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• We’re going to look into two simple, Turing-complete programming languages: 

• MinHs (functional), TinyC (procedural/imperative) 

• We look at what functional programming is about 

• We will make our abstract machines more realistic 

Overview



• MinHs, a stripped down, purely functional language 

- purely functional: no side effects, functions are first class citizens

MinHs: The essence of functional programming



• What does it mean if a language has no side effects? 

- the value of a function only depends on the values of its arguments, not on 
some implicit state 

- evaluating a function does not alter an observable state

MinHs: The essence of functional programming

int count = 0;

int inc () {
  count = count + 1;
  return count;
}

int y = inc();
int z = inc();  

count :: Int
count = 0;

inc :: Int -> Int
inc curr = curr + 1

y = inc count
z = inc y
  

global counter

no argument, 
value depends  
on state of 
counter 

same call, different results

global initial counter, 
value can’t change

current counter value  
needs to be passed as 
argument

current counter value  
needs to be passed as 
argument



• Pure functions result in referential transparency 

- we can replace an expression with its value anywhere in the program 

- equational reasoning is possible

MinHs: The essence of functional programming

inc() + inc()  =  2 * inc()

this equality only valid in a language with  referential transparency



MinHs: The essence of functional programming

  z 
= {def of z}
  inc y
= {def of y}
  inc (inc count)
= {def of inc}
  inc (count + 1)
= {def of inc}
  (count + 1) + 1



MinHs: The essence of functional programming

• The absence of implicit state makes it easier to write concurrent and parallel 
programs

both can be evaluated in parallel, no 
need to worry about altering a shared 
state



MinHs: The essence of functional programming

• Note that the absence of state makes loops (while/for) impossible

while condition
  do 
   something

• Instead, repetition has to be modelled via recursion

f x = if (condition x)
        then result 
        else f (update x)



• Some data structures are all about destructive updates 

- e.g., arrays, hash tables 

- In functional languages, other data structures are often used instead 

- lists instead of arrays 

- sophisticated tree structures for lookup tables

MinHs: The essence of functional programming



MinHs: The essence of functional programming

• But we can’t do without state! 

- programs have to be able to do I/O, otherwise they are useless 

- destructive updates of data structures if often important for efficiency 
reasons (e.g., updating one element in an array) 

• State is not a problem for referential transparency, implicit state is!

int inc () {
  count = count + 1;
  return count;
}

inc :: Int -> Int
inc curr = curr + 1

count

inc()

incInt



MinHs: The essence of functional programming
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g = 

(7,8)e = 

Bool addEdge (Edge edge, Graph g)

TrueaddEdge (e, g)

• Example: 

- graph computations: manipulating graphs, annotating graph nodes or edges 

- add an edge to a graph, return true if edge is new, false otherwise

• With destructive updates: 



MinHs: The essence of functional programming
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• In a purely functional world: 



• Idea:  

- thread the state (in this case, the graph) through the computations 

- only allow limited access to the state:  

‣ no copying 

‣ no ‘losing’ the state

MinHs: The essence of functional programming

• Observation:  

- we usually don’t need the old graph/state after the update, so it’s 
unnecessary to keep it around 

- how can we ensure that the old graph is indeed not accessed again in the 
program?



• Graph computation:

MinHs: The essence of functional programming

• Functions over graphs are composed together, without making the graph directly 
accessible:



• This is how IO computations are handled in Haskell 

• An IO computation gets the state of the current world, returns a value and a new 
state of the world:

MinHs: The essence of functional programming

• preserves referential transparency, even though we have side effects ‘behind 
the scenes’ 

• no safe function of type  IO a -> a

representation simplified

• do-notation is a convenient way to compose such functions



• Observation: 

- any function which calls an IO function has IO type 

- functions which have an observable effect on the world, or depend on the 
state of the world, have type IO 

- IO functions can call side-effect free functions, but not the other way around 

- this has a profound impact on the way purely functional programs need to be 
designed!

