
Concepts of Programming Language Design
Abstract Machines

Gabriele Keller
Tom Smeding

 1

• What is an abstract machine?

- a set of legal states

‣ final and initial states as subset

- A set of instructions altering the state of the machine

‣ it should be possible to implement the operations on a real machine in a
finite (preferably constant) number of steps

• Why use abstract machines at all?

- specifies the semantics of a programming languages

- can specify architecture independent implementation

• We have seen this before

- similar to SOS, but with abstract machines, we care about performance

Abstract Machines

2

• Base line: the M-machine

- small step semantics for MinHs

- transition system embodies essentially a very high-level (= concise, but
inefficient) abstract machine

- we’ll call it the M-machine from now on, to distinguish it from other abstract
machines for MinHs

• Characteristics of the M-machine

- substitution as “machine operation”

‣ why is that not inefficient?

‣ can be avoided by using an environment

- control-flow is not explicit

‣ the search rules determine next subexpression to be evaluated

‣ why is that inefficient?

Control Flow

3

• Example:

Control Flow

 (Plus (Num n) (Num m)) ↦ (Num (n + m))

e1 ↦ e1’

 (Plus (Num n) e2) ↦ (Plus (Num n) e2’)

 e2 ↦ e2’

 (Plus e1 e2) ↦ (Plus e1 e2’)

4

• Example:

Control Flow

Plus(Plus(Num 3)(Num 2))(Num 4) ↦ Plus(Num 5)(Num 4)

Plus(Plus(Plus(Num 3)(Num 2))(Num 4))(Num 6) ↦ Plus(Plus(Num 5)(Num 4))(Num 6)

 Plus(Num 3)(Num 2) ↦ Num 5

depending on the size & nesting depth of the expression,
searching for the next reducible subexpression can be very

expensive!!!

Plus

Plus

Plus

Num Num

Num

Num

3 2

4

6

Plus

Plus

Num

Num

4

6Num

5

↦

5

• Single-step evaluation in Haskell:

Control Flow

‣ Properties:
‣ for each step, the expression has to be traversed to find the next

subexpression that has to be evaluated
‣ makes heavy use of Haskell’s runtime stack

single (Plus (Num n1) (Num n2)) =
 Num (n1 + n2)
single (Plus (Num n1) e) =
 Plus (Num n1) (single e)
single (Plus e1 e2) =
 Plus (single e1) e2
single (Times

data Expr
 = Num Int
 | Plus Expr Expr
 | Times Expr Expr

eval(Num n) = Num n
eval e = eval (single e)

bigStep :: Expr -> Int
bigStep (Num n)
 = n
bigStep (Plus e1 e2)
 = (bigStep e1) + (bigStep e2)

6

• Explicit control flow: C-machine

- explicit stack

- explicit handling of control flow

- variable binding still handled by substitution

- we call this machine the C-machine

• Machine state

- the current expression (as before)

- a control stack of subcomputations (frames) which have to be performed before
the machine terminates

• Initial and final states

- initial states: closed expression and an empty stack

- final states: expression is a value and the stack is empty

The C-machine

7

• Example: addition in three stages

1. Evaluate first argument

‣ first argument becomes current expression

‣ remember to continue with computation, result as first argument

2. Evaluate second argument

‣ second argument becomes current expression

‣ remember to continue with computation, result as second argument

3. Perform addition

The C-machine

8

• How can we denote a stack frame as a term?

• We use terms with holes; e.g.,

‣ suspended computation of addition

‣ waits for the value of its first argument

• Inductive definition of frames:

The C-machine

(Plus ☐ e2)

 (Plus ☐ e) frame
 e expr

 (Plus v ☐) frame
 v value

(Plus e1 ☐) not a frame,

because first argument is
evaluated first!

9

• Alternatively, we could have different operators for the three different variants of
plus frames:

The C-machine

• The first representation makes it easier to see what is missing, but the two
representations are equivalent

 (Plus ☐ e) frame
 e expr

 (Plus v ☐) frame
 v value

								(Plus1 e) frame
 e expr

 v value

(Plus2 v) frame

10

Inductive Definition of Frames

• Addition

• If-expressions

 (If ☐ e1 e2) frame
 e1 expr e2 expr

• Application (same as addition, just replace operator)

• No frames for Recfun (they are expressions/values)

 (Plus ☐ e) frame
 e expr

 (Plus v ☐) frame
 v value

11

Example of frames

 (Plus (Num 2)	☐)

 (Plus ☐ (Num 3))

 (Plus ☐ (If (Const False) (Num 2) (Num 3)))

(If ☐ (Num 2) (Num 3))

(Apply (Recfun Int Int (x. Plus x x)) ☐)

(Apply ☐ (Plus (Num 3) (Num 4)))

 (Plus ☐ (Plus (Num 2) (Num 3)))

 (Plus (Plus (Num 4) (Num 2)) 	☐)

12

• Stacks: f1▷f2 ▷◦	

- f1 is the top-most
frame

- f2 is the second frame

- ◦is the empty stack

• Inductive definition:

Stack and Machine Modes

• Machine modes: the C-machine operates in two modes:

‣ s ≻ e : evaluate expression e under stack s

‣ s ≺ v : return value v to stack s

 ◦ stack

 f ▷ s stack
 f frame s stack

13

Transition Rules for MinHs

• Values (integers, booleans, functions)

