NI

= M < Utrecht University

N

Concepts of Programming Language Design

TinyC

Gabriele Keller
Tom Smeding

e \What is imperative/ procedural programming?

- declarative (functional and logic) languages describe what needs to be done,
Imperative languages how it needs to be done.

- strictly speaking, procedural programming is imperative programming with
subroutines/procedures (often used is synonymously)

- closer to machine language, where the program is also expressed in terms of
commands:

» store/update value x at location y

» add values stored in a certain location
- more abstract than machine language:

» symbolic names, subroutines, loop constructs

Utrecht University

e Assembly languages (around the 1950’s)

a more human-readable representation of machine code instructions

mnemonic codes to represent machine language instructions

early examples:

» Assembly for UNIVAC | and Assembly for IBM 701.

more recently
» 70’s: for Intel’s 8080 and x86 architecture
» 80’s: ARM

o Still used

device drivers, micro controllers

real time systems

parts of an operating system (boot loaders)

flrmware

Utrecht University

The evolution of imperative and procedural programming languages

e Fortran (1957):

(Formula Translation)

developed by IBM (John W. Backus
was one of the designers)

one of the earliest high-level
programming languages.

! Procedure to sum the elements of an array
function sumArray(arr, size) result(sum)

designed for scientific and ey Ly
Earwggir]EBEBrir]gJ (Déalchjléiti()r]ES integer :: sum

integer :: 1

sum = O

introduced the concept of do i =1, size

sum = sum + arr(i)

procedural programming end do

end function sumArray

N
= ¥ = Utrecht University

NS

The evolution of imperative and procedural programming languages

e Algol (1958):
- Algorithmic Language

- developed by a committee of
European and American computer
scientists (Backus, Bauer, Green,
Katz, McCarthy, Naur, Perlis,
Rutishauser, Samelson, van
Wijngaarden, Vauquois, Wegstein,
Woodger)

PROCEDURE sumArray(arr, size)

- influential role in the development of VALUE arr, size; INTEGER arrleize], size;

. INTEGER i, sum
programming languages
sum := 0
FOR i1 := 1 STEP 1 UNTIL size DO
sum := sum + arr[i]

- Introduced the concept of block
structures.

RETURN sum

N
= ¥ = Utrecht University

NS

The evolution of imperative and procedural programming languages

e Cobol (1959):

Common Business-Oriented
Language

developed by Grace Hopper

- s
| pe— ’ ®

for business, finance, admin ‘1
tasks \ &x,
=5

focus on readability

PROCEDURE DIVISION.
PERFORM VARYING array-element FROM 1 BY 1
UNTIL array-element > 5

d@S'gned tO be easy fOr ‘nOn- ADD array-element TO totalSum
] END-PERFORM.
programmers

DISPLAY 'The sum of the array elements is: ' totalSum.

A
7 = -u Utrecht University

N

The evolution of imperative and procedural programming languages

e BASIC

Beginner's all-purpose symbolic instruction code, by

John G. Kemeny, Thomas E. Kurtz, 1963

IS a family of programming languages

BASIC was designed to provide an easy entry point to computer
programming for non-specialists

» Microsoft BASIC

» Commodore BASIC

10 REM Procedure to sum the elements of an array
20 PROCEDURE sumArray(arr(), size, sum)

: 30 DIM arr(5)
) Atan BAS'C 40 LET sum = 0

50 FOR 1 = 1 TO size

60 LET sum = sum + arr(i)

» Sinclair BASIC 70 NEXT i

80 RETURN
90 END PROCEDURE

N
= ¥ = Utrecht University

NS

The evolution of imperative and procedural programming languages

e Pascal (1970):

- Designed by Niklaus Wirth, Pascal was

created for teaching structured
programming.

- |t emphasised clarity and good
programming practices

- contributing to the development of
modern programming methodologies.

procedure SumArray(arr: IntArray;
size: Integer; var sum: Integer);
var
i: Integer;

begin

sum := 0;
for i := 1 to size do
sum := sum + arr([i];
end;

N
= ¥ = Utrecht University

NS

e (C(1972):

Successor of B (BCPL - Basic Combined
Programming Language).

Developed by Dennis Ritchie at Bell Labs,
C became a widely used procedural
programming language.

C influenced many later languages

Development language of the Unix
operating system.

