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• What is imperative/ procedural programming? 

- declarative (functional and logic) languages describe what needs to be done, 
imperative languages how it needs to be done. 

- strictly speaking, procedural programming is imperative programming with 
subroutines/procedures (often used is synonymously) 

- closer to machine language, where the program is also expressed in terms of 
commands: 

‣ store/update value x at location y 

‣ add values stored in a certain location 

- more abstract than machine language: 

‣ symbolic names, subroutines, loop constructs

TinyC : The essence of imperative and procedural programming



• Assembly languages (around the 1950’s) 

- a more human-readable representation of machine code instructions 

- mnemonic codes to represent machine language instructions 

- early examples: 

‣ Assembly for UNIVAC I and Assembly for IBM 701. 

- more recently 

‣ 70’s: for Intel’s 8080 and x86 architecture 

‣ 80’s: ARM  

• Still used  

- device drivers, micro controllers 

- real time systems 

- parts of an operating system (boot loaders) 

- firmware

The evolution of imperative and procedural  programming languages



• Fortran (1957): 

- (Formula Translation)  

- developed by IBM (John W. Backus 
was one of the designers) 

- one of the earliest high-level 
programming languages. 

- designed for scientific and 
engineering calculations 

- introduced the concept of 
procedural programming

  ! Procedure to sum the elements of an array 
  function sumArray(arr, size) result(sum) 
    integer, intent(in) :: arr(:) 
    integer, intent(in) :: size 
    integer :: sum 
    integer :: i 

    sum = 0 
    do i = 1, size 
      sum = sum + arr(i) 
    end do 
  end function sumArray 

The evolution of imperative and procedural  programming languages



• Algol (1958): 

- Algorithmic Language 

- developed by a committee of 
European and American computer 
scientists (Backus, Bauer, Green, 
Katz, McCarthy, Naur, Perlis, 
Rutishauser, Samelson, van 
Wijngaarden, Vauquois, Wegstein, 
Woodger) 

- influential role in the development of  
programming languages 

- introduced the concept of block 
structures.

PROCEDURE sumArray(arr, size) 
    VALUE arr, size; INTEGER arr[size], size; 
    INTEGER i, sum 

    sum := 0 
    FOR i := 1 STEP 1 UNTIL size DO 
        sum := sum + arr[i] 

    RETURN sum

The evolution of imperative and procedural  programming languages



• Cobol (1959): 

- Common Business-Oriented 
Language 

- developed by Grace Hopper 

- for business, finance, admin 
tasks 

- focus on readability 

- designed to be easy for ‘non-
programmers’

 PROCEDURE DIVISION. 
    PERFORM VARYING array-element FROM 1 BY 1  
      UNTIL array-element > 5 
        ADD array-element TO totalSum 
    END-PERFORM. 

    DISPLAY 'The sum of the array elements is: ' totalSum. 

The evolution of imperative and procedural  programming languages



• BASIC 

- Beginner's all-purpose symbolic instruction code, by 

- John G. Kemeny, Thomas E. Kurtz, 1963 

- is a family of programming languages 

- BASIC was designed to provide an easy entry point to computer 
programming for non-specialists 

‣ Microsoft BASIC 

‣ Commodore BASIC 

‣ Atari BASIC 

‣ Sinclair BASIC

10 REM Procedure to sum the elements of an array 
20 PROCEDURE sumArray(arr(), size, sum) 
30   DIM arr(5) 
40   LET sum = 0 
50   FOR i = 1 TO size 
60     LET sum = sum + arr(i) 
70   NEXT i 
80   RETURN 
90 END PROCEDURE

The evolution of imperative and procedural  programming languages



• 	 Pascal (1970): 

- Designed by Niklaus Wirth, Pascal was 
created for teaching structured 
programming. 

