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• So far 

- Judgements and inference rules 

- Rule induction 

- Inference rules 

- Grammars specified using inference rules 

- Judgements and relations 

- First- and higher-order abstract syntax 

- Substitution 

• Next up 

- Static semantics 

- Dynamic semantics

Where we are



• What is static semantics? 

- properties of a program apparent without executing the program 

- can be checked by a compiler (or external tool such as lint) 

- depends on the programming language (e.g. scoping) 

• Example of static properties 

- does the program contain undefined/out of scope occurrences of variables? 

- is the program type correct? 

- does it contain dead code, usage of uninitialised variables? 

• Arithmetic example language 

- there is only one type (Int), so not much to check 

- but we can check scoping (are all variables defined?)

Static Semantics



• Inference rules to check scoping 

- judgement e ok: e contains no free variables 

- how can we define this using inference rules?

Scoping

• Recall the rules to check if expressions are syntactically correct:

      t1 expr      t2 expr
(Let t1  (id.t2))  expr 

 i ∈Int
(Num i ) expr 

 t1 expr     t2 expr

(Times t1 t2)  expr

 t1 expr    t2 expr

(Plus t1 t2)  expr

id expr 



• Inference rules to check scoping 

- judgement e ok: e contains no free variables 

- we need to remember which variables are defined in the current context 

- key idea: we use an environment to keep track of all bound variables 

‣ for now, the environment is just a set of variable names 

- composite judgement: 

‣ {x1, x2,..., xn} ⊢ e ok 

‣ assuming the variables x1 to xn are bound, e ok holds

Scoping

{y} ⊢ (Let y  ( x. Plus x y)) ok

{}   ⊢ (Plus (Num 1) (Num 3)) ok

{x,y,z} ⊢ (Let y  ( x. Plus x y)) ok



• Inference rules:

Scoping

𝚪 ⊢ t1 ok      {x} ∪ 𝚪 ⊢ t2 ok
𝚪 ⊢ (Let t1  (x.t2))  ok

𝚪 ⊢ (Num i ) ok 

𝚪 ⊢  t1 ok    𝚪 ⊢ t2 ok

𝚪 ⊢ (Plus t1 t2)  ok
𝚪 ⊢  t1 ok    𝚪 ⊢ t2 ok

𝚪 ⊢ (Times t1 t2)  ok

𝚪 ⊢ x ok 

x ∊ 𝚪 

• Example:    Let (Num 5) (x.(Plus x x))   

  Let (Num 5) (x.(Plus x y))



• What is dynamic semantics? 

- specifies the program execution process 

- may include side effects and computed values 

- there are various kinds of dynamic semantics 

‣ denotational 

‣ operational 

‣ axiomatic 

• Denotational Semantics: 

- Idea: syntactic expressions are mapped to mathematical objects, e.g., 

‣ mapping to lambda-calculus 

‣ fix-point semantics over complete partial orders (CPOs)

Dynamic Semantics



• Axiomatic Semantics 

- Idea: statements over programs in the form of axioms describing logic 
program properties 

- Hoare’s calculus 

- Dijkstra’s Weakest Precondition (WP) calculus 

- Traditionally used for program verification

Semantics

{P} prgrm {Q} 

Hoare triple

P: precondition 
Q: postcondition

{P[x:=E]} x:=E {P} 

rule for assignment

{Q} s2{R}

{P} s1;s2{R} 

{P} s1{Q}

sequence of statements

                   wp (x:=E, R) = R[x:=E] 

rule for assignment

                   wp (s1;s2, R) = wp(s1,wp(s2,R)) 

sequence of statements

    wp (prgm, Q) = P 
What is the weakest 

precondition P such that after  
executing prgm, Q holds?



• Operational Semantics 

- Idea: defines semantics in terms of an abstract machine 

- ‘imaginary’ machine with a set of basic instructions and possible states 

- map program constructs to machine instructions, state transitions 

- There are two main forms: 

‣ small step semantics or structural operational semantics (SOS): step by 
step execution of a program 

‣ big step, natural or evaluation semantics: specifies result of execution of 
complete programs/subprograms 

-  we will be looking at both, small step as well as big step semantics

Semantics



Structural /Single Step Operational Semantics

Definition: Transition Systems 

A transition system specifies the step-by-step evaluation of a program and 
consists of   

‣ a set of states S of an abstract computing device 

‣ a set of initial states I⊆S 

‣ a set of final state F⊆S, and 

‣ a relation ↦  ⊆ S×S describing the effect of a single evaluation step on 
state s                 



Back to our arithmetic expression example: 
• what should evaluation look like?

Transition Systems

 Let (Num 5) (x.(Plus x x))



• States: 
‣ the set of all well-formed arithmetic expressions 

S = {e | ∃Γ.Γ⊢ e ok} 

• Initial States: 
‣ the set of all closed, well formed arithmetic expressions: 

I = {e | {} ⊢ e ok} 

• Final States: 
‣ values 

F = {(Num i) | i Int}  

• Operations of the abstract machines: 
‣ addition & multiplication 
‣ substitution

Transition Systems



• We need to fix an evaluation strategy 

• Example: addition

Evaluation Strategy

 (Plus (Num n) (Num m)) ↦ (Num (n + m))

 (Plus (Num n) e2) ↦ (Plus (Num n) e2’)

 e2 ↦ e2’

multiplication can be defined similarly

   

e1 ↦ e1’

 (Plus e1  e2) ↦ (Plus e1  e2’)

the machine 
operation 
‘addition 

on integers'



• Evaluating let-expressions 

let x = e1 in e2 

Evaluation Strategy

Eager or strict evaluation: 
‣ evaluate the right-hand side of binding e1 to value v 

‣ substitute the value v for the bound variable x, and 

‣ evaluate the body e2[x := v]
Lazy evaluation 

‣ substitute expression e1 for the bound variable x, and 

‣ evaluate the body e2[x := e1]

(Let e1 (x.e2))



Evaluation Strategy

Eager or strict evaluation:

Lazy evaluation

(Let (Num n) (x.e2)) ↦ e2 [x := Num n]

(Let e1 (x.e2)) ↦ (Let e1’ (x.e2))

e1 ↦ e1’

(Let e1 (x.e2)) ↦ e2 [x := e1]



Small Step Semantics

 (Plus (Num n) (Num m)) ↦ (Num (n + m))

e1 ↦ e1’

 (Plus (Num n) e2) ↦ (Plus (Num n) e2’)

 e2 ↦ e2’

 (Plus e1  e2) ↦ (Plus e1  e2’)

(Let (Num n) (x.e2)) ↦ e2 [x := Num n]

(Let e1 (x.e2)) ↦ (Let e1’ (x.e2))

e1 ↦ e1’

• One steps corresponds to 
finding the left-most subtree 
that can be simplified by using 
one of the axioms



Small Step Semantics

Definition 

An execution sequence s0, s1, ..., sn  

‣is maximal if there is no sn+1 such that sn ↦ sn+1 

‣is complete if sn ∈ F



• Stuck States:  

- every complete execution sequence in a system is maximal, but 

- not every maximal sequence is complete. Why? 

‣ there may  be states for which no follow up state exists, but which are not 
in F 

‣ we call such a state a stuck state 

‣ stuck states correspond to (non-handled) run-time errors in a program

Transition System



• Type safety (preview): 

- a type-safe language does not have stuck states  

‣ a stuck state in the abstract machine correspond to undefined behaviour 
of a program 

- every statically correct program evaluates to a final state  

- we look into type safety in more detail later 

Transition System



• Small step semantics:  

- specify how each evaluation step alters the state of the machine 

• Big step semantics: 

- specify how evaluation of a complex program proceeds based on the 
evaluation of its components

Evaluation Semantics or Big Step Semantics



• Evaluation relation 

also called big step or natural semantics. Consists of 

‣ a set of evaluable expressions E 

‣ a set of values V (often, but not necessarily, a subset of E),  

‣ basic operations, and 

‣ an “evaluates to” relation ⇓ ⊆ E × V defined in terms of sub results, and 
how they combine via the basic operations

Evaluation Semantics or Big Step Semantics



• Arithmetic expression example (basic operations stay the same) 

- Set of evaluable expressions: 

- Set of values:   

Evaluation Semantics

E = {e | {} ⊢ e ok}
V = {(Num i) | i Int}

(Plus e1  e2) ⇓            

(Let e1 (x.e2))
        e2 [x := e1] ⇓ (Num n)

(Let (Num n) (x.e2))⇓ (Num n)

(Num(n1+n2))
 e1 ⇓ (Num n1)    e2 ⇓ (Num n2)

⇓ (Num n2)

 e1 ⇓ (Num n1)  e2 [x := (Num n)] ⇓ (Num n2) or if we choose lazy evaluation:

(Num n) ⇓                     (Num n)

(Times e1  e2) ⇓            (Num(n1*n2))
 e1 ⇓ (Num n1)    e2 ⇓ (Num n2)



Evaluation Semantics

P (P  (T 5 3) 6) (T 2 4) ⇓ ?



Relating SOS and Evaluation Semantics

• Small step vs bis step 

- two different ways of specifying the operational semantics of a language 

- small step provides more detail 

★ order of evaluation beyond data dependency (but this is not always 
necessary) 

★ necessary to model concepts like explicit concurrency 

- big step semantics 

★ like a recursive interpreter 

★ more compact in general 

★ only provides information about terminating evaluations!



Relating SOS and Evaluation Semantics

• Small step vs bis step 

- are both definitions equivalent for our example? 

‣ is  e ↦! e’ if and only if e ⇓ e’ ?



Relating SOS and Evaluation Semantics

• Which cases do we need to consider to show that  

- e ⇓ (Num n) implies e ↦! (Num n) ? 

(1) e = (Num n) 

[G] e ↦! (Num n)

(2) e = (Plus e1 e2) with (Plus e1 e2) ⇓ (Num (n1+n2)) 

[A1]  e1 ⇓ (Num n1) 

[A2]  e2 ⇓ (Num n2) 

[IH1] e1 ↦! (Num n1)  

[IH2] e2 ↦! (Num n2)  

[G]  (Plus e1  e2) ↦! (Num (n1+n2))

(Plus e1  e2) ⇓            (Num(n1+n2))
 e1 ⇓ (Num n1)    e2 ⇓ (Num n2)



Relating SOS and Evaluation Semantics

• Which cases do we need to consider to show that  

- e ⇓ (Num n) implies e ↦! (Num n) ? 

(1) e = (Num n) 

 holds since e ↦0 (Num n)

(2) e = (Plus e1 e2) with (Plus e1 e2) ⇓ (Num n) 

‣ A1: e1 ⇓ (Num n1)

‣ A1: e2 ⇓ (Num n2), n1+n2 = n

‣ I.H.-1: e1 ↦! (Num n1)

‣ I.H.-2: e2 ↦! (Num n2)

(Plus e1  e2) ⇓            (Num(n1+n2))
 e1 ⇓ (Num n1)    e2 ⇓ (Num n2)



Relating SOS and Evaluation Semantics

(2) e = (Plus e1 e2) with (Plus e1 e2) ⇓ (Num n), n1+n2 = n 

‣ A1: e1 ⇓ (Num n1)

‣ A1: e2 ⇓ (Num n2), n1+n2 = n

‣ I.H.-1: e1 ↦! (Num n1)

‣ I.H.-2: e2 ↦! (Num n2)

 (Plus e1 e2)  

↦*

(Plus (Num n1) e2)

↦*

↦

A1,I.H.-1, def. of ↦*

A2, I.H.-2, def. of ↦*

 def. of  ↦

(Plus (Num n1) (Num n2))

(Num (n1+n2))


