NI

= M < Utrecht University

N

Concepts of Programming Language Design
Abstract Machines

Gabriele Keller
Tom Smeding

e \What is an abstract machine?
- a set of legal states
» final and initial states as subset
- A set of instructions altering the state of the machine

» it should be possible to implement the operations on a real machine in a
finite (preferably constant) number of steps

¢ \Why use abstract machines at all?
- specifies the semantics of a programming languages
- can specify architecture independent implementation
* \We have seen this before

- similar to SOS, but with abstract machines, we care about performance

2 * Utrecht University

e Base line: the M-machine
- small step semantics for MinHs

- transition system embodies essentially a very high-level (= concise, but
inefficient) abstract machine

- we'll call it the M-machine from now on, to distinguish it from other abstract
machines for MinHs

e Characteristics of the M-machine
- substitution as “machine operation”
» why is that not inefficient”?
» can be avoided by using an environment
- control-flow Is not explicit

» the search rules determine next subexpression to be evaluated

5 » why is that inefficient”? * Utrecht University

e Example:

(Plus (Num n) (Num m)) » (Num (n + m))

€s P €2’

(Plus (Num n) e2) » (Plus (Num n) e2’)

e P 61’

(Plus e; e2) » (Plus e; e2’)

4 * Utrecht University

e Example:

Plus Plus
YRR N\
Plus Num /Plus\ Nwr
|
Plus/ \Num 6 - Num Num 6
/N : 4'
Num Num 4

3 2

Plus(Num 3)(Num 2) » Num 5

Plus(Plus(Num 3)(Num 2))(Num 4) » Plus(Num 5) (Num 4)

Plus(Plus(Plus(Num 3)(Num 2))(Num 4))(Num 6) » Plus(Plus(Num 5)(Num 4))(Num 6)

depending on the size § nesting depth of the expression,
searching for the next reductble subexpression can be very &
° expensivelll

: Utrecht University

e Single-step evaluation in Haskell:

data Expr single (Plus (Num nl) (Num n2)) =
= Num Int Num (n1 + n2)
| Plus Expr Expr single (Plus (Num nl) e) =
| Times Expr Expr Plus (Num nl) (single e)

single (Plus el e2) =
Plne (gincle el1) 2

bigStep :: Expr -> Int
bigStep (Num n) I

= n (single e)
bigStep (Plus el e2)

= (bigStep el) + (bigStep e2)

» for each step, the expression has to be traversed to find the next
subexpression that has to be evaluated

» makes heavy use of Haskell’s runtime stack e
* Utrecht University

e Explicit control flow: C-machine

explicit stack

explicit handling of control flow

variable binding still handled by substitution

we call this machine the C-machine
¢ Machine state
- the current expression (as before)

- a control stack of subcomputations (frames) which have to be performed before
the machine terminates

e |nitial and final states
- initial states: closed expression and an empty stack

- final states: expression is a value and the stack is empty

7 * Utrecht University

e Example: addition in three stages
1. Evaluate first argument
» first argument becomes current expression
» remember to continue with computation, result as first argument
2. BEvaluate second argument
» second argument becomes current expression
» remember to continue with computation, result as second argument

3. Perform addition

8 * Utrecht University

e How can we denote a stack frame as a term?

e \\e use terms with holes; e.g.,

(Plus O es)
» suspended computation of addition

» waits for the value of its first argument

¢ |nductive definition of frames:

e expr

(Plus e; O) wot a frame,

(Plus O e) frame because first argument is

evaluated first!

v value

(Plus v 0O) frame

9 # Utrecht University

e Alternatively, we could have different operators for the three different variants of

plus frames:
e expr e expr
(Plus O e) frame (Plusl e) frame
v value v value
(Plus v 0O) frame (Plus2 v) frame

¢ [he first representation makes it easier to see what is missing, but the two
representations are equivalent

10 * Utrecht University

11

o Addition

e expr

(Plus O e) frame

v value

(Plus v O) frame

e [f-expressions

€; erpr €2 exrpr

(If O e; ez) frame

e Application (same as addition, just replace operator)

e No frames for Recfun (they are expressions/values)

* Utrecht University

(Plus O (Num 3))

(Plus 0 (Plus (Num 2) (Num 3)))

(Plus O (If (Const False) (Num 2) (Num 3)))

(Plus (Num 2) 0O)

/1 oy v; 2 P)

(If O (Num 2) (Num 3))

(Apply (Recfun Int Int (x. Plus x x)) 0O)

(Apply O (Plus (Num 3) (Num 4)))

12 * Utrecht University

e Stacks: fi>f> > O

- f11s the top-most
frame

- f2 is the second frame
- OIs the empty stack

¢ |nductive definition:

O stack

f frame s stack
f D> s stack

¢ Machine modes: the C-machine operates in two modes:

» s> e . evaluate expression e under stack s

" » s < v :return value v to stack s * Utrecht University

e \/alues (integers, booleans, functions)

S>UvPcs< v

evaluate the valuwe v under return the value v to the

——
stack s \/‘ \./ stack s

e Addition

s> (Plus e; ez) w»c (Plus O e2) > s> ey

(Plus 0O €2) p s<v b (Plus vO) > s > e

(Plus(Num n;) O) > s < Num 7n2) »c s< (Num (n; + nz))

14 * Utrecht University

e if-expressions

s > (If e; es e3) P (If O ez e3) > s> e;

(If O e» e3) > s < True P s > ez

(If O es eg)> s < False Pc S > eg

15 * Utrecht University

e Function application

s >(Apply e; e2) v (Apply O e2) > s > e;

(Apply O e2) > s < v pe (Apply v 0O) D> s > ep

(Apply (fox.e)) O) > s < v ¢ s > e [f:= {fxe),z:=]

from now own to save some space, we use a more compact notatton

e Observations; for functions and drop the type arguments:
(fix.e) instead of (Recfun 71 72 (f.x.e€))
» all the inference rules are axioms!
» the definition of single-step evaluation in the C-machine is not recursive

» the full evaluator is tail recursive (can be implemented using a while-loop)

16 * Utrecht University

e Now, let’s get rid of substitution!
e | et’s first look at a big step environment semantics

e; U (f.xz.e) e2lv elfi= (fxe),z:=v] Vo’

(Apply e; ez) U v’

e Without substitution, we need an environment n for the evaluation

- An environment m as is an ordered (possibly empty) sequence of bindings

- Lookup (retrieves left-most entry): n(x) = v

7 env
® €nv r=v,7 env

e Fvaluation of expression e under environment 7

nle Vo

17 * Utrecht University

¢ Big-step environment rule for application:

@) = v
nl x Vo n | fxe U (fix.e)
n | eV (fx.e) n| ezl w f=Afixe),z = v, | el v’

7 | (Apply e; e2) U v’

18 * Utrecht University

19

e Does this work?

(recfun addOne

(recfun add ::
recfun add’

.. X

X

x + 1)) 15

X + y))

15

5

* Utrecht University

e Problem:

- functions as return values may contain free variables, which escape their scopes

- when the body is finally evaluated, the information what the free variables were
bound to is not available anymore

20 * Utrecht University

e Solution:

we need to bundle returned functions with current environment

we call this a closure

requires a new form of return values:

environment which { M, f.x. e
was current when function
value was created

Closures only appear as values during execution - there is no source form

o1 * Utrecht University

¢ Big-step semantics rules for function values and application:

n | (fix.e) U {fiz.e,n D

n| eV {foxe, n’) n| el w f=A&fze,n) yz=v,7 | el v’

7 | (Apply e; e2) U v’

29 * Utrecht University

23

e Closures are necessary whenever we have functions as return values, which contain
variables bound outside that function

e Example: JavaScript

function createCounter() {

let count = 1; // This is the variable that will be remembered by the closure.

return function() { // This returned function forms a closure.

count++; // It accesses the “count™ variable from its lexical scope.

return count;
};
¥

const counterl = createCounter(); // Create a counter instance
console.log(counterl());
console.log(counterl());
console.log(counterli());

const counterZ = createCounter();
console.log(counter2());
console.log(counter2());
console.log(counterl());

* Utrecht University

e | et’s get back to our C-machine and add environments:

(Apply (f.x.e) O) > s < w Pc s> e [f:= (fxe),z:=v]

e \We also need an environment 5 as part of the state

s|lm>ce

s|lm<w

24 * Utrecht University

e Just like in the big step semantics, we need to have a special rule
for returning function values:

s |m>Mum n) wrg s| n < (Num n)
s |n >(fxe) e s | <A{n, fx.e)

e How does application work?

(Apply €7’ fxe) DM os |1y < v pp 7

25 * Utrecht University

e \We need to save the old environment somewhere, and restore it when returning
from the function call

- in TinyC, we discarded the local decs used in the premise:

(g.l, ss)u(qg’.l, rv;)
(g, {Lss} (g’, Tv;)

¢ | et’'s use the stack to store the old environment!

26 * Utrecht University

27

¢ |n the E-machine

>

we have frames defined exactly as before

v

explicit environments, which are a ordered sequence of variable bindings

7 env

® env =1, 7 env

v

stacks in the E-machine are sequences of environments and frames

f frame s stack N env s stack
O stack f D s stack n D> s stack

v

states in the E-machine include an environment

s|lm > e

s|lm<w

* Utrecht University

e \/ariables:

s|lm>x pg slm< v ,ifpa)="v

e Application:
(Apply (77, fox.e)) o) > s| < w wE > s|(f =4y, foxe), z =v) > e

\

restore environment from closure,
add binding for argument T and

function f

e Returning from a function call:

n>s|n’<v P S| < v

28 * Utrecht University