- It emphasised clarity and good 
programming practices 

-  contributing to the development of 
modern programming methodologies.

procedure SumArray(arr: IntArray;  
                   size: Integer; var sum: Integer); 
var 
  i: Integer; 
begin 
  sum := 0; 
  for i := 1 to size do 
    sum := sum + arr[i]; 
end; 

The evolution of imperative and procedural  programming languages



• 	 C (1972): 

- Successor of B (BCPL - Basic Combined 
Programming Language). 

- Developed by Dennis Ritchie at Bell Labs, 
C became a widely used procedural 
programming language. 

- C influenced many later languages  

- Development language of the Unix 
operating system.

The evolution of imperative and procedural  programming languages



• Historically, not strong on abstraction 

- more modern imperative languages included support for modularisation 

- trend towards object oriented programming (e.g., C to C++) with the intention 
of improving maintainability  

• Developments generally 

- towards structured control flow (loops etc) away from arbitrary jumps/gotos 

- more control of the name space (modules with control of visibility vs inclusion 
of full files)

TinyC : The essence of imperative and procedural programming



• An imperative language with the following features: 

- Global function (procedure) declarations 

- Global and local variables 

- Assignment 

- Iteration: while-loops 

- Conditional: if-statements 

- Only a single value type: int

- For now, no pointers or the like

• Static semantics: how to model global and local declarations, blocks 

• Dynamic semantics: side effects, non-local control flow (return statements)

TinyC : The essence of imperative programming



• BNF:

TinyC : The essence of imperative programming



• Programs consist of 

‣ a sequence of global variable and function declarations and 

‣ a statement 

• Function declarations 

• Variable declarations

Concrete Syntax

int f (int x1, int x2, ...) stmt

int x = v;



• Statements versus expressions 
- statements are mainly about effects (but also have values) 
‣ expr; 

‣ if expr then stmt else stmt 

‣ while (expr) stmt 

‣ return (expr); 

‣ {ldec stmts}: a block - local variable declarations followed by a sequence 
of statements 

- expressions are about values (but can also have effects) 
‣ arithmetic expressions 
‣ assignments: x = expr 

‣ function calls: f (expr1, expr2, ..., exprn) 

‣ variables, integer values

Concrete Syntax



• Variables  

- have to be initialised 

- not true variables in the mathematical sense (MinHs’s are), but refer to the 
(changeable) content of a (fixed) memory location 

- we assume that variable names are not re-used their scope 

- Example program:

Concrete Syntax

int result = 0; 
int div (int x, int y) { 
  int res = 0; 
  while (x > y) { 
    x = x - y; 
    res = res + 1; 
  }  
  return res; 
} 

result = div (16, 5);



• We skip this step - we know how to do it 

• We continue with the concrete syntax (readability!)  

• For the abstract syntax for TinyC,  we would use first order abstract syntax, 
since the variables in TinyC do not behave like mathematical variables (so 
substitution is not allowed)

Abstract Syntax



• What kind of properties do we have to check? 

- Are all variables and functions declared before use? 

- Are functions called with the correct number of arguments? 

- What about return statements in functions? 

‣ could we check that every possible control flow in a function block ends 
with a return statement? 

‣ for now, we set the return value to the value of the last expression in the 
block in case there is no explicit return statement 

• What kind of structure do we need to maintain for these checks? 

- Environment of variables: V = {x1, x2,....} 

- Environment of functions with their arity: F = {f1 : n1, f2 : n2,....}

Static Semantics



• Two kinds of language components: 
★ expressions and statements 
★ declarations 

• Two kinds of judgements: 
- well-formed expressions and judgements (given both a variable environment 
V and function environment F): 

‣ V, F ⊢ expr ok 

‣ V, F ⊢ stmt ok      

- well-formed declarations (determining a variable and function environment) 
‣ ⊢ gdecs decs V, F 

‣ V, F ⊢ ldecs decs V’ 

- Note: we write ⊢ expr ok   instead of ∅,∅ ⊢ expr ok   

Static Semantics

given environments V and F, expr /stmt is  
well formed

the global declarations gdecs are well formed and declare the  
environments V and F

given V and F, the local decl. ldecs are well formed and  
declare the new environment V’ 



