

Concepts of Programming Language Design MinHS

Gabriele Keller Tom Smeding

- We're going to look into two simple, Turing-complete programming languages:
 - MinHs (functional), TinyC (procedural/imperative)
- We look at what functional programming is about
- We will make our abstract machines more realistic

- MinHs, a stripped down, purely functional language
 - purely functional: no side effects, functions are first class citizens

- What does it mean if a language has no side effects?
 - the value of a function only depends on the values of its arguments, not on some implicit state
 - evaluating a function does not alter an observable state

- Pure functions result in referential transparency
 - we can replace an expression with its value anywhere in the program
 - equational reasoning is possible


```
count :: Int
count = 0
inc :: Int -> Int
inc curr = curr + 1
y = inc count
z = inc y
```

```
Z
= {def of z}
inc y
= {def of y}
inc (inc count)
= {def of inc}
inc (count + 1)
= {def of inc}
(count + 1) + 1
```


• The absence of implicit state makes it easier to write concurrent and parallel programs

both can be evaluated in parallel, no need to worry about altering a shared state

• