus e1 e2) ↦! (Num (n1+n2))

(Plus e1 e2) ⇓ (Num(n1+n2))
 e1 ⇓ (Num n1) e2 ⇓ (Num n2)

Relating SOS and Evaluation Semantics

• Which cases do we need to consider to show that

- e ⇓ (Num n) implies e ↦! (Num n) ?

(1) e = (Num n)

 holds since e ↦0 (Num n)

(2) e = (Plus e1 e2) with (Plus e1 e2) ⇓ (Num n)

‣ A1: e1 ⇓ (Num n1)

‣ A1: e2 ⇓ (Num n2), n1+n2 = n

‣ I.H.-1: e1 ↦! (Num n1)

‣ I.H.-2: e2 ↦! (Num n2)

(Plus e1 e2) ⇓ (Num(n1+n2))
 e1 ⇓ (Num n1) e2 ⇓ (Num n2)

Relating SOS and Evaluation Semantics

(2) e = (Plus e1 e2) with (Plus e1 e2) ⇓ (Num n), n1+n2 = n

‣ A1: e1 ⇓ (Num n1)

‣ A1: e2 ⇓ (Num n2), n1+n2 = n

‣ I.H.-1: e1 ↦! (Num n1)

‣ I.H.-2: e2 ↦! (Num n2)

 (Plus e1 e2)

↦*

(Plus (Num n1) e2)

↦*

↦

A1,I.H.-1, def. of ↦*

A2, I.H.-2, def. of ↦*

 def. of ↦

(Plus (Num n1) (Num n2))

(Num (n1+n2))

