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• What is an abstract machine? 

- a set of legal states 

‣ final and initial states as subset 

- A set of instructions altering the state of the machine 

‣ it should be possible to implement the operations on a real machine in a 
finite (preferably constant) number of steps 

• Why use abstract machines at all? 

- specifies the semantics of a programming languages 

- can specify architecture independent implementation  

• We have seen this before  

- similar to SOS, but with abstract machines, we care about performance

Abstract Machines
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• Base line: the M-machine 

- small step semantics for MinHs 

- transition system embodies essentially a very high-level (= concise, but 
inefficient) abstract machine 

- we’ll call it the M-machine from now on, to distinguish it from other abstract 
machines for MinHs 

• Characteristics of the M-machine 

- substitution as “machine operation” 

‣ why is that not inefficient? 

‣ can be avoided by using an environment 

- control-flow is not explicit 

‣ the search rules determine next subexpression to be evaluated 

‣ why is that inefficient?

Control Flow
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• Example:

Control Flow

 (Plus (Num n) (Num m)) ↦ (Num (n + m))

e1 ↦ e1’

 (Plus (Num n) e2) ↦ (Plus (Num n) e2’)

 e2 ↦ e2’

 (Plus e1  e2) ↦ (Plus e1  e2’)
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• Example:

Control Flow

Plus(Plus(Num 3)(Num 2))(Num 4) ↦ Plus(Num 5)(Num 4)

Plus(Plus(Plus(Num 3)(Num 2))(Num 4))(Num 6) ↦ Plus(Plus(Num 5)(Num 4))(Num 6)

         Plus(Num 3)(Num 2) ↦ Num 5

depending on  the size & nesting depth of the expression, 
searching for the next reducible subexpression can be very 

expensive!!!
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• Single-step evaluation in Haskell:

Control Flow

‣ Properties: 
‣ for each step, the expression has to be traversed to find the next 

subexpression that has to be evaluated 
‣ makes heavy use of Haskell’s runtime stack

single (Plus (Num n1) (Num n2)) =  
  Num (n1 + n2) 
single (Plus (Num n1) e) =  
  Plus (Num n1) (single e) 
single (Plus e1 e2) =  
  Plus (single e1) e2 
single (Times ....     

data Expr  
  = Num   Int 
  | Plus  Expr Expr 
  | Times Expr Expr 

eval(Num n) = Num n 
eval e      = eval (single e)

bigStep :: Expr -> Int 
bigStep (Num n)  
  = n 
bigStep (Plus e1 e2)  
  = (bigStep e1) + (bigStep e2) 
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• Explicit control flow: C-machine 

- explicit stack 

- explicit handling of control flow 

- variable binding still handled by substitution 

- we call this machine the C-machine 

• Machine state 

- the current expression (as before) 

- a control stack of subcomputations (frames) which have to be performed before 
the machine terminates 

• Initial and final states 

- initial states: closed expression and an empty stack 

- final states: expression is a value and the stack is empty

The C-machine
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• Example: addition in three stages 

1. Evaluate first argument 

‣ first argument becomes current expression 

‣ remember to continue with computation, result as first argument 

2. Evaluate second argument 

‣ second argument becomes current expression 

‣ remember to continue with computation, result as second argument 

3. Perform addition

The C-machine

8



• How can we denote a stack frame as a term? 

• We use terms with holes;  e.g.,  

‣ suspended computation of addition 

‣ waits for the value of its first argument 

• Inductive definition of frames:

The C-machine

(Plus ☐ e2 )

       (Plus ☐ e) frame
 e expr

         (Plus v  ☐)  frame 
 v value

(Plus e1 ☐) not a frame, 

because first argument is 
evaluated first! 
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• Alternatively, we could have different operators for the three different variants of 
plus frames:

The C-machine

• The first representation makes it easier to see what is missing, but the two 
representations are equivalent

       (Plus ☐ e) frame
 e expr

         (Plus v  ☐)  frame 
 v value

								(Plus1 e) frame
 e expr

 v value

(Plus2 v) frame 
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Inductive Definition of Frames

• Addition

• If-expressions

       (If ☐  e1  e2) frame
        e1 expr    e2 expr

• Application (same as addition, just replace operator) 

• No frames for Recfun (they are expressions/values)

       (Plus ☐ e) frame
 e expr

         (Plus v  ☐)  frame 
 v value
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Example of frames

 (Plus (Num 2)	☐) 

 (Plus ☐ (Num 3)) 

 (Plus ☐ (If (Const False) (Num 2) (Num 3))) 

(If ☐ (Num 2) (Num 3))

(Apply (Recfun Int Int (x. Plus x x)) ☐)

(Apply  ☐ (Plus (Num 3) (Num 4)))

 (Plus ☐ (Plus (Num 2) (Num 3))) 

 (Plus (Plus (Num 4) (Num 2)) 	☐) 
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• Stacks:  f1▷f2 ▷◦	

- f1 is the top-most 
frame 

- f2 is the second frame 

- ◦is the empty stack 

• Inductive definition:

Stack and Machine Modes

• Machine modes: the C-machine operates in two modes: 

‣ s ≻ e : evaluate expression e under stack s 

‣ s ≺ v : return value v to stack s

        ◦ stack

             f ▷ s stack
 f frame   s stack
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Transition Rules for MinHs

• Values (integers, booleans, functions)