MinHs: The essence of functional programming



• Design in a stateful language:

MinHs: The essence of functional programming

• Design in pure language
interactive 

shell
pure 

functions



• Functions as first class citizens 
- functions can accept other functions as arguments, return functions as result 
- no fundamental distinction between functions and value 

• This also has an effect on how programs are structured and designed 
- functions as combination of other functions 
- recursive data structures (lists, trees) manipulated using higher-order functions 

instead of explicit recursion

MinHs: The essence of functional programming



• The design of an application written in a (higher-order) functional language is 
often in terms of these ‘patterns’. 

• Example: the pattern we observed for threading state

MinHs: The essence of functional programming



Patterns

• Left identity

• Right identity

• Associativity

return a  >>=  h    ≡    h a 

f >>= return    ≡    f 

(f >>= g)  >>= h     ≡    f >>= (\x -> g x >>= h)

• Type constructors for which we can define those two functions in a way that they 
fulfil the three properties below are called a Monad, and we can use the do-notation 
to compose them

• Convenient to use for stateful computations, but also other type constructors (like 
lists) are in this class



• Based on the lambda-calculus 

• Lisp is one of the oldest high-level languages (Fortran is older), 1958 

- Clojure, CommonLisp, Scheme, Racket in this family of languages 

• ML (Meta Language), strict & statically typed 

- OCaml, F#, Standard ML 

• Haskell  

- lazy, strongly typed 

- Agda, Bluespec 

- Clean (older than Haskell, same family, with uniqueness type system) 

• Erlang 

- concurrent, communication based on message passing 

• Many other languages have features from functional languages 

- Python, C#, Rust, Go, C++, Java, PurseScript, Java, …

Functional Programming



• MinHs, a stripped down, purely functional language 

- purely functional - no side effects, functions are first class citizens 

- strict evaluation 

- Haskell is lazy, Standard ML, OCaml strict 

- statically typed 

- not all functional languages are statically typed (Haskell, Standard ML family 
of languages are, Lisp-like languages are dynamically typed) 

- types have to be provided by the programmer - no type inference, only type 
checking

MinHs: The essence of functional programming



• The BNF is ambiguous, but the usual precedence and associativity rules apply:

Concrete Syntax

• The function type constructor is right associative 

 τ1 → τ2 → τ3    =  τ1 →(τ2 → τ3) ≠   (τ1 → τ2) → τ3



MinHs

• Restrictions of the language 

‣ MinHs doesn’t have a let-bindings 

‣ a function name is only visible in its own body 

‣ functions have only one argument at a time  

•We could extend the language to change this, but it doesn’t add any interesting 
problems 

• These restrictions do not affect express expressiveness of the language 



MinHs

recfun divBy5 :: (Int → Int) x =  
  if x < 5  
    then 0 
    else 1 + divBy5 (x - 5)

recfun div :: (Int → (Int → Int)) x = 
  recfun div’ :: (Int → Int) y = 
     if x < y  
       then 0 
       else 1 + div (x - y) y 
    

• Function application is left associative, so the two expressions are equivalent: 

 div 15 5

(div 15) 5

• Example



• First-order abstract syntax: 
- Terms of the form  (Op t1 … tn)  

‣ we need to store the type information, so types are also terms, but for 
convenience, we leave them in concrete syntax form, that is, we write 
(Int → Int) not  (FunType Int Int) 

- We don’t formalise the translation rules. Informally: 
‣ replace all infix by prefix operators: 

• e1 + e2  becomes (Plus e1  e2)

• if e1  then e2  else e3  becomes (If e1  e2  e3)

‣ application becomes explicit 
• e1 e2  becomes  (Apply e1  e2) 

‣ function definitions 
• recfun (f :: τ1 → τ2) x = e becomes  (Recfun  τ1 τ2  f  x  e)

Abstract Syntax



• Higher-order abstract syntax: 
- only the representation of the functions changes with respect to first order 
- variable name x and function name f are bound in e 

• (Recfun  τ1 τ2  (f.x.e))

-  the scope of f and x is e 

Abstract Syntax



• We have to check that 

- all variables are defined 

- all expressions are well typed 

• What about the environment? 