N
§ N % Utrecht University

N

e Historically, not strong on abstraction
- more modern imperative languages included support for modularisation

- trend towards object oriented programming (e.g., C to C++) with the intention
of improving maintainability

e Developments generally
- towards structured control flow (loops etc) away from arbitrary jumps/gotos

- more control of the name space (modules with control of visibility vs inclusion
of full files)

Utrecht University

e An imperative language with the following features:

Global function (procedure) declarations

Global and local variables

Assignment

lteration: while-loops

Conditional: if-statements

Only a single value type: int

For now, no pointers or the like
e Static semantics: how to model global and local declarations, blocks

e Dynamic semantics: side effects, non-local control flow (return statements)

Utrecht University

o BNF:

prgm
gdecs
gdec

vdecs

vdec
fdec
stmt

stmts
expr

arguments ::
exTprs

gdecs stmt

e | gdec gdecs

fdec | vdec

e | vdec vdecs

int Ident= Int;

int Ident (arguments) stmt

expr; | if exprthen stmtelse stmt; | return expr; |

{ vdecs stmts } | while (expr) stmt

e | stmt stmts

Int | Ident | expr+ expr | expr- expr |
Ident= expr | Ident (exprs)

€ | int Ident , arguments

€ | expr, exprs

Utrecht University

e Programs consist of - prgm = gdecs stmt

» a sequence of global variable and function declarations and

» a statement

e Function declarations | fdec n= int Ident (arguments) stmt \
int f (int x1, int =2, ...) stmt
e Variable declarations vdec = int Ident=Int;

int € = v;

Utrecht University

e Statements versus expressions

- statements are mainly about effects (but also have values)
> expr;
» if expr then simi else stmt
» while (expr) stmi

» return (expr) ;

» {ldec stmts}: a block - local variable declarations followed by a sequence
of statements
- expressions are about values (but can also have effects)

» arithmetic expressions

» assignments: ¢ = expr
» function calls: f (expr:, exprsz, ..., exprs,)

» variables, integer values

Utrecht University

e \/ariables

have to be Initialised

not true variables in the mathematical sense (MinHs’s are), but refer to the

(changeable) content of a (fixed) memory location

we assume that variable names are not re-used their scope

Example program:

int result = 0;

int div (int x, int y) {

int res = 0;
while (x > y) {
X =X -Y;
res = res + 1;
+

return res,;

+

result = div (16, 5);

Utrecht University

¢ \\Ve skip this step - we know how to do it
e \Ve continue with the concrete syntax (readability!)

e For the abstract syntax for TinyC, we would use first order abstract syntax,
since the variables in TinyC do not behave like mathematical variables (so
substitution is not allowed)

Utrecht University

e \What kind of properties do we have to check?
- Are all variables and functions declared before use”
- Are functions called with the correct number of arguments?
- What about return statements in functions”

» could we check that every possible control flow in a function block ends
with a return statement”?

» for now, we set the return value to the value of the last expression in the
block in case there is no explicit return statement

e \What kind of structure do we need to maintain for these checks?

- Environment of variables: V = {1, x2,....}

- Environment of functions with their arity: F = {f1: ni, fo: ng,....}

Utrecht University

* Two kinds of language components:

* expressions and statements
* declarations
e Two kinds of judgements:

- well-formed expressions and judgements (given both a variable environment
V and function environment F):

» V, F ~ expr ok givew environments Vv and F, expr /stimt is
well formed
» V, F' = stmt ok

- well-formed declarations (determining a variable and function environment)

» — gdecs decs V, F the global decLathows’gdeos are well formead and declare the
environments vV and F

)
» V, F = ldecs decs V given v and F, the Local decl. Ldecs are well formed ana

declare the new environment Vv’

Utrecht University

- Note: we write - expr ok Instead of @, + expr ok

e (Given a program

gdecs stmt

we have
~ gdecs decs V, F V,F +~ stmt ok

- gdecs stmt ok

That is, the program is well-formed if

» its global declarations are well-formed and declare variables V and functions
F

» and the body statement is well-formed with respect to those global variables
V and functions F

» all variables and functions are declared

» functions are called with the correct number of arguments i
Utrecht University

~ gdecs decs V, F V,F +~ stmt ok

- gdecs stmt ok

int result = 0;
int div (int x, int y) {

int res = 0;
while (x > vy) {
gdecs X = X - Y;
res = res + 1;
}
return res;
}

stmt < result = div (16, 5);