        (Plus ☐ e2)	▷ s ≺ v   ↦c

        s ≻ (Plus e1 e2)    ↦c

        s ≻ v ↦c s ≺ v 

• Addition

(Plus ☐ e2)	▷ s ≻ e1

(Plus v ☐) ▷ s ≻ e2

        s ≺ (Num (n1 + n2))(Plus(Num n1) ☐) ▷	s ≺ (Num n2 )  ↦c

evaluate the value v under 

stack s

{ return the value v to the  

stack s

{
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Transition Rules for MinHs

• if-expressions

s  ≻ (If e1 e2 e3)      ↦c

(If ☐ e2 e3) ▷ s ≺ True                       ↦c

  (If ☐ e2 e3)▷ s ≺ False                  ↦c

(If ☐ e2 e3)	▷ s ≻ e1

s ≻ e2

s ≻ e3
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Transition Rules for MinHs

• Function application

s ≻(Apply e1 e2)  ↦c

(Apply ☐ e2) ▷ s  ≺ v             ↦c

(Apply ⟨f.x.e⟩) ☐) ▷ s ≺ v     ↦c 

• Observations; 

‣ all the inference rules are axioms! 

‣ the definition of single-step evaluation in the C-machine is not recursive 

‣ the full evaluator is tail recursive (can be implemented using a while-loop)

(Apply ☐ e2) ▷ s ≻ e1

(Apply v  ☐) ▷ s ≻ e2

from now on to save some space, we use a more compact notation 
for functions and drop the type arguments: 

⟨f.x.e⟩ instead of (Recfun 𝜏1 𝜏2 (f.x.e))

 s ≻ e [f := ⟨f.x.e⟩,x := v]
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• Now, let’s get rid of substitution! 

• Let’s first look at a big step environment semantics

Environments
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• Without substitution, we need an environment η for the evaluation 

         ●	env x = v, η	env
   η	env  

- An environment η as is an ordered (possibly empty) sequence of bindings 

- Lookup (retrieves left-most entry): η(x) = v

 η | e  ⇓ v

• Evaluation of expression e under environment η :

(Apply e1 e2) ⇓ v’

e1 ⇓ ⟨f.x.e⟩ e2 ⇓ v e[f := ⟨f.x.e⟩,x := v] ⇓ v’



• Big-step environment rule for application:

Environments
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η |(Apply e1 e2) ⇓

η | e1 ⇓ ⟨f.x.e⟩ η | e2 ⇓ v  f = ⟨f.x.e⟩,x = v,η | e ⇓ v’  

v’

     η | x  ⇓ v

η(x) = v

     η | f.x.e ⇓ ⟨f.x.e⟩



Environments
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(recfun add :: x =  
   recfun add’ :: y = x + y))    15  5 
    

• Does this work? 

(recfun addOne :: x =  x + 1)) 15   
    



• Problem:  

- functions as return values may contain free variables, which escape their scopes 

- when the body is finally evaluated, the information what the free variables were 
bound to is not available anymore

Environments
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• Solution: 
- we need to bundle returned functions with current environment  
- we call this a closure 
- requires a new form of return values: 

- Closures only appear as values during execution - there is no source form

Dealing with partial application 

《η , f.x.e》environment which 
was current when function 

value was created
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Environments
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η |(Apply e1 e2) ⇓

η | e1 ⇓《f.x.e,η’ 》 η | e2 ⇓ v  f =《f.x.e,η’ 》,x = v,η’ | e ⇓ v’  

v’

η | ⟨f.x.e⟩ ⇓《f.x.e,η 》

• Big-step semantics rules for function values and application:



Environments
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• Closures are necessary whenever we have functions as return values, which contain 
variables bound outside that function 

• Example: JavaScript



• Let’s get back to our C-machine and add environments: 

• We also need an environment η as part of the state

Environments

(Apply ⟨f.x.e⟩ ☐) ▷ s ≺ v         ↦c         s ≻ e [f := ⟨f.x.e⟩,x := v]

s | η ≻ e

s | η ≺		v
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Environments

• Just like in the big step semantics, we need to have a special rule 
for returning function values:
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       s |η ≻(Num n)    ↦E

      s |η ≻⟨f.x.e⟩     ↦E

 s | η  ≺  (Num n) 

 s | η  ≺《η , f.x.e》 

• How does application work?

(Apply《η’,  f.x.e》 ☐) ▷	s |η  ≺  v   ↦E      
                                       

?



•  We need to save the old environment somewhere, and restore it when returning 
from the function call 

- in TinyC, we discarded the local decs used in the premise:

Environments

 (g, {l ss})⇓
 (g.l, ss)⇓(g’.l’, rv;)

(g’, rv;)

• Let’s use the stack to store the old environment!
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The E-machine

• In the E-machine 

‣ we have frames defined exactly as before 

‣ explicit environments, which are a ordered sequence of variable bindings 

‣ stacks in the E-machine are sequences of environments and frames 

‣ states in the E-machine include an environment

         ●	env x = v, η	env
   η	env  

        ◦ stack f ▷ s stack
 f frame   s stack

η ▷ s stack
η env      s stack

s | η ≻ e

s | η ≺		v
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The E-machine: Transition Rules

• Variables:
s | η ≻ x        ↦E       s | η ≺  v  , if η(x) = v

• Application:
(Apply 《η’ , f.x.e》) ☐) ▷ s | η ≺  v         ↦E   η ▷ s|(f =《η’ , f.x.e》, x  = v, η’) ≻ e 

• Returning from a function call:

η ▷ s | η’ ≺ v           ↦E     s | η    ≺ v  
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restore environment from closure, 
add binding for argument x and 

function f


