
Error Handling and Exceptions

Gabriele Keller
Tom Smeding

￼1

Exceptions

• Error handling so far:
- The Error expression to handle run-time errors deterministically aborts the

whole program
- For many applications, this is not the appropriate behaviour
- Exceptions permit a more fine grained response to run-time errors

• Error:
- result of a programming error (e.g., preconditions of a function not met), can

be fixed by fixing the program

• Exception:
- result of expected, but irregular occurrence, can possibly be handled in the

program

2

Exceptions

• Exceptions in MinHs:
(1) raising (or throwing) an exception: raise e

‣ e : information about handling of exception

(2) catching an exception: try e1 handle x => e2

‣ catch expression raised in e1

‣ exception handler is e2

‣ access to information about handling exception via x

3

Exceptions

• Abstract Syntax

‣ raise e (Raise e)

‣ try e1 handle x => e2 (Try e1 (x.e2))

• Informal evaluation rules: on try e1 handle x => e2

‣ evaluate e1, and

‣ if (raise e) is encountered during e1, evaluate e to value v, bind x to v and
then evaluate e2

4

Exceptions

• Example:

 try
 if (y <= 0)
 then raise -1
 else x/y
handle err =>
 if err = -1
 then 0

• try expressions can be nested

‣ innermost try expression catches
‣ handler may re-raise an exception

5

Exceptions

• Observations:

- type of exception values (second argument of raise)

• in many programming languages, this is a fixed type τexc

• may simply be a string or integer (exception code)

• e.g., subclass Throwable in Java

6

Exceptions - Static Semantics

• Typing rules

Γ ⊢ (Raise e):

Γ ⊢ e1 : τ Γ ∪ {x : τexc} ⊢ e2 :τ

Γ ⊢ (Try e1 (x.e2)):

τ

Γ ⊢ e : τexc

τ

7

• We introduce a new machines state

s ⪻ (Raise v)

the machine raises an exception with the exception value v

• First approach:

on s ⪻ (Raise v)

‣ propagate exception upwards in the control stack s

‣ use first handler encountered

Exceptions - Dynamic Semantics

8

 f ▷ s ⪻ (Raise v)

Exceptions - Dynamic Semantics

• Entering a try block

• Returning to a try block

• Evaluating a raise expression

• Raising an exception

• Catching an exception

• Propagating an exception

s ≻ (Try e1 (x.e2))

(Raise ☐) ▷ s ≻ v

s ≻ (Raise e)

(Try ☐(x.e2) ▷ s ≻ v1

 ↦C (Try ☐ (x.e2) ▷ s)≻ e1

 ↦C (Raise ☐) ▷ s ≻ e

 ↦C s ≺ v1

↦C s ≻ e2 [x:=v](Try ☐ (x.e2))▷ s ⪻ (Raise v)

↦C s ⪻ (Raise v)

↦C s ⪻ (Raise v)
9

Exceptions - Dynamic Semantics

• What is the problem here?

- efficiency: the frames are popped one by one when an exception is raised

• Second approach

- how can we jump directly to the appropriate handler?

- we use an extra handler stack h

- a handler frame contains

‣ a copy of the control stack

‣ the handler expression

10

• Entering a try block

• Returning to a try block

• Evaluating a raise expression

• Raising an exception

• Catching an exception

Exceptions - Dynamic Semantics

(h, k) ≻ (Try e1 (x.e2)) ↦C

(h, k) ≺ v1

(h, k) ≻(Raise e) ↦C

 (h, k) ⪻ (Raise v)

(h, k’) ≻ e2 [x:=v] (Handle k’ (x.e2))▷ h, k) ⪻ (Raise v) ↦C

 (Handle k (x.e2) ▷ h,(Try ☐)▷ k) ≻ e1

(Handle k (x.e2) ▷ h,(Try ☐) ▷ k) ≺ v1 ↦C

 (h, (Raise ☐) ▷ k) ≻ e

 (h, (Raise ☐) ▷ k) ≻ v ↦C

11

12

How is error/exception handling supported in
modern programming languages?