 (Plus ☐ e2)	▷ s ≺ v ↦c

 s ≻ (Plus e1 e2) ↦c

 s ≻ v ↦c s ≺ v

• Addition

(Plus ☐ e2)	▷ s ≻ e1

(Plus v ☐) ▷ s ≻ e2

 s ≺ (Num (n1 + n2))(Plus(Num n1) ☐) ▷	s ≺ (Num n2) ↦c

evaluate the value v under

stack s

{ return the value v to the

stack s

{

14

Transition Rules for MinHs

• if-expressions

s ≻ (If e1 e2 e3) ↦c

(If ☐ e2 e3) ▷ s ≺ True ↦c

 (If ☐ e2 e3)▷ s ≺ False ↦c

(If ☐ e2 e3)	▷ s ≻ e1

s ≻ e2

s ≻ e3

15

Transition Rules for MinHs

• Function application

s ≻(Apply e1 e2) ↦c

(Apply ☐ e2) ▷ s ≺ v ↦c

(Apply ⟨f.x.e⟩) ☐) ▷ s ≺ v ↦c

• Observations;

‣ all the inference rules are axioms!

‣ the definition of single-step evaluation in the C-machine is not recursive

‣ the full evaluator is tail recursive (can be implemented using a while-loop)

(Apply ☐ e2) ▷ s ≻ e1

(Apply v ☐) ▷ s ≻ e2

from now on to save some space, we use a more compact notation
for functions and drop the type arguments:

⟨f.x.e⟩ instead of (Recfun 𝜏1 𝜏2 (f.x.e))

 s ≻ e [f := ⟨f.x.e⟩,x := v]

16

• Now, let’s get rid of substitution!

• Let’s first look at a big step environment semantics

Environments

17

• Without substitution, we need an environment η for the evaluation

 ●	env x = v, η	env
 η	env

- An environment η as is an ordered (possibly empty) sequence of bindings

- Lookup (retrieves left-most entry): η(x) = v

 η | e ⇓ v

• Evaluation of expression e under environment η :

(Apply e1 e2) ⇓ v’

e1 ⇓ ⟨f.x.e⟩ e2 ⇓ v e[f := ⟨f.x.e⟩,x := v] ⇓ v’

• Big-step environment rule for application:

Environments

18

η |(Apply e1 e2) ⇓

η | e1 ⇓ ⟨f.x.e⟩ η | e2 ⇓ v f = ⟨f.x.e⟩,x = v,η | e ⇓ v’

v’

 η | x ⇓ v

η(x) = v

 η | f.x.e ⇓ ⟨f.x.e⟩

Environments

19

(recfun add :: x =
 recfun add’ :: y = x + y)) 15 5

• Does this work?

(recfun addOne :: x = x + 1)) 15

• Problem:

- functions as return values may contain free variables, which escape their scopes

- when the body is finally evaluated, the information what the free variables were
bound to is not available anymore

Environments

20

• Solution:
- we need to bundle returned functions with current environment
- we call this a closure
- requires a new form of return values:

- Closures only appear as values during execution - there is no source form

Dealing with partial application

《η , f.x.e》environment which
was current when function

value was created

21

Environments

22

η |(Apply e1 e2) ⇓

η | e1 ⇓《f.x.e,η’ 》 η | e2 ⇓ v f =《f.x.e,η’ 》,x = v,η’ | e ⇓ v’

v’

η | ⟨f.x.e⟩ ⇓《f.x.e,η 》

• Big-step semantics rules for function values and application:

Environments

23

• Closures are necessary whenever we have functions as return values, which contain
variables bound outside that function

• Example: JavaScript

• Let’s get back to our C-machine and add environments:

• We also need an environment η as part of the state

Environments

(Apply ⟨f.x.e⟩ ☐) ▷ s ≺ v ↦c s ≻ e [f := ⟨f.x.e⟩,x := v]

s | η ≻ e

s | η ≺		v

24

Environments

• Just like in the big step semantics, we need to have a special rule
for returning function values:

25

 s |η ≻(Num n) ↦E

 s |η ≻⟨f.x.e⟩ ↦E

 s | η ≺ (Num n)

 s | η ≺《η , f.x.e》

• How does application work?

(Apply《η’, f.x.e》 ☐) ▷	s |η ≺ v ↦E

?

• We need to save the old environment somewhere, and restore it when returning
from the function call

- in TinyC, we discarded the local decs used in the premise:

Environments

 (g, {l ss})⇓
 (g.l, ss)⇓(g’.l’, rv;)

(g’, rv;)

• Let’s use the stack to store the old environment!

26

The E-machine

• In the E-machine

‣ we have frames defined exactly as before

‣ explicit environments, which are a ordered sequence of variable bindings

‣ stacks in the E-machine are sequences of environments and frames

‣ states in the E-machine include an environment

 ●	env x = v, η	env
 η	env

 ◦ stack f ▷ s stack
 f frame s stack

η ▷ s stack
η env s stack

s | η ≻ e

s | η ≺		v
27

The E-machine: Transition Rules

• Variables:
s | η ≻ x ↦E s | η ≺ v , if η(x) = v

• Application:
(Apply 《η’ , f.x.e》) ☐) ▷ s | η ≺ v ↦E η ▷ s|(f =《η’ , f.x.e》, x = v, η’) ≻ e

• Returning from a function call:

η ▷ s | η’ ≺ v ↦E s | η ≺ v

28

restore environment from closure,
add binding for argument x and

function f