• Given a program  

      gdecs stmt  

 we have

Static Semantics

		⊢ gdecs stmt ok

⊢ gdecs decs V, F         V,F ⊢ stmt ok

  That is, the program is well-formed if 

‣ its global declarations are well-formed and declare variables V and functions 
F 

‣ and the body statement is well-formed with respect to those global variables 
V and functions F 

‣ all variables and functions are declared 

‣ functions are called with the correct number of arguments



Static Semantics

int result = 0;
int div (int x, int y) {
  int res = 0;
  while (x > y) {
    x = x - y;
    res = res + 1;
  } 
  return res;
}

result = div (16, 5);

gdecs

⊢ gdecs decs {result}{div:2} 
V F

stmt

{result}{div:2}  ⊢ result = div (16, 5)ok 

		⊢ gdecs stmt ok
⊢ gdecs decs V, F         V,F ⊢ stmt ok



V,F ⊢ { ldecs stmts } ok

• Well-formedness of statements: a statement is well-formed if all its constituents 
are well-formed: 

Static Semantics

V,F ⊢  while (expr) stmt ok
V,F ⊢ expr ok        V,F ⊢ expr ok

V,F ⊢ if (expr) then stmt1 else stmt2 ok
V,F ⊢ expr ok    V,F ⊢ stmt1 ok     V,F ⊢ stmt1 ok

• Well-formedness of a block: 

V,F ⊢ldecs decs V’        V’ ∪V,F ⊢ stmts ok 



Static Semantics

{ 
  int res = 0; 
  while (x > y) { 
    x = x - y; 
    res = res + 1; 
  }  
  return res; 
} 

ldecs

stmts

{x,y},{div:2} ⊢ { ldecs stmts } ok
{x,y},{div:2} ⊢ ldecs ok {x,y,res},{div:2} ⊢ stmts ok

V,F ⊢ { ldecs stmts } ok
V,F ⊢ldecs decs V’        V’ ∪V,F ⊢ stmts ok 



• Well-formedness of expressions: an expression is well-formed if 

- all of its variables and functions are declared and 

- functions are called with the correct number of arguments

Static Semantics

V, F ⊢ x ok
x ∈ V 

V, F ⊢ x = expr ok
V, F ⊢ expr ok      x ∈ V

V, F ⊢ f(expr1,...exprn) ok
V, F ⊢ expri ok      f : n ∈ F



• Well-formedness of individual declarations: 

- variable declarations (variable names have to be unique in the scope) 

- function declarations (function names, formal parameter names unique in the scope)

Static Semantics

V, F ⊢  int x = v; decs 
x ∉ V 

V, F ⊢  int f (int x1,...,int xn) stmt decs  

xi ∉ V   f ∉ F    V ∪ {x1,... xn}, F ∪ {f:n} ⊢stmt ok

	{x}, ∅

∅,{f:n}



• we’re describing TinyC’s semantics using a big 
step semantics relation ⇓  

• we have to think about how to model the 
execution of a program in this framework 

• how would we trace the execution on paper?

Dynamic Semantics

int result = 0;

int offset = 10;

int f (int z) {
  return (z + offset);
}

int div (int x, int y) {
  int res = 0;
  while (x > y) {
    x = x - y;
    res = res + 1;
  } 
  return res;
}

result = div (16, 5);



• What information do we have to keep track of? 

- the current statement 

- the values of all variables which are in scope 

- in MinHs, we substituted the value of a variable. We can’t do that in TinyC!

