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e \What is imperative/ procedural programming?

- declarative (functional and logic) languages describe what needs to be done,
Imperative languages how it needs to be done.

- strictly speaking, procedural programming is imperative programming with
subroutines/procedures (often used is synonymously)

- closer to machine language, where the program is also expressed in terms of
commands:

» store/update value x at location y

» add values stored in a certain location
- more abstract than machine language:

» symbolic names, subroutines, loop constructs
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e Assembly languages (around the 1950’s)

a more human-readable representation of machine code instructions

mnemonic codes to represent machine language instructions

early examples:

» Assembly for UNIVAC | and Assembly for IBM 701.

more recently
» 70’s: for Intel’s 8080 and x86 architecture
» 80’s: ARM

o Still used

device drivers, micro controllers

real time systems

parts of an operating system (boot loaders)

flrmware

# Utrecht University



The evolution of imperative and procedural programming languages

e Fortran (1957):

(Formula Translation)

developed by IBM (John W. Backus
was one of the designers)

one of the earliest high-level
programming languages.

! Procedure to sum the elements of an array
function sumArray(arr, size) result(sum)

designed for scientific and ey Ly
Earwggir]EBEBrir]gJ (Déalchjléiti()r]ES integer :: sum

integer :: 1

sum = O

introduced the concept of do i =1, size

sum = sum + arr(i)

procedural programming end do

end function sumArray
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The evolution of imperative and procedural programming languages

e Algol (1958):
- Algorithmic Language

- developed by a committee of
European and American computer
scientists (Backus, Bauer, Green,
Katz, McCarthy, Naur, Perlis,
Rutishauser, Samelson, van
Wijngaarden, Vauquois, Wegstein,
Woodger)

PROCEDURE sumArray(arr, size)

- influential role in the development of VALUE arr, size; INTEGER arrleize], size;

. INTEGER i, sum
programming languages
sum := 0
FOR i1 := 1 STEP 1 UNTIL size DO
sum := sum + arr[i]

- Introduced the concept of block
structures.

RETURN sum
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The evolution of imperative and procedural programming languages

e Cobol (1959):

Common Business-Oriented
Language

developed by Grace Hopper

- s
| pe— ’ ®

for business, finance, admin ‘1
tasks \ &x,
=5

focus on readability

PROCEDURE DIVISION.
PERFORM VARYING array-element FROM 1 BY 1
UNTIL array-element > 5

d@S'gned tO be easy fOr ‘nOn- ADD array-element TO totalSum
] END-PERFORM.
programmers

DISPLAY 'The sum of the array elements is: ' totalSum.
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The evolution of imperative and procedural programming languages

e BASIC

Beginner's all-purpose symbolic instruction code, by

John G. Kemeny, Thomas E. Kurtz, 1963

IS a family of programming languages

BASIC was designed to provide an easy entry point to computer
programming for non-specialists

» Microsoft BASIC

» Commodore BASIC

10 REM Procedure to sum the elements of an array
20 PROCEDURE sumArray(arr(), size, sum)

: 30 DIM arr(5)
) Atan BAS'C 40 LET sum = 0

50 FOR 1 = 1 TO size

60 LET sum = sum + arr(i)

» Sinclair BASIC 70 NEXT i

80  RETURN
90 END PROCEDURE
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The evolution of imperative and procedural programming languages

e Pascal (1970):

- Designed by Niklaus Wirth, Pascal was

created for teaching structured
programming.

- |t emphasised clarity and good
programming practices

- contributing to the development of
modern programming methodologies.

procedure SumArray(arr: IntArray;
size: Integer; var sum: Integer);
var
i: Integer;

begin

sum := 0;
for i := 1 to size do
sum := sum + arr([i];
end;
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e (C(1972):

Successor of B (BCPL - Basic Combined
Programming Language).

Developed by Dennis Ritchie at Bell Labs,
C became a widely used procedural
programming language.