— gdecs decs {result}{div:2}
vV F

{result}{div:2} + result = div (16, 5)ok

Utrecht University

e \Well-formedness of statements; a statement is well-formed if all its constituents
are well-formed:

V,F +~ expr ok V,F +~ expr ok
V,F ~ while (expr) stmt ok

V,F - expr ok V,F \ stmt; ok V,F — stmt; ok
V,F - if (expr) then stmit; else stmts ok

e \Well-formedness of a block:

V,F ~ldecs decs V’ V’uV,F stmts ok
V,F ~ { ldecs stmts } ok

Utrecht University

{
ldecs C Lot res = 0; V,F +ldecs decs V’ V’uV,F stmts ok
while (x > y) {
X =X - y; V,F +~ { ldecs stmts } ok
stmts res = res + 1;
}
return res;
+

{x,y},{div:2} ldecs ok {x,y,res}t,{div:2} stmis ok
{x,y},{div:2} ~ { ldecs stmis } ok

Utrecht University

o \Well-formedness of expressions: an expression is well-formed if
- all of its variables and functions are declared and

- functions are called with the correct number of arguments

reV
V, F - x ok

V, F +~ expr ok reV
V, F+ x = expr ok

V, F +~ expr; ok fineF
V, F + f(expry,...expr,) ok

Utrecht University

e \Well-formedness of individual declarations:

- variable declarations (variable names have to be unigue in the scope)

re¢V
V, F+ int z = v; decs{z}, @

- function declarations (function names, formal parameter names unigue in the scope)

xriegV feF Vu{xi,. x}, Fu{fin} —stmt ok

V, F+~ int f (int x4, ...,int x,) stmt decs @,{f:n}

Utrecht University

e we're describing TinyC’s semantics using a big
step semantics relation

¢ e have to think about how to model the
execution of a program in this framework

e how would we trace the execution on paper”?

int result 0;

int offset = 10;

int £ (int z) {
return (z + offset);

}

int div (int x, int y)
int res = 0;
while (x > y) {
X=X -Y;
res = res + 1;

}

return res;

}

result = div (16, 5);

Utrecht University

¢ \Vhat information do we have to keep track of?
- the current statement
- the values of all variables which are in scope

- in MinHs, we substituted the value of a variable. We can’t do that in TinyC!

f(0) x 0
int result = 1;
int z — 0 f(1) x ! 0
int f(int x) {
if (x > 0) { f(2) x 2 1
x =x - 1;
result = f(3) x 3 2
2 * result;
f(x);
return Xx; Z q 2
} else {}
return Xx; result 1/ 2/ 4 8
}
z =f (3); int f(lnt

Utrecht University

e Machine state needs to contain the current memory state (including code
for functions), and current expression/statement:

int result = O0; int result = 11;

int offset = 10; y result = offset + 1) 1 (int offset = 10; , 11 >
int div(int ..){} int div@int {3}

e Fvaluation relations

- program execution (g s) 4(g’, rv)
- statement execution: (g, s)4 (g’, rv)
- expression execution: (g, e)4 (g’, v)

where v is a integer value, rv either a integer value or return (v)

Utrecht University

e The environment is an ordered sequence (stack in our example) associating
- variables with integer values

- function names with parameter list and body

— we're overloading the *.” sywmbol here!
e Operations on the ; has nothing to do with *.” to denote
a bound variable in HO abstract syntax

» add &'new declaration (int x = 4) to the environment g:

4)

o
S
N\
|—|.
-]
+
>4
Il

lookup of variable values: g@Qx = 5
» IS currently bound to value 5

» if £ occurs more than once, choose right most binding (upper most in the
diagram). Important that names are unique herel!

lookup of function declaration; g@Qf = int f (int x;, ... int x,)s

Utrecht University

update of variable values: g@x < 5

» change value of (the right most) x to 5

- program execution (g s) 4 (g, Tv)

(g, s) (g’ rv)
(g s) (g, rv)

Utrecht University

¢ f-Statements:
< (g, €)t(g’,0) (g, s2)4(g”,rv)

(g, if e then s; else sl (g7, 1V)

(g, e)s(g’,v) v£0 (g’ s)u(g”,rv)

(g, if e then s; else s2)i(g” rv)

* while-loops:

(g, e)4(g,0)
(g, while (e) s) (9,0)