Big Step Dynamic Semantics

int result = 1; 
int z      = 0; 
int f(int x) { 
 if (x > 0) { 
    x = x - 1; 
    result =  
      2 * result; 
    f(x); 
    return x; 
  } else {} 
  return x; 
} 
z = f (3);

x       3

result  1

z       0

f(3)

f(2) x       2

f(1) x       1

f(0) x       0

/ 2

/ 2

/ 1

/ 4

/ 0

/ 8

/ 2

int f(int…



• Evaluation relations 

- program execution     (g s) ⇓(g’, rv) 

- statement execution:   (g, s)⇓ (g’, rv)  

- expression execution:  (g, e)⇓ (g’, v) 

 where v is a integer value, rv either a integer value or return(v)

Big Step Dynamic Semantics

int result =  0; 
int offset = 10; 
int div(int …){}

• Machine state needs to contain the current memory state (including code 
for functions), and current expression/statement:

, result = offset + 1 ⇓
int result = 11; 
int offset = 10; 
int div(int …){}

, 11



• The environment is an ordered sequence (stack in our example) associating 
- variables with integer values 
- function names with parameter list and body 

• Operations on the environment: 
- extension: 
‣ add a new declaration (int x = 4) to the environment g:   

• g . (int x = 4) 

- lookup of variable values: g@x = 5 

‣ x is currently bound to value 5 

‣ if x occurs more than once, choose right most binding (upper most in the 
diagram). Important that names are unique here! 

- lookup of function declaration: g@f = int f (int x1,... int xn)s 

- update of variable values: g@x ← 5 

‣ change value of (the right most) x to 5 

Big Step Dynamic Semantics

we’re overloading the ‘.’ symbol here! 
has nothing to do with ‘.’ to denote 

a bound variable in HO abstract syntax



- program execution     (g s) ⇓ (g’, rv)

Big Step Dynamic Semantics

 (g s) ⇓ (g’, rv)
  (g , s) ⇓ (g’, rv)



  (g, while (e) s)⇓(g’’,rv)

 (g, while (e) s)⇓

 (g, while (e) s)⇓

 (g’, s;  while (e) s)⇓(g’’,rv) (g, e)⇓(g’,v)
(g’’,rv)

• if-statements:

Dynamic Semantics

 (g, e)⇓(g’,0)  (g’, s2)⇓(g’’,rv)

• while-loops:

 (g, if e then {s;while (e) s} else 0)⇓(g’’,rv)

• alternatively, in terms of if-statements:

 (g, if e then s1 else s2)⇓

 (g, if e then s1 else s2)⇓

 (g, e)⇓(g’,0)

(g’’,rv)

 (g, e)⇓(g’,v)  v≠0  (g’, s1)⇓(g’’,rv)
(g’’,rv)

(g’,0)



• Return statements:

Dynamic Semantics

 (g, return(e))⇓(g’,return(v))

• Blocks:

 (g, {l ss})⇓
 (g.l, ss)⇓(g’.l’, rv)

 (g, e)⇓(g’,v)

(g’, rv)

add local variables with initial value temporarily  into 
environment, only g is threaded through - the local environment 

l/l’ is discarded after the statements ss are executed 



• Sequence of statements:

Dynamic Semantics

 (g, o)⇓(g,0)

• Variables:

 (g, x)⇓(g, v)
 g@x = v

 (g, x=e) ⇓

 (g, s ss)⇓

 (g, s)⇓(g’, return(v))

  (g, s ss)⇓(g’’,v’)
 (g, s)⇓(g’,v;)   (g’, ss)⇓(g’’,v’)

 (g, e)⇓(g’,v)

(g’@x← v, v)

(g’,return(v))



• Function calls:

Dynamic Semantics

 (g, f (e1,...,en))⇓
 (g’, {int x1 =v1;...;s})⇓(g’’, return(v))

 g@f = int f (int x1,... int xn)s
 (g, (e1,...,en))⇓(g’, (v1,...,vn))

 (g, f (e1,...,en))⇓(g’’, v)

 (g’, {int x1 =v1;...;s})⇓(g’’, v)

 g@f = int f (int x1,... int xn)s
 (g, (e1,...,en))⇓(g’, (v1,...,vn))