C influenced many later languages

Development language of the Unix
operating system.
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e Historically, not strong on abstraction
- more modern imperative languages included support for modularisation

- trend towards object oriented programming (e.g., C to C++) with the intention
of improving maintainability

e Developments generally
- towards structured control flow (loops etc) away from arbitrary jumps/gotos

- more control of the name space (modules with control of visibility vs inclusion
of full files)
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e An imperative language with the following features:

Global function (procedure) declarations

Global and local variables

Assignment

lteration: while-loops

Conditional: if-statements

Only a single value type: int

For now, no pointers or the like
e Static semantics: how to model global and local declarations, blocks

e Dynamic semantics: side effects, non-local control flow (return statements)
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o BNF:

prgm
gdecs
gdec

vdecs

vdec
fdec
stmt

stmts
expr

arguments ::
exTprs

gdecs stmt

e | gdec gdecs

fdec | vdec

e | vdec vdecs

int Ident= Int;

int Ident (arguments) stmt

expr; | if exprthen stmtelse stmt; | return expr; |

{ vdecs stmts } | while ( expr) stmt

e | stmt stmts

Int | Ident | expr+ expr | expr- expr |
Ident= expr | Ident (exprs)

€ | int Ident , arguments

€ | expr, exprs
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e Programs consist of - prgm = gdecs stmt

» a sequence of global variable and function declarations and

» a statement

e Function declarations | fdec n= int Ident (arguments) stmt \
int f (int x1, int =2, ...) stmt
e Variable declarations vdec = int Ident=Int;

int € = v;
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e Statements versus expressions

- statements are mainly about effects (but also have values)
> expr;
» if expr then simi else stmt
» while (expr) stmi

» return (expr) ;

» {ldec stmts}: a block - local variable declarations followed by a sequence
of statements
- expressions are about values (but can also have effects)

» arithmetic expressions

» assignments: ¢ = expr
» function calls: f (expr:, exprsz, ..., exprs,)

» variables, integer values
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e \/ariables

have to be Initialised

not true variables in the mathematical sense (MinHs’s are), but refer to the

(changeable) content of a (fixed) memory location

we assume that variable names are not re-used their scope

Example program:

int result = 0;

int div (int x, int y) {

int res = 0;
while (x > y) {
X =X -Y;
res = res + 1;
+

return res,;

+

result = div (16, 5);
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¢ \\Ve skip this step - we know how to do it
e \Ve continue with the concrete syntax (readability!)

e For the abstract syntax for TinyC, we would use first order abstract syntax,
since the variables in TinyC do not behave like mathematical variables (so
substitution is not allowed)
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e \What kind of properties do we have to check?
- Are all variables and functions declared before use”
- Are functions called with the correct number of arguments?
- What about return statements in functions”

» could we check that every possible control flow in a function block ends
with a return statement”?

» for now, we set the return value to the value of the last expression in the
block in case there is no explicit return statement

e \What kind of structure do we need to maintain for these checks?

- Environment of variables: V = {1, x2,....}

- Environment of functions with their arity: F = {f1: ni, fo: ng,....}
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* Two kinds of language components:

* expressions and statements
* declarations
e Two kinds of judgements:

- well-formed expressions and judgements (given both a variable environment
V and function environment F):

» V, F ~ expr ok givew environments Vv and F, expr /stimt is
well formed
» V, F' = stmt ok

- well-formed declarations (determining a variable and function environment)

» — gdecs decs V, F the global decLathows’gdeos are well formead and declare the
environments vV and F

)
» V, F = ldecs decs V given v and F, the Local decl. Ldecs are well formed ana

declare the new environment Vv’

# Utrecht University
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e (Given a program

gdecs stmt

we have
~ gdecs decs V, F V,F +~ stmt ok

- gdecs stmt ok

That is, the program is well-formed if

» its global declarations are well-formed and declare variables V and functions
F

» and the body statement is well-formed with respect to those global variables
V and functions F

» all variables and functions are declared

» functions are called with the correct number of arguments i
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~ gdecs decs V, F V,F +~ stmt ok

- gdecs stmt ok

int result = 0;
int div (int x, int y) {

int res = 0;
while (x > vy) {
gdecs X = X - Y;
res = res + 1;
}
return res;
}

stmt < result = div (16, 5);

— gdecs decs {result}{div:2}
vV F

{result}{div:2} + result = div (16, 5)ok
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e \Well-formedness of statements; a statement is well-formed if all its constituents
are well-formed:

V,F +~ expr ok V,F +~ expr ok
V,F ~ while (expr) stmt ok

V,F - expr ok V,F \ stmt; ok V,F — stmt; ok
V,F - if (expr) then stmit; else stmts ok

e \Well-formedness of a block:

V,F ~ldecs decs V’ V’uV,F  stmts ok
V,F ~ { ldecs stmts } ok
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{
ldecs  C Lot res = 0; V,F +ldecs decs V’ V’uV,F  stmts ok
while (x > y) {
X =X - y; V,F +~ { ldecs stmts } ok
stmts res = res + 1;
}
return res;
+

{x,y},{div:2}  ldecs ok {x,y,res}t,{div:2}  stmis ok
{x,y},{div:2} ~ { ldecs stmis } ok

# Utrecht University



o \Well-formedness of expressions: an expression is well-formed if
- all of its variables and functions are declared and

- functions are called with the correct number of arguments

reV
V, F - x ok

V, F +~ expr ok reV
V, F+ x = expr ok

V, F +~ expr; ok fineF
V, F + f(expry,...expr,) ok
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e \Well-formedness of individual declarations:

- variable declarations (variable names have to be unigue in the scope)

re¢V
V, F+ int z = v; decs{z}, @

- function declarations (function names, formal parameter names unigue in the scope)

xriegV feF Vu{xi,. x}, Fu{fin} —stmt ok

V, F+~ int f (int x4, ...,int x,) stmt decs @,{f:n}
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e we're describing TinyC’s semantics using a big
step semantics relation

¢ e have to think about how to model the
execution of a program in this framework

e how would we trace the execution on paper”?

int result 0;

int offset = 10;

int £ (int z) {
return (z + offset);

}

int div (int x, int y)
int res = 0;
while (x > y) {
X=X -Y;
res = res + 1;

}

return res;

}

result = div (16, 5);
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¢ \Vhat information do we have to keep track of?
- the current statement
- the values of all variables which are in scope

- in MinHs, we substituted the value of a variable. We can’t do that in TinyC!

f(0) x 0
int result = 1;
int z — 0 f(1) x ! 0
int f(int x) {
if (x > 0) { f(2) x 2 1
x =x - 1;
result = f(3) x 3 2
2 * result;
f(x);
return Xx; Z q 2
} else {}
return Xx; result 1/ 2/ 4 8
}
z =f (3); int f(lnt
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e Machine state needs to contain the current memory state (including code
for functions), and current expression/statement:

int result = O0; int result = 11;

int offset = 10; y result = offset + 1) 1 ( int offset = 10; , 11 >
int div(int ..){} int div@int {3}

e Fvaluation relations

- program execution (g s) 4(g’, rv)
- statement execution: (g, s)4 (g’, rv)
- expression execution: (g, e)4 (g’, v)

where v is a integer value, rv either a integer value or return (v)
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e The environment is an ordered sequence (stack in our example) associating
- variables with integer values

- function names with parameter list and body

— we're overloading the *.” sywmbol here!
e Operations on the ; has nothing to do with *.” to denote
a bound variable in HO abstract syntax

» add &'new declaration (int x = 4) to the environment g:

4)

o
S
N\
|—|.
-]
+
>4
Il

lookup of variable values: g@Qx = 5
» IS currently bound to value 5

» if £ occurs more than once, choose right most binding (upper most in the
diagram). Important that names are unique herel!

lookup of function declaration; g@Qf = int f (int x;, ... int x,)s

# Utrecht University

update of variable values: g@x < 5

» change value of (the right most) x to 5



- program execution (g s) 4 (g, Tv)

(g, s) (g’ rv)
(g s) (g, rv)
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¢ f-Statements:
< (g, €)t(g’,0) (g, s2)4(g”,rv)

(g, if e then s; else sl (g7, 1V)

(g, e)s(g’,v) v£0 (g’ s)u(g”,rv)

(g, if e then s; else s2)i(g” rv)

* while-loops:

(g, e)4(g,0)
(g, while (e) s) (9,0)

(9, e)4(g’v) (g,s; while (e) s)i(g”rv)

(g, while (e) s)!i (g”rv)
- alternatively, in terms of if-statements:

(g, if e then {s;while (e) s} else 0)i(g”,rv)
(g, while (e) s)i(g”,rv)
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* Return statements:

(g, e)4(gv)

(g, return(e))i(g’,return(v))

e Blocks:

(g.1, ss)i(g’.l’, rv)
(g, {Isshy (g, V)

adol Local variables with tnitial value temporarily into
environment, only g is threaded through - the local environment
L/L’ is discarded after the statements Ss are executed
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« Sequence of statements:

(9, 0)4(g.0)

(9, 8)4(gv;) (9 ss)i(g™v)
(g, s ss)i(g”,v)

(g, s)4(g’, return(v))

(g, s ss)4(g’,return(v))
Variables:
gQx =v
(g, x)4(g, V)
(g, e)t(g’v)
(g, x=€) I (gQx< v, V)
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e Function calls:

gQf =int f (int x;... int Xx,)s

(g, (es,...,en) 4(g’, (Vi,...,Un))
(g’, {int x; =vs;...;8})4(g”, return(v))

9, f (es,....ea) b (g7, V)

gQf=1int f (int x;... int Xx,)s

(g’ (61,...,311)) U (g ’, (v1,...,Un))
(g, {int x; =vs1;...;S)i(g”, V)

(gf(el; .,€ )U(g )

(g, (e1,....,en)) b (g’, (Vs,...,vn)) Wwhat about the evaluation order? o
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int
int
int

if

}

result = 1;
yA = 0;
f(int x) {
(x > 0) {
x =x - 1;
result =

2 * result;
f(x);
return Xx;
else {}

return Xx;

}

Z

= f (2);

(g.1, ss)u(g’.l, rv)

int x = 2;

int result = 1; g@f:

int z = 0;

f (int x) {.}

int f (int x.... int Xx»)s

* ol SENg, )
(g’, {int x; =v1;...;s}) L(g”, return(v))

9, f (es,....en))t (g, V)

int x = 2;

int result = 1;
int z = 0;

if (x > 0) {x = x-1; result = ...; £(x) |
f (int x) {..}

(g, {l'ss})u

(g, mv)

int result = 1
int z = 0;

{int x = 2; if (x > 0)..
f (int x) {.}

int result =1
int z = 0; £(2) U (g, e)i(gv)
f (int x) {..} ,
(9, x=e;)4 (g @x<—v, V)
int result = 1;
int z = 0; z = £(2) U ~ﬁW%
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int result = 1;
int z = 0;
int f(int x) {
if (x > 0) {
x =x - 1;
result =
2 * result;
f(x);
return Xx;
} else {}
return Xx;

+
= 1 (D)

int x = 2;

int result = 1;
int z = 0;

x = x-1; result = ..; £(x) U
£ (int ) {.}
int x = 2;
int result = 1;
int z = 0; if (x > 0) {x = x-1; result = ..; f£(x) |
f (int x) {.}
int result = 1;
int z = 0; {int x = 2; if (x > 0).. |
f (int x) {.}
int result = 1;
int z = 0; £(2) U
f (int x) {.}
int result = 1;
int z =05 o _ £(2) | §§w%%

f (int x) {..}

G

N
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int result = 1;
int z = ()3
int f(int x) {
if (x > 0) {
X =x - 1;
result =
2 * result;
f(x);
return Xx;
} else {}
return Xx;

+
z =1 (2);

(9, e)i(g’v)

int x = 0;
int x = 1;

int result = 4;
int z = 0;
f (int x) {.}

int x = 0;
int x = 1;

int result =
int z =
f (int x) {.}

int x = 1;
int x = 1;

int result = 2;
int z = 0;
f (int x) {.}

°
e

int x = 1;

int result = 2;
int z = 0;
f (int x) {.}

int x = 1;

int result =
int z =
f (int x) {.}

(9, x=€;)8 (g@xv, V)

int x = 2;

int result = 1;
int z =0
f (int x) {.}

f(x) U
x = x-1;
f(x) U
X = x-1;

f(x);

.
e

4,
0;

4,
0;

0

f(x); return x U

1

int x = 0;
int x = 1;

int result = 4;

int z = 0;
f (int x) {.}
int x = 1;

int result = 4;
int z = 0;

return x | ¢ (int x) {.}

0

1



int result = 1;
int z = 03
int f(int x) {
if (x > 0) {
x =x - 1;
result =
2 * result;
f(x);
return Xx;

} else {}

return Xx;

+
z =f (2);

int x = 2;

int result = 1;
int z = 0;
f (int x) {.}

int x = 1;

int result = 4;
int z = 0;

x = x-1; result = .; £(X) ! ;¢ (ine x) {.} 1

int x = 2;

int result = 1;
int z =0
f (int x) {..}

if (x > 0) {..f(x)} |

int result = 1;

int x = 1;

int result = 4;
int z = 0;
f (int x) {.} 1

int result = 4;

int z = 0: . . int z = O,
’ nt = 2; 1f > 0).. :
R R A L
int result = 1; int result = 4;
int z = 0; £(2) U int z = 0;
f (int x) {.} f (int x) {.} 1
int result = 1; int result = 4;
int z = 0; int z = 1; N/
) z = £(2) U EN Y . .
£ (int x) {.} £ (int x) {.} 1 %T§ Utrecht University
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e \ariables in TinyC represent values stored in a fixed memory location
- assigning a new value to a variable updated the value in that location
e Reference types refer to a location a value is stored
e Reference types are usually implemented as pointers, that is as address into the
memory of a process (often with some associated meta data, such as the size of
the data pointed to)
e Most high-level languages support or use reference types in one way or another

- explicitly, exposing the implementation as pointer: G

- explicitly, in an abstract way: only expose the interface (creation, read and write
a value)

- Implicitly, using them behind the scenes to implement data structures
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e Haskell has not explicit built-in reference types, but Data.lORef provides it as

abstract data type:
newIORef *: a —> I0 (IORef a)
writeIORef :: a —> IORef a —> I0 ()
readIORef :: IORef —> J0 a

¢ these are functions which have an effect on the world (or depend on the
current state of the world)

xRef
——> | 1D
main = do x1
XxRef <- newIORef 5
X1 <— readIORef xRef 5
writeIORef xRef 10
X2 <—- readIORef xRef N
putStrLn ("x1: " ++ (show x1) ++ " x2: " ++ (show x2)) 10
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main = do
XRef <— newIORef 5
X1 <- readIORef xRef
let yRef = xRef
writeIORef yRef 10
x2 <— readIORef xRef

putStrLn ("x1: " ++ (show x1) ++ " x2: " ++ (show x2))

xRef

——> (1%

9

x1

- x1l: 5 x2: 10

X2

10
yRef

o # Utrecht University




e Haskell also uses references behind the scenes

- even basic values (Int etc) are internally represented as ys
references to these values (boxed representation) or to as /
to yet unevaluated computations

;l\ XS
- enables sharing /
: A
1
let \l\‘
xs = [1,2,3]
0 2] Ll

yS
3
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® The boxed representation is an effective representation for sharing (lazy

evaluation!)
let %
X = sum [1,2..10]
y =2 % X
7z = 3 + X (sum [1,2..10])

¢ This means evaluation has a side effect
(this can be problematic for parallel

execution) Z 3\
(3+¢)
# Utrecht University




® The boxed representation is an effective representation for sharing (lazy

evaluation!)
let X |
x = sum [1,2..10] \\\\\\\\\\s
y = 2 % X
z =3 + X 29

e [his means evaluation has a side effect

AN
(27
(this can be problematic for parallel
execution) Z 3\
(3 +
# Utrecht University




® The boxed representation is an effective representation for sharing (lazy

evaluation!)
let X |
x = sum [1,2..10] \
y = 2 % X
z =3 + X 29

e [his means evaluation has a side effect

r B
110
(this can be problematic for parallel
execution) Z 3\
(3 +¢ )
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® |n functional languages, it doesn’'t matter for the semantics of a program whether
a value has a boxed or unboxed representation

- It does affect performance, as dereferencing is expensive

- in Haskell, it's possible to explicitly use unboxed types (denoted by # -
Int#...)
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® |n languages with side effect, it is important to know whether we deal with
reference or value types to understand the behaviour of

- function calls
- assignments

e Unfortunately, this is not uniform, even across closely related languages
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public class MyClass
{

public int value;

}

public class Program
{

public static void Main()

{
MyClass obl = new MyClass();

obl.value = 20;
MyClass ob2 = obl;
obl.value = 10;

Console.WriteLine("ob2.value = {0}", ob2.value);

class MyClass
{

public: int value;

};

int main() {
MyClass obl;

obl.value = 20;

MyClass ob2 = obl;

obl.value = 10;

std: :cout << "obj2.value = "<< ob2.value;
return O;

<

=<
—

N
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Check out differences in value & reference type classification when
switching to a new language!