Exception handling in C

• C doesn’t have any built in support for exception handling

• Common strategies to handle exceptions:

- return error value

13

Exception handling in C

• C doesn’t have any built in support for exception handling

• Common strategies to handle exceptions:

- return error value

- global error code

14

Exception handling in C

• C doesn’t have any built in support for exception handling

• Common strategies to handle exceptions:

- return error value

- global error code

- no language mechanism for stack unwinding in C, but the current call stack
can be saved and restored manually (similar to handler stack)

15

Exception handling in C

- Using goto’s to implement a stack of clean-up actions (e.g., systems code,
linux kernel):

16

⡇

Exception handling in C#

17

• try block encapsulates code which may raise an exception

• the catch blocks match on exception type:

• no matching catch block is
encountered after an
exception is raised, it will
propagate through the call
stack, terminating the
execution

Exception handling in C#

18

• The Exception class provides properties, such as Message, StackTrace that
contain information about the exception:

Exception handling in Java

• Similar to C# (class Throwable corresponds to C# Exception class)

• Main difference:

- Java distinguishes between checked and unchecked exceptions

- if code can throw a checked exception, it must be handled with a catch, or
declared

19

Error handling in Swift

• Swift uses the type system for safety & clarity:

- The throws keyword in function signatures indicates that the function can throw
errors.

- This makes error-prone areas visible at the call site.

- A calling function must either handle the error with try or propagate it with
throws, enforcing clear error boundaries.

- Different versions of try available

20

Exception handling in modern languages

• Almost all modern programming languages have built-in support for exception
handling

• Java, C#, Swift, Haskell

• Go is somewhat of an exception

- uses multiple return values, error values

- no support for call stack unwinding

• Good error and exception handling is an important factor in software quality

- safety, security and robustness of code

- helps with debugging and maintenance

- user experience

21

Error and Exception handling

• Good error and exception handling are essential, not just for reliability, but also
for security!

• Why?

- many high-profile exploits are due to poor error handling and unchecked
undefined behaviour

22

Exploits due to poor error handling

• Heartbleed (OpenSSL, 2014)

- improper error handling exacerbated its impact.

- function processing heartbeat requests did not handle malformed inputs
gracefully.

• Exploit:

- attackers could send malformed heartbeat messages to extract sensitive data
from server memory (private keys, user credentials)

23

Exploits due to poor error handling

• Cloudbleed (2017)

- Cloudflare used a custom HTML parser written in C, which relied on a buffer
to process data

- buffer overflow under certain conditions

- memory outside the buffer was exposed in HTTP responses

- the bug was triggered by specific sequences of malformed HTML or
improperly formatted data

- sensitive data leaked due to undefined behaviour of C

24

Exploits due to poor error handling

• "goto fail;" vulnerability in Apple’s SSL/TLS implementation(2014)

25

check the cryptographic signature of the
server’s SSL/TLS certificate

validate that the certificate was properly
signed by a trusted Certificate Authority

Exploits due to poor error handling

• Good error messages are important

- but be aware of information leak!

• Microsoft's ASP.NET Padding Oracle Attack (2010)

- ASP.NET's exception messages provided detailed error information about
cryptographic padding

- attackers could use this information to perform a padding oracle attack,
decrypting encrypted data without the encryption key.

- allowed attackers to compromise encrypted cookies and view sensitive
application data.

26

Error and exception handling
• Common faults:

- uncaught exceptions: allowing exceptions to propagate unchecked can leave
systems vulnerable.

- no input validation: many vulnerabilities result from bad handling of malformed
or malicious input.

- (too) detailed error messages: too much information in exceptions can guide
attackers.

- silent failures: failing to act on critical errors can bypass security controls.

27

Error and exception handling

• Programming languages can’t solve the problem, but they can make it

- impossible to have undefined behaviour

- more convenient to handle errors

- harder to miss handling an error

- easier to spot unhandled errors

• For unsafe languages, tools can be used to check program properties

28