(9, e)4(g’v) (g,s; while (e) s)i(g”rv)

(g, while (e) s)!i (g”rv)
- alternatively, in terms of if-statements:

(g, if e then {s;while (e) s} else 0)i(g”,rv)
(g, while (e) s)i(g”,rv)

* Utrecht University

* Return statements:

(g, e)4(gv)

(g, return(e))i(g’,return(v))

e Blocks:

(g.1, ss)i(g’.l’, rv)
(g, {Isshy (g, V)

adol Local variables with tnitial value temporarily into
environment, only g is threaded through - the local environment
L/L’ is discarded after the statements Ss are executed

Utrecht University

« Sequence of statements:

(9, 0)4(g.0)

(9, 8)4(gv;) (9 ss)i(g™v)
(g, s ss)i(g”,v)

(g, s)4(g’, return(v))

(g, s ss)4(g’,return(v))
Variables:
gQx =v
(g, x)4(g, V)
(g, e)t(g’v)
(g, x=€) I (gQx< v, V)

Utrecht University

e Function calls:

gQf =int f (int x;... int Xx,)s

(g, (es,...,en) 4(g’, (Vi,...,Un))
(g’, {int x; =vs;...;8})4(g”, return(v))

9, f (es,....ea) b (g7, V)

gQf=1int f (int x;... int Xx,)s

(g’ (61,...,311)) U (g ’, (v1,...,Un))
(g, {int x; =vs1;...;S)i(g”, V)

(gf(el; .,€)U(g)

(g, (e1,....,en)) b (g’, (Vs,...,vn)) Wwhat about the evaluation order? o
Utrecht University

int
int
int

if

}

result = 1;
yA = 0;
f(int x) {
(x > 0) {
x =x - 1;
result =

2 * result;
f(x);
return Xx;
else {}

return Xx;

}

Z

= f (2);

(g.1, ss)u(g’.l, rv)

int x = 2;

int result = 1; g@f:

int z = 0;

f (int x) {.}

int f (int x.... int Xx»)s

* ol SENg,)
(g’, {int x; =v1;...;s}) L(g”, return(v))

9, f (es,....en))t (g, V)

int x = 2;

int result = 1;
int z = 0;

if (x > 0) {x = x-1; result = ...; £(x) |
f (int x) {..}

(g, {l'ss})u

(g, mv)

int result = 1
int z = 0;

{int x = 2; if (x > 0)..
f (int x) {.}

int result =1
int z = 0; £(2) U (g, e)i(gv)
f (int x) {..} ,
(9, x=e;)4 (g @x<—v, V)
int result = 1;
int z = 0; z = £(2) U ~ﬁW%

7 (= w = Utrecht University

int result = 1;
int z = 0;
int f(int x) {
if (x > 0) {
x =x - 1;
result =
2 * result;
f(x);
return Xx;
} else {}
return Xx;

+
= 1 (D)

int x = 2;

int result = 1;
int z = 0;

x = x-1; result = ..; £(x) U
£ (int) {.}
int x = 2;
int result = 1;
int z = 0; if (x > 0) {x = x-1; result = ..; f£(x) |
f (int x) {.}
int result = 1;
int z = 0; {int x = 2; if (x > 0).. |
f (int x) {.}
int result = 1;
int z = 0; £(2) U
f (int x) {.}
int result = 1;
int z =05 o _ £(2) | §§w%%

f (int x) {..}

G

N

Utrecht University

int result = 1;
int z = ()3
int f(int x) {
if (x > 0) {
X =x - 1;
result =
2 * result;
f(x);
return Xx;
} else {}
return Xx;

+
z =1 (2);

(9, e)i(g’v)

int x = 0;
int x = 1;

int result = 4;
int z = 0;
f (int x) {.}

int x = 0;
int x = 1;

int result =
int z =
f (int x) {.}

int x = 1;
int x = 1;

int result = 2;
int z = 0;
f (int x) {.}

°
e

int x = 1;

int result = 2;
int z = 0;
f (int x) {.}

int x = 1;

int result =
int z =
f (int x) {.}

(9, x=€;)8 (g@xv, V)

int x = 2;

int result = 1;
int z =0
f (int x) {.}

f(x) U
x = x-1;
f(x) U
X = x-1;

f(x);

.
e

4,
0;

4,
0;