- the environment has to contain type information 

‣ Γ= {x1 : Int, x2 : Bool , f :Int → Bool ,....}


- for the moment, we assume that all function and variable names are unique

Static Semantics of MinHs



• Proceeds by using typing rules over the structure of the abstract syntax of MinHs 

• Essentially, an extension of the scoping rules 

• We need typing rules for 

- constant values, variables 

- operators 

- function definitions 

- application 

• We define a typing judgement of the form 
Γ ⊢ t : τ 

stating that term  t is a legal higher order syntax term of the language and has 
type τ  under the environment Γ

Type and Scope Checking



Typing Rules for MinHs

𝚪 ⊢ (Num i ) : Int 

𝚪 ⊢(Plus t1 t2 ) : Int
𝚪 ⊢ t1 : Int 𝚪 ⊢ t2 : Int

Γ ⊢ x : τ

Γ	⊢ (Const b): Bool
b ∈ {True, False }

𝚪 ⊢(If t1  t2  t3) : τ

𝚪 ⊢ t1 : Bool 𝚪 ⊢ t1 : τ 𝚪 ⊢ t2 : τ

x : τ ∈ Γ

Γ ⊢ t : τ



• Functions and applications:

Typing Rules for MinHs

𝚪 ⊢ t2 : τ1

𝚪 ⊢ (Apply t1  t2): τ2

Γ∪{f : τ1 →τ2 , x :  τ1 } ⊢ t : τ2

𝚪 ⊢ (Recfun τ1  τ2  (f.x.t)): τ1 →τ2

𝚪 ⊢ t1 : τ1 →τ2 



• Observation 
- there is only one rule for each type of expression 
- the typing is syntax directed 
‣ the form of the syntax uniquely defines the typing rule 

- as a result, the inversion principle is applicable 
• Example: typing rule for if-expressions:

Inversion

- The rule states that 
if  𝚪 ⊢ t1 : Bool and 𝚪 ⊢ t1 : τ 	and	𝚪 ⊢ t1 : τ are all derivable,  
then 𝚪 ⊢(If t1  t2  t3) : τ  is derivable 

- Inversion (since there is only one rule for If): 
if 𝚪 ⊢(If t1  t2  t3) : τ  is derivable 
then, 𝚪 ⊢ t1 : Bool, 𝚪 ⊢ t2 : τ and 𝚪 ⊢ t3 : τ are derivable 

because the above rule must have been used 

𝚪 ⊢(If t1  t2  t3) : τ

𝚪 ⊢ t1 : Bool 𝚪 ⊢ t1 : τ 𝚪 ⊢ t2 : τ



• Hence, we can conclude inverse rules

Inversion

• Inversion hold for all other typing rules in MinHs as well 

• Formally, it can very easily (really!) be proven using rule induction

𝚪 ⊢(If t1  t2  t3) : τ
𝚪 ⊢ t1 : Bool

𝚪 ⊢(If t1  t2  t3) : τ

𝚪 ⊢ t1 : τ

𝚪 ⊢(If t1  t2  t3) : τ

𝚪 ⊢ t2 : τ



• Structured operational semantics (SOS) 

- Initial states:  

‣ all well typed expression 

- Final states:  

‣ boolean and integer constants 

‣ and functions! 

• Evaluation of built-in operations:

Dynamic Semantics of MinHs

              ......... 

just like for the arithmetic expression language



• Evaluation of if-expressions

Structural Operational Semantics of MinHs

(If (Const True) e2  e3 )   ↦ e2

 (If (Const False) e2  e3)    ↦ e3

            (If e1 e2 e3) ↦ (If  e1‘ e2  e3  )
 e1 ↦ e1’



• How about functions?

Structural Operational Semantics of MinHs

(Recfun τ1  τ2  (f.x.t)) ↦ ?

• Function application 

(recfun f :: Int -> Int x = x * (x + 1)) 5 

evaluates to 

5 * (5 + 1) 

  

• There is a similarity to let-bindings in the arithmetic expression language 

• We replace the variable (function parameter) by the function argument (after it 
has been evaluated)



• How about recursion? 

 (recfun f :: Int -> Int x =  
    if (x < 1)  
      then 1  
      else x * f(x - 1)) 3

to 

       

Structural Operational Semantics of MinHs

something is wrong here  - f  occurs now free 
in the expression!

if (3 < 1)  
      then 1  
      else 3 * f(3 - 1))



• How about recursion? 

