NI
= ¥ = Utrecht University

N

Concepts of Programming Language Design
Semantics

Gabriele Keller
Tom Smeding

e So far

Judgements and inference rules

Rule induction

Inference rules

Grammars specified using inference rules

Judgements and relations

First- and higher-order abstract syntax

Substitution

e Next up
- Static semantics

- Dynamic semantics

Utrecht University

e \What is static semantics?
- properties of a program apparent without executing the program
- can be checked by a compiler (or external tool such as 1int)
- depends on the programming language (e.g. scoping)
e Example of static properties
- does the program contain undefined/out of scope occurrences of variables?
- is the program type correct?
- does it contain dead code, usage of uninitialised variables?
e Arithmetic example language

- there is only one type (Int), so not much to check

- but we can check scoping (are all variables defined?)

Utrecht University

¢ |nference rules to check scoping

- jJudgement e ok: e contains no free variables

- how can we define this using inference rules?

e Recall the rules to check If expressions are syntactically correct:

i e Int t1 expr 12 expr t; expr 12 expr

(Num 2) expr (Plus t1 t2) expr (Times t; t2) expr

t; expr t2 expr

(Let t; (id.t2)) expr 1d expr

Utrecht University

¢ |nference rules to check scoping

judgement e ok: e contains no free variables

we need to remember which variables are defined in the current context

key idea: we use an environment to keep track of all bound variables

» for now, the environment is just a set of variable names

composite judgement:

» {x1, To,..., T} - € Ok

» assuming the variables x;to x, are bound, e ok holds

{y} = (Let vy (x. Plus = y)) ok

{} + (Plus (Num 1) (Num 3)) ok

Utrecht University

{r,y,z} - (Let vy (x. Plus x y)) ok

¢ |nference rules:

I' = (Num 2) ok

I'- t;ok T + to o0k I'- t; ok T + ts ok

I' = (Plus t; t2) ok I' - (Times t; t2) ok
I'-t;ok {xz} uTl F ts 0k el
I'- (Let t; (x.t2)) ok I' - x ok

e Example: Let (Num 5) (x.(Plus = x))

Let (Num 5) (z.(Plus x= 7))

Utrecht University

e \What is dynamic semantics?
- specifies the program execution process
- may include side effects and computed values
- there are various kinds of dynamic semantics
» denotational
» operational
» axiomatic
e Denotational Semantics:
- |dea: syntactic expressions are mapped to mathematical objects, e.g.,
» mapping to lambda-calculus

» fix-point semantics over complete partial orders (CPOs)

Utrecht University

e Axiomatic Semantics

- ldea: statements over programs in the form of axioms describing logic
program properties

- Hoare’s calculus

Hoare triple {P}si{Q} {Q} s={R}
{P} prgrm {Q} {(Pla=Eljx:=E{P} {P} si;s=AR}
P: precondition rule for assignment sequence of statements

®: postcond Ltlon

- Dikstra’s Weakest Precondition (WP) calculus

wp (prgm, Q) =P wp (x:=E,R) = R[x:=E] wp (S1;S2, R) = wp(s:;,wp(s2,R))

what is the weakest
precondition P such that after
executing progm, @ holds?

sequence of statements

Utrecht University

rule for asstgmnment

- Traditionally used for program verification

e Operational Semantics
- ldea: defines semantics in terms of an abstract machine
- ‘Imaginary’ machine with a set of basic instructions and possible states
- map program constructs to machine instructions, state transitions
- There are two main forms:

» small step semantics or structural operational semantics (SOS): step by
step execution of a program

» big step, natural or evaluation semantics: specifies result of execution of
complete programs/subprograms

: Utrecht University

- we will be looking at both, small step as well as big step semai i'ips

Definition: Transition Systems

A transition system specifies the step-by-step evaluation of a program and
consists of

» a set of states S of an abstract computing device
» a set of initial states IC S
» a set of final state F'C.S, and

» arelation » C S xS describing the effect of a single evaluation step on
state s

Utrecht University

Back to our arithmetic expression example:
e what should evaluation look like?

Let (Num 5) (x.(Plus = x))

Utrecht University

e States:
» the set of all well-formed arithmetic expressions
S={e|3al.I'+ e ok}

e |nitial States:
» the set of all closed, well formed arithmetic expressions:
I={e|{} + e ok}

¢ Final States:
» values
F={(Nun 7) | i Int)

» Operations of the abstract machines:
» addition & multiplication

» substitution

% Utrecht University

¢ \Ve need to fix an evaluation strateqy Eh "
e machine

opem&i.ovx
‘addition

e Example: addition - .
on itegers

(Plus (Num 7n) (Num m)) e

(Plus (Num n) es) =

(Plus (¥ 62) =

multiplication can be defined similarly

Utrecht University

e Evaluating let-expressions
let © = e; in e (Let e; (x.ez))

Eager or strict evaluation:

» evaluate the right-hand side of binding e; to value v
» substitute the value v for the bound variable x, and

» evaluate the body ez[x := v]
Lazy evaluation

» substitute expression ey for the bound variable x, and

» evaluate the body ez[x := e;]

% Utrecht University

Eager or strict evaluation:

(Let (Num n) (x.e2)) » es [:= Num 1]

e; P 61’

(Let e; (x.e2)) » (Let e;’ (x.e2))

Lazy evaluation

(Let e; (x.e2)) » ez [z 1= e4]

% Utrecht University

e One steps corresponds to (Plus (Num n) (Num m)) » (Num (1 + m))
finding the left-most subtree

that can be simplified by using
one of the axioms

€2 P 62’

(Plus (Num n) e2) » (Plus (Num n) e2’)

e; P 61’

(Plus e; e2) » (Plus e; es’)

(Let (Num n) (x.e2)) » es [:= Num n]

e; P 61’

(Let e; (x.e2)) » (Let e;’ (x.e2))

Utrecht University

Definition

An execution sequence sg, Sz, ..., Sn
»is maximal if there IS N0 s, ; such that s, » S, 1

»is complete if s, € F

% Utrecht University

e Stuck States:
- every complete execution sequence in a system is maximal, but
- not every maximal sequence is complete. Why?

» there may be states for which no follow up state exists, but which are not
in F

» we call such a state a stuck state

» stuck states correspond to (non-handled) run-time errors in a program

Utrecht University

e Type safety (preview):
- a type-safe language does not have stuck states

» a stuck state in the abstract machine correspond to undefined behaviour
of a program

- every statically correct program evaluates to a final state

- we ook into type safety in more detall later

Utrecht University

e Small step semantics:
- specify how each evaluation step alters the state of the machine
e Big step semantics:

- specify how evaluation of a complex program proceeds based on the
evaluation of its components

% Utrecht University

e Fvaluation relation
also called big step or natural semantics. Consists of

» a set of evaluable expressions E
» a set of values V (often, but not necessarily, a subset of F),

» basic operations, and

» an “evaluates to” relation ¥ € E x V defined in terms of sub results, and
how they combine via the basic operations
Utrecht University

e Arithmetic expression example (basic operations stay the same)

- Set of evaluable expressions: E={e|{} + e ok}

- Set of values: V={(Num) | 7 Int}

(Num 7) U (Num 72)

e; U (Num 74) ez U (Num n2) e; U (Num n4) ez U (Num np)
(Plus e; e2) U (Num(ns+nz)) (Times e; ez) U (Num(nns2))
er ¥ (Num n7) ey [z := (Num n)] U (Num n2) or if we choose lazy evaluation:
(Let e; (x.e2)) U (Num mnp2)

eo [:= e;] U (Num n)

(Let (Num n) (xz.e2)) U (Num n)

Utrecht University

P (P (T 5 3) 6) (T 24)y?

Utrecht University

e Small step vs bis step
- two different ways of specifying the operational semantics of a language
- small step provides more detalil

* order of evaluation beyond data dependency (but this is not always
necessary)

* necessary to model concepts like explicit concurrency
- big step semantics

* |[ke a recursive interpreter

* more compact in general

* only provides information about terminating evaluations!

Utrecht University

e Small step vs bis step

- are both definitions equivalent for our example?

»is eple’ifandonlyife U e’ ?

Utrecht University

¢ \\Vhich cases do we need to consider to show that

- e U (Num n) implies e »! (Num n) 7

(1) e= (Num 7)
e; 4 (Num 727) es U (Num 72)

(¢] e’ (Num 72) (Plus e; e») U (Num(n+nz2))

(2) e= (Plus e; eg) with (Plus e; e2) U (Num (7n:+7m2))
[A1] e; U (Num 724)
[A2] ez U (Num 7m2)
[TH1] e; »' (Num 72,)
[TH2] ez »' (Num 722)

[(G] (Plus e; ez) »!' (Num (ns;+n2))

Utrecht University

¢ \\Vhich cases do we need to consider to show that

- e U (Num n) implies e »! (Num n) 7

(1) e= (Num 7)
e; 4 (Num 727) es U (Num 72)

holds since e »? (Num m) (Plus e; ez) ¥ (Num(7ns+72))
(2) e= (Plus e; e2) with (Plus e; e2) U (Num n)

» Al:e; U (Num 72;)

*Al:ez U (Num ng), ni+nz=n

> [LH.-1: e; »!' (Num n;)

> LH.-2: e2 »! (Num n2)

Utrecht University

(2) e= (Plus e; ez) with (Plus e; e2) U (Num 7n), ni+nz=n
» Al:e; U (Num 72;)
*Al:e2 U (Num ng), ni+nz=n
» ILH.-1:e; »' (Num 74)

> LH.-2: e2 »! (Num n2)

(Plus e; es)
¥ AL LH.-1, def. of »*

(Plus (Num 727) e2)
pX A2, L.H.-2, ole{. 0'(: =

(Plus (Num 72;) (Num n2))
= def. O‘f'-’

(Num (n+7n2))

Utrecht University