0

f(x); return x U

1

int x = 0;
int x = 1;

int result = 4;

int z = 0;
f (int x) {.}
int x = 1;

int result = 4;
int z = 0;

return x | ¢ (int x) {.}

0

1

int result = 1;
int z = 03
int f(int x) {
if (x > 0) {
x =x - 1;
result =
2 * result;
f(x);
return Xx;

} else {}

return Xx;

+
z =f (2);

int x = 2;

int result = 1;
int z = 0;
f (int x) {.}

int x = 1;

int result = 4;
int z = 0;

x = x-1; result = .; £(X) ! ;¢ (ine x) {.} 1

int x = 2;

int result = 1;
int z =0
f (int x) {..}

if (x > 0) {..f(x)} |

int result = 1;

int x = 1;

int result = 4;
int z = 0;
f (int x) {.} 1

int result = 4;

int z = 0: . . int z = O,
’ nt = 2; 1f > 0).. :
R R A L
int result = 1; int result = 4;
int z = 0; £(2) U int z = 0;
f (int x) {.} f (int x) {.} 1
int result = 1; int result = 4;
int z = 0; int z = 1; N/
) z = £(2) U EN Y . .
£ (int x) {.} £ (int x) {.} 1 %T§ Utrecht University

NI

= M < Utrecht University

N

Concepts of Programming Language Design
Reference lypes

Gabriele Keller
Tom Smeding

e \ariables in TinyC represent values stored in a fixed memory location
- assigning a new value to a variable updated the value in that location
e Reference types refer to a location a value is stored
e Reference types are usually implemented as pointers, that is as address into the
memory of a process (often with some associated meta data, such as the size of
the data pointed to)
e Most high-level languages support or use reference types in one way or another

- explicitly, exposing the implementation as pointer: G

- explicitly, in an abstract way: only expose the interface (creation, read and write
a value)

- Implicitly, using them behind the scenes to implement data structures

Utrecht University

e Haskell has not explicit built-in reference types, but Data.lORef provides it as

abstract data type:
newIORef *: a —> I0 (IORef a)
writeIORef :: a —> IORef a —> I0 ()
readIORef :: IORef —> J0 a

¢ these are functions which have an effect on the world (or depend on the
current state of the world)

xRef
——> | 1D
main = do x1
XxRef <- newIORef 5
X1 <— readIORef xRef 5
writeIORef xRef 10
X2 <—- readIORef xRef N
putStrLn ("x1: " ++ (show x1) ++ " x2: " ++ (show x2)) 10

Utrecht University

main = do
XRef <— newIORef 5
X1 <- readIORef xRef
let yRef = xRef
writeIORef yRef 10
x2 <— readIORef xRef

putStrLn ("x1: " ++ (show x1) ++ " x2: " ++ (show x2))

xRef

——> (1%

9

x1

- x1l: 5 x2: 10

X2

10
yRef

o # Utrecht University

e Haskell also uses references behind the scenes

- even basic values (Int etc) are internally represented as ys
references to these values (boxed representation) or to as /
to yet unevaluated computations

;l\ XS
- enables sharing /
: A
1
let \l\‘
xs = [1,2,3]
0 2] Ll

yS
3

Utrecht University

® The boxed representation is an effective representation for sharing (lazy

evaluation!)
let %
X = sum [1,2..10]
y =2 % X
7z = 3 + X (sum [1,2..10])

¢ This means evaluation has a side effect
(this can be problematic for parallel

execution) Z 3\
(3+¢)
Utrecht University

® The boxed representation is an effective representation for sharing (lazy

evaluation!)
let X |
x = sum [1,2..10] \\\\\\\\\\s
y = 2 % X
z =3 + X 29

e [his means evaluation has a side effect

AN
(27
(this can be problematic for parallel
execution) Z 3\
(3 +
Utrecht University

® The boxed representation is an effective representation for sharing (lazy

evaluation!)
let X |
x = sum [1,2..10] \
y = 2 % X
z =3 + X 29

e [his means evaluation has a side effect

r B
110
(this can be problematic for parallel
execution) Z 3\
(3 +¢)
Utrecht University

® |n functional languages, it doesn’'t matter for the semantics of a program whether
a value has a boxed or unboxed representation

- It does affect performance, as dereferencing is expensive

- in Haskell, it's possible to explicitly use unboxed types (denoted by # -
Int#...)