(g’’, v)

what about the evaluation order? (g, (e1,…,en))⇓ (g’, (v1,...,vn))



int result = 1; 
int z      = 0; 
int f(int x) { 
 if (x > 0) { 
    x = x - 1; 
    result =  
      2 * result; 
    f(x); 
    return x; 
  } else {} 
  return x; 
 } 
z = f (2);

int result = 1; 
int z      = 0; 
f (int x) {…}

⇓f(2)

int result = 1; 
int z      = 0; 
f (int x) {…}

⇓{int x = 2; if (x > 0)… ⇓

int result = 1; 
int z      = 0; 
f (int x) {…}

⇓if (x > 0) {x = x-1; result = …; f(x)

int x = 2;     

⇓

int result = 1; 
int z      = 0; 
f (int x) {…}

⇓z = f(2)

int result = 1; 
int z      = 0; 
f (int x) {…}

⇓x = x-1; result = …; f(x)

int x = 2;     

⇓

 (g, x=e;)⇓

 (g, e)⇓(g’,v)

(g’@x← v, v)

 (g, f (e1,...,en))⇓
 (g’, {int x1 =v1;...;s})⇓(g’’, return(v))

 g@f = int f (int x1,... int xn)s
 (g, (e1,...,en))⇓(g’, (v1,...,vn))

(g’’, v)

 (g, {l ss})⇓
 (g.l, ss)⇓(g’.l’, rv)

(g’, rv)



int result = 1; 
int z      = 0; 
int f(int x) { 
 if (x > 0) { 
    x = x - 1; 
    result =  
      2 * result; 
    f(x); 
    return x; 
  } else {} 
  return x; 
 } 
z = f (2);

int result = 1; 
int z      = 0; 
f (int x) {…}

⇓x = x-1; result = …; f(x)

int x = 2;     

⇓

int result = 1; 
int z      = 0; 
f (int x) {…}

⇓f(2)

int result = 1; 
int z      = 0; 
f (int x) {…}

⇓{int x = 2; if (x > 0)… ⇓

int result = 1; 
int z      = 0; 
f (int x) {…}

⇓if (x > 0) {x = x-1; result = …; f(x)

int x = 2;     

⇓

int result = 1; 
int z      = 0; 
f (int x) {…}

⇓z = f(2)



int result = 1; 
int z      = 0; 
int f(int x) { 
 if (x > 0) { 
    x = x - 1; 
    result =  
      2 * result; 
    f(x); 
    return x; 
  } else {} 
  return x; 
 } 
z = f (2);

f(x) ⇓

int result = 4; 
int z      = 0; 
f (int x) {…}

int x = 1;     

int x = 0;     

 (g, x=e;)⇓

 (g, e)⇓(g’,v)

(g’@x← v, v)
int result = 1; 
int z      = 0; 
f (int x) {…}

⇓x = x-1;…; f(x); return x

int x = 2;     

⇓

int result = 2; 
int z      = 0; 
f (int x) {…}

f(x)

int x = 1;     

⇓

int result = 2; 
int z      = 0; 
f (int x) {…}

int x = 1;     

⇓

int x = 1;     

x = x-1;…; f(x); return x

0

int result = 4; 
int z      = 0; 
f (int x) {…}

int x = 1;     

int x = 0;     

0

int result = 4; 
int z      = 0; 
f (int x) {…}

int x = 1;     

int x = 0;     

1

int result = 4; 
int z      = 0; 
f (int x) {…}

int x = 1;     

1

int result = 4; 
int z      = 0; 
f (int x) {…}

int x = 1;     



int result = 1; 
int z      = 0; 
int f(int x) { 
 if (x > 0) { 
    x = x - 1; 
    result =  
      2 * result; 
    f(x); 
    return x; 
  } else {} 
  return x; 
 } 
z = f (2);

int result = 1; 
int z      = 0; 
f (int x) {…}

⇓f(2)

int result = 1; 
int z      = 0; 
f (int x) {…}

⇓{int x = 2; if (x > 0)… ⇓

int result = 1; 
int z      = 0; 
f (int x) {…}

⇓if (x > 0) {…f(x)}

int x = 2;     