Language Value type Reference type
3] booleans, characters, integer numbers, floating-point numbers, classes (including .
C++ . ) . references, pointers
strings, lists, maps, sets, stacks, queues), enumerations
4] . . . arrays, classes (including immutable strings, lists, dictionaries, sets, stacks, queues,
Javal booleans, characters, integer numbers, floating-point numbers ] ) .
enumerations), interfaces, null pointer
5] structures (including booleans, characters, integer numbers, floating-point numbers, classes (including immutable strings, arrays, tuples, lists, dictionaries, sets, stacks,
point in time i.e. DateTime, optionals i.e. Nullable<T>), enumerations queues), interfaces, pointers
structures (including booleans, characters, integer numbers, floating-point numbers,
1617 fixed-point numbers, mutable strings, tuples, mutable arrays, mutable dictionaries, .
Swift . ) ) ] ) functions, closures, classes
mutable sets), enumerations (including optionals), and user-defined structures and
enumerations composing other value types.
classes (including immutable booleans, immutable integer numbers, immutable floating-
Pythonla] point numbers, immutable complex numbers, immutable strings, byte strings, immutable
byte strings, immutable tuples, immutable ranges, immutable memory views, lists,
dictionaries, sets, immutable sets, null pointer)
9] immutable booleans, immutable floating-point numbers, immutable integer numbers . , . .
JavaScript L ) i ) objects (including functions, arrays, typed arrays, sets, maps, weak sets and weak maps)
(bigint), immutable strings, immutable symbols, undefined, null
immutable characters, immutable integer numbers, immutable floating-point numbers,
OCaml('® immutable tuples, immutable enumerations (including immutable units, immutable ) ) ) o L ) )
[11] , . . . . . . arrays, immutable strings, byte strings, dictionaries (including pointers)
booleans, immutable lists, immutable optionals), imnmutable exceptions, immutable
formatting strings
https://en.wikipedia.org/wiki/Value type and reference type
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e Also called pass-by-reference/pass-by-value
e \What is the calling convention for procedures/functions/methods”
e Call by value

- like in TinyC (and O): the value of the argument expression gets bound to the
formal parameter.

- function calls don’t affect the values of the variables in the caller

e Java, C#, C++ are all call by value, but since classes are reference types in C# &
Java, the behaviour is different (the reference gets copied, in C++, the object
gets copied)
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void swapl (int x, int y) {

int tmp;
tmp = X;

void swap2 (int * x, int * y) {

int tmp;
tmp = *x;
*X - *y;
*y = tmp;
}
int a = 5;
int b = 7;

swapl (a, b);
swap2 (&a, &b);

# Utrecht University



e Fortran is always call by reference - even on constant values!

e Java, C#, C++ are all call by value, but since classes are reference types in C# &
Java, the behaviour is different (the reference gets copied, in C++, the object
gets copied)

# Utrecht University



prgm = gdecs rdecs stmt

gdecs = € | gdec gdecs

gdec = fdec | vdec

vdecs = € | vdec vdecs

type = int Ident | int * Ident

vdec = type=1v;

rdecs = € | rdec rdecs

rdec = int x Ident= alloc(v);

fdec = type Identy (arguments) stmt

stmit = expr; | if ezpr then stmt; else stmity; | return ezpr; |
{ vdecs rdecs stmts } | while ( expr ) stmt

stmts = € | stmt stmts

expr = Num | Ident | * Ident | expr) + expry | expr; — expry |
Ident = expr | *Ident = expr | Ident (exprs)

arguments := € | type Identy , arguments
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Adding Pointers

* What is a pointer?

NI
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