Utrecht University

® |n languages with side effect, it is important to know whether we deal with
reference or value types to understand the behaviour of

- function calls
- assignments

e Unfortunately, this is not uniform, even across closely related languages

Utrecht University

public class MyClass
{

public int value;

}

public class Program
{

public static void Main()

{
MyClass obl = new MyClass();

obl.value = 20;
MyClass ob2 = obl;
obl.value = 10;

Console.WriteLine("ob2.value = {0}", ob2.value);

class MyClass
{

public: int value;

};

int main() {
MyClass obl;

obl.value = 20;

MyClass ob2 = obl;

obl.value = 10;

std: :cout << "obj2.value = "<< ob2.value;
return O;

<

=<
—

N

Utrecht University

Check out differences in value & reference type classification when
switching to a new language!

Language Value type Reference type
3] booleans, characters, integer numbers, floating-point numbers, classes (including .
C++ .) . references, pointers
strings, lists, maps, sets, stacks, queues), enumerations
4] . . . arrays, classes (including immutable strings, lists, dictionaries, sets, stacks, queues,
Javal booleans, characters, integer numbers, floating-point numbers]) .
enumerations), interfaces, null pointer
5] structures (including booleans, characters, integer numbers, floating-point numbers, classes (including immutable strings, arrays, tuples, lists, dictionaries, sets, stacks,
point in time i.e. DateTime, optionals i.e. Nullable<T>), enumerations queues), interfaces, pointers
structures (including booleans, characters, integer numbers, floating-point numbers,
1617 fixed-point numbers, mutable strings, tuples, mutable arrays, mutable dictionaries, .
Swift .))]) functions, closures, classes
mutable sets), enumerations (including optionals), and user-defined structures and
enumerations composing other value types.
classes (including immutable booleans, immutable integer numbers, immutable floating-
Pythonla] point numbers, immutable complex numbers, immutable strings, byte strings, immutable
byte strings, immutable tuples, immutable ranges, immutable memory views, lists,
dictionaries, sets, immutable sets, null pointer)
9] immutable booleans, immutable floating-point numbers, immutable integer numbers . , . .
JavaScript L) i) objects (including functions, arrays, typed arrays, sets, maps, weak sets and weak maps)
(bigint), immutable strings, immutable symbols, undefined, null
immutable characters, immutable integer numbers, immutable floating-point numbers,
OCaml('® immutable tuples, immutable enumerations (including immutable units, immutable))) o L))
[11] , arrays, immutable strings, byte strings, dictionaries (including pointers)
booleans, immutable lists, immutable optionals), imnmutable exceptions, immutable
formatting strings
https://en.wikipedia.org/wiki/Value type and reference type

Utrecht University

e Also called pass-by-reference/pass-by-value
e \What is the calling convention for procedures/functions/methods”
e Call by value

- like in TinyC (and O): the value of the argument expression gets bound to the
formal parameter.

- function calls don’t affect the values of the variables in the caller

e Java, C#, C++ are all call by value, but since classes are reference types in C# &
Java, the behaviour is different (the reference gets copied, in C++, the object
gets copied)

Utrecht University

void swapl (int x, int y) {

int tmp;
tmp = X;

void swap2 (int * x, int * y) {

int tmp;
tmp = *x;
*X - *y;
*y = tmp;
}
int a = 5;
int b = 7;

swapl (a, b);
swap2 (&a, &b);

Utrecht University

e Fortran is always call by reference - even on constant values!

e Java, C#, C++ are all call by value, but since classes are reference types in C# &
Java, the behaviour is different (the reference gets copied, in C++, the object
gets copied)

Utrecht University

prgm = gdecs rdecs stmt

gdecs = € | gdec gdecs

gdec = fdec | vdec

vdecs = € | vdec vdecs

type = int Ident | int * Ident

vdec = type=1v;

rdecs = € | rdec rdecs

rdec = int x Ident= alloc(v);

fdec = type Identy (arguments) stmt

stmit = expr; | if ezpr then stmt; else stmity; | return ezpr; |
{ vdecs rdecs stmts } | while (expr) stmt

stmts = € | stmt stmts

expr = Num | Ident | * Ident | expr) + expry | expr; — expry |
Ident = expr | *Ident = expr | Ident (exprs)

arguments := € | type Identy , arguments

* Utrecht University

Adding Pointers

* What is a pointer?

NI
= ¥ = Utrecht University

NS

