NI
= ¥ = Utrecht University

N

Error Handling and Exceptions

Gabriele Keller
Tom Smeding

® Error handling so far:

- The Error expression to handle run-time errors deterministically aborts the
whole program

- For many applications, this is not the appropriate behaviour

- Exceptions permit a more fine grained response to run-time errors

® Error:

- result of a programming error (e.g., preconditions of a function not met), can
be fixed by fixing the program

e Exception:

- result of expected, but irregular occurrence, can possibly be handled in the
program

Utrecht University

e Exceptions in MinHs:

(1) raising (or throwing) an exception: raise e
» e : information about handling of exception

(2) catching an exception: try e; handle = => ey
» catch expression raised in ey
» exception handler is ez

» access to information about handling exception via x

Utrecht University

e Abstract Syntax

» raise e (Raise e)

» try e; handle = => ey (Try e; (x.ez2))
e |nformal evaluation rules: on try e; handle x= => ey
» evaluate ey, and

» If (raise e) Is encountered during ez, evaluate e to value v, bind xto v and
then evaluate ey

Utrecht University

e Example:

try
if (y <= 0)
then raise -1
else x/y
handle err =>
if err = -1
then O

* try expressions can be nested

» iINnnermost try expression catches

» handler may re-raise an exception

Utrecht University

e Observations:
- type of exception values (second argument of raise)

¢ in Many programming languages, this is a fixed type Teze

e may simply be a string or integer (exception code)

® c.g., subclass Throwable in Java

* Utrecht University

e Typing rules

I‘I_e:rewc

I' - (Raise e): 7

L' ei:T T U{z: Teelb es:t

I' = (Try es (w.e2)): T

Utrecht University

e \\/e introduce a new machines state

s < (Raise v)

the machine raises an exception with the exception value v

e First approach:

on s < (Raise v)
» propagate exception upwards in the control stack s

» use first handler encountered

8 # Utrecht University

e Fntering a try block

s > (Try e; (x.ez)) wc (Try O (x.ez) > s)> ey
e Returning to a try block
(Try O(z.e2) > s > vy PC s < Vg

e Fvaluating a raise expression

s > (Raise e) ~»c (Raise O) > s > e

¢ Raising an exception
(Raise O) » s > v P C s < (Raise v)

e Catching an exception

(Try O (x.e2))D> s < (Raise v) PcC s > ez [x:=v]

e Propagating an exception

f>s < (Raise v) ©c s < (Raise v) g
Utrecht University

e \What is the problem here”?

- efficiency: the frames are popped one by one when an exception is raised
e Second approach

- how can we jump directly to the appropriate handler?

- we use an extra handler stack h

- a handler frame contains
» a copy of the control stack

» the handler expression

10

Utrecht University

e Entering a try block

(hy k) > (Try e; (w.e2)) »c¢ (Handle k (xz.e2) o h,(Try O)s k) > ey

e Returning to a try block

(Handle k (x.e2) > h,(Try O) > k) < v; p¢ (h, k) < vy

e Fvaluating a raise expression

(h, k) >(Raise e) »¢ (h, (Raise O) > k) > e

e Raising an exception

(h, (Raise O) > k) > v p¢o (h, k) < (Raise v)

e Catching an exception

(Handle k’ (x.e2))s h, k) < (Raise v) w»¢ (h, k) > ez [x:=v]

11

OW IS erro
mode

r/exceptio

N prograr

N ha

nmin

ndling supported In

g languages?

NS

Utrecht Univegsity

13

e C doesn’t have any built in support for exception handling
e Common strategies to handle exceptions:

- return error value

int divide(int a, int b, int *result) {
if(b=20) {
return -1; // indicate division by zero error
}

*result =a / b;
return @; // success

Utrecht University

14

e C doesn’t have any built in support for exception handling
e Common strategies to handle exceptions:

- return error value

- global error code

#include <stdio.h>
#include <errno.h>

int main(Q) {
FILE *file = fopen("nonexistent.txt", "r");
if (file == NULL) {
perror("Error opening file");
printf("Error code: %d\n", errno);

}

return 0;

Utrecht University

15

e C doesn’t have any built in support for exception handling

e Common strategies to handle exceptions:
- return error value
- global error code

- NO language mechanism for stack unwinding in C, but the current call stack

can be saved and restored manually (similar to handler stack)
#include <setjmp.h>

jmp_buf env;

void foo() {
longjmp(env, 1); // jump back to the setjmp point
}

int main(Q) {
if (setjmp(env) == @) {
printf("In the try block\n");
foo(Q);
} else {
printf("Caught an exception\n");
}

return 0;