⇓

int result = 1; 
int z      = 0; 
f (int x) {…}

⇓z = f(2)

int result = 1; 
int z      = 0; 
f (int x) {…}

⇓x = x-1; result = …; f(x)

int x = 2;     

⇓ 1

int result = 4; 
int z      = 0; 
f (int x) {…}

int x = 1;     

1

int result = 4; 
int z      = 0; 
f (int x) {…}

int x = 1;     

1

int result = 4; 
int z      = 0; 
f (int x) {…}

1

int result = 4; 
int z      = 0; 
f (int x) {…}

1

int result = 4; 
int z      = 1; 
f (int x) {…}
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• Variables in TinyC represent values stored in a fixed memory location 

- assigning a new value to a variable updated the value in that location 

• Reference types refer to a location a value is stored 

• Reference types are usually implemented as pointers, that is as address into the 
memory of a process (often with some associated meta data, such as the size of 
the data pointed to) 

• Most high-level languages support or use reference types in one way or another 

- explicitly, exposing the implementation as pointer: C 

- explicitly, in an abstract way: only expose the interface (creation, read and write 
a value) 

- implicitly, using them behind the scenes to implement data structures

Reference types



• Haskell has not explicit built-in reference types, but Data.IORef provides it as 
abstract data type:

Reference types

• these are functions which have an effect on the world (or depend on the 
current state of the world)

   

xRef

510

x1

  5

x2

  10



Reference types

   

xRef

510

x1

  5

x2

  10

  

yRef

x1: 5  x2: 10



• Haskell also uses references behind the scenes 

-  even basic values (Int etc) are internally represented as 
references to these values (boxed representation) or to as 
to yet unevaluated computations 

- enables sharing

Reference types

  

  

  

  

0 

1 

2 

3 

ys

xs



• The boxed representation is an effective representation for sharing (lazy 
evaluation!)

Reference types

• This means evaluation has a side effect 
(this can be problematic for parallel 
execution)

 x

⟪sum [1,2..10]⟫

 y

⟪2 *    ⟫

 z
⟪3 +    ⟫



• The boxed representation is an effective representation for sharing (lazy 
evaluation!)

Reference types

• This means evaluation has a side effect 
(this can be problematic for parallel 
execution)

 x

 y

⟪2 *    ⟫

 z
⟪3 +    ⟫

 55



• The boxed representation is an effective representation for sharing (lazy 
evaluation!)

Reference types

• This means evaluation has a side effect 
(this can be problematic for parallel 
execution)

 x

 y

 z
⟪3 +    ⟫

 55

 110



• In functional languages, it doesn’t matter for the semantics of a program whether 
a value has a boxed or unboxed representation 

- it does affect performance, as dereferencing is expensive 

- in Haskell, it’s possible to explicitly use unboxed types (denoted by # - 
Int#…)

Reference types



• In languages with side effect, it is important to know whether we deal with 
reference or value types to understand the behaviour of 

- function calls 

- assignments 

• Unfortunately, this is not uniform, even across closely related languages

References in stateful languages





https://en.wikipedia.org/wiki/Value_type_and_reference_type

Check out differences in value & reference type classification when 
switching to a new language! 



• Also called pass-by-reference/pass-by-value 

• What is the calling convention for procedures/functions/methods? 

• Call by value 

- like in TinyC (and C): the value of the argument expression gets bound to the 
formal parameter.  

- function calls don’t affect the values of the variables in the caller 

• Java, C#, C++ are all call by value, but since classes are reference types in C# & 
Java, the behaviour is different (the reference gets copied, in C++, the object 
gets copied) 

Call-by-value vs call-by reference



Call-by-value vs call-by reference



• Fortran is always call by reference - even on constant values! 

• Java, C#, C++ are all call by value, but since classes are reference types in C# & 
Java, the behaviour is different (the reference gets copied, in C++, the object 
gets copied) 

Call-by-value vs call-by reference



Adding references



Adding Pointers
• What is a pointer?