 (recfun f :: Int -> Int x =  
    if (x < 1)  
      then 1  
      else x * f(x-1)) 3

to 

      

Structural Operational Semantics of MinHs

if (3 < 1) then 1  
         else 3 * (recfun f :: Int -> Int x =  
                         if (x < 1)  
                           then 1  
                           else x * f(x-1)) 
                  (3-1)) 



• Evaluation rules for function application (strict):

Structural Operational Semantics of MinHs

(Apply (Recfun τ1   τ2  (f.x.t)) v) ↦  t [f := (Recfun τ1   τ2  (f.x.t)), x := v]

(Apply e1 e2) ↦ (Apply e1’  e2)

 e1 ↦ e1’

(Apply(Recfun ...) e) ↦ (Apply(Recfun ...) e’)
 e ↦ e’



Static and Dynamic Semantics

• MinHs is a type-safe (or strongly typed) language 

• What exactly do we mean by this? 

- these terms are used by different authors to mean different things 

- in general, it refers to guarantees about the run-time behaviour derived from 
static properties of the program 

- Robin Milner: “Well typed programs never go wrong” 

‣ do not exhibit undefined behaviour 

- we define type safety to be the following two properties: 

‣ preservation 

‣ progress 

- we look at both preservation and progress in turn



Preservation and Progress

• Preservation: 

- Idea: evaluation does not change the type of an expression 

- Formally: If  ⊢ e : τ and e ↦ e’ , then ⊢ e’ : τ 

• Progress: 

- Idea:  a well-defined program can not get stuck 

- Formally: If e  is well typed, then either e  is a final state, or there exists e’, 
with e ↦ e’ 

• Together is means that a program will either evaluate to a value of the 
promised type, or run forever

e : τ ↦ e1 : τ ↦ e2 : τ ↦ e3 : τ ↦ e4 : τ  …



Type Safety

• For any language to be type safe, the progress and preservation properties need 
to hold! 

• Strictly speaking, the term type safety only makes sense in the context of a 
formal static and dynamic semantics 

• This is one reason why formal methods in programming languages are essential 

• The more expressive a type system is, the more information and assertions the 
type checker can derive at compile type 

- type systems usually should be decidable 

- but there are exceptions 

• MinHs is type safe 

- we can show that progress and preservation hold! 

- but what if the language contains partial operations, like division?



Run-time Errors and Safety

• Stuck states: in a type safe language language, stuck states correspond to ill-
defined programs, e.g., 

-  use (+) on values of function type, for example 

-  treat an integer value as a pointer 

-  use an integer as function

let x = 1 in x 5

• Unsafe languages/operations do not get stuck 

-  something happens, but its not predictable and/or portable:

void boom () { 
  void (f*)(void) = 0xdeadbeef; 
  f (); 
} 



Run-time Errors and Safety

• How can we deal with partial functions, for example division by zero?

Problem: the expression 5/0 is well-typed, but does not evaluate to a value.

• Since this a mismatch between the static and dynamic semantics, there are two 
ways to fix this: 

(1) Change static semantics: can we enhance the type system to check for division 
by zero? 

‣ in general, such a type system would not be decidable 
‣ there exist systems that approximate this 

(2) Change dynamic semantics: can we modify the semantics such that the 
devision by zero does not lead to a stuck state 

‣ this approach is widely used for type safe languages

Γ ⊢ t1 : Int Γ ⊢ t2  : Int

Γ ⊢ (Div t1  t2): Int



Run-time Errors and Safety

• Application of a partial function can yield Error

• An Error interrupts any computation

Div v (Num 0) ↦ Error

 Plus Error e ↦ Error

 Plus e Error ↦ Error

 If Error e1 e2 ↦ Error

and so on.....



Run-time errors and Safety

• Typing the Error value:

- a run-time error can have any type

Γ ⊢ Error : τ

• What type of situations lead to checked run-time errors in Haskell? 

- could they be avoided?



Undefined behaviour

• Many languages have some undefined behaviour 

- indexing out of range 

-  overflow/underflow 

-  accessing uninitialised variables 

- order of evaluation of (stateful) subexpressions in an expression 

• Why? 

• In general, undefined behaviour is a correctness/safety/security problem