Utrecht University

16

- Using goto’s to implement a stack of clean-up actions (e.g., systems code,

linux kernel):

< do something 1>
if <error condition 1 >
goto cleanupl;

<do something 2>
if <error condition 2 >
goto cleanupZ;

cleanup3:
<undo something 3>;

cleanup?2:
<undo something 2>;

cleanupl:
<undo something 1>;

Utrecht University

e try block encapsulates code which may raise an exception

e the catch blocks match on exception type:

17

try
i e N0 Matching catch block is

// Code that may raise an exception encountered after an

throw new Exception("My custom exception™); exception is raised, it will
; propagate through the call
catch (DivideByZeroException ex) stack, terminating the
i execution

// Handle DivideByZeroException
3
catch (Exception ex)
1

// Handle other exceptions
3
finally {

// optional cleanup code, executed whether or

// not exception was raised i

} # Utrecht University

e [he Exception class provides properties, such as Message, StackTrace that

contain information about the exception:

catch (Exception ex)

{
Console.WritelLine($"Exception Message: {ex.Message}");
Console.WritelLine($"Stack Trace: {ex.StackTrace}");
// Handle the exception

}

18

Utrecht University

e Similar to C# (class Throwable corresponds to C# Exception class)

try {
// code that may throw an exception or error

} catch (Throwable t) {
System.out.println("Exception message:
System.out.println("Stack trace: ");
t.printStackTrace();

+ t.getMessage());

e Main difference:
- Java distinguishes between checked and unchecked exceptions

- If code can throw a checked exception, it must be handled with a catch, or
declared

public void myMethod() throws CheckedException {
// code that may throw a checked exception

}

19

Utrecht University

e Swift uses the type system for safety & clarity:

The throws keyword in function signatures indicates that the function can throw
errors.

This makes error-prone areas visible at the call site.

A calling function must either handle the error with try or propagate it with
throws, enforcing clear error boundaries.

Different versions of try available

20

Utrecht University

e Almost all modern programming languages have built-in support for exception
handling

e Java, C#, Swift, Haskell
e (GO is somewhat of an exception
- uses multiple return values, error values
- No support for call stack unwinding
e (Good error and exception handling is an important factor in software quality
- safety, security and robustness of code
- helps with debugging and maintenance

- USEer experience

21

Utrecht University

e Good error and exception handling are essential, not just for reliability, but also
for security!

e \\Vhy?

- many high-profile exploits are due to poor error handling and unchecked
undefined behaviour

22

Utrecht University

e Heartbleed (OpenSSL, 2014)
- Improper error handling exacerbated its impact.

- function processing heartbeat requests did not handle malformed inputs
gracefully.

e Exploit:

- attackers could send malformed heartbeat messages to extract sensitive data
from server memory (private keys, user credentials)

23

Utrecht University

e Cloudbleed (2017)

- Cloudflare used a custom HTML parser written in C, which relied on a buffer
to process data

- buffer overflow under certain conditions
- memory outside the buffer was exposed in HT TP responses

- the bug was triggered by specific sequences of malformed HTML or
improperly formatted data

- sensitive data leaked due to undefined behaviour of C

24

Utrecht University

25

e "goto fail;" vulnerability in Apple’s SSL/TLS implementation(2014)

check the cryptographic signature of the
server's SSL/TLS certificate

if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != @)
goto fail;
goto fail;

if (Cerr = SSLHashSHAl.final(&hashCtx, &hashOut)) !'= @)

goto fail; validate that the certificate was properly

signed by a trusted Certificate Authority

fail:

return (err);

Utrecht University

e (Good error messages are important
- but be aware of information leak!
e Microsoft's ASP.NET Padding Oracle Attack (2010)

- ASP.NET's exception messages provided detailed error information about
cryptographic padding

- attackers could use this information to perform a padding oracle attack,
decrypting encrypted data without the encryption key.

- allowed attackers to compromise encrypted cookies and view sensitive
application data.

26

Utrecht University

27

e Common faults:

uncaught exceptions: allowing exceptions to propagate unchecked can leave
systems vulnerable.

no input validation: many vulnerabilities result from bad handling of malformed
or malicious input.

(too) detailed error messages: too much information in exceptions can guide
attackers.

silent failures: failing to act on critical errors can bypass security controls.

Utrecht University

e Programming languages can’t solve the problem, but they can make it

Impossible to have undefined behaviour

more convenient to handle errors

harder to miss handling an error

easier to spot unhandled errors

¢ For unsafe languages, tools can be used to check program properties

28

Utrecht University

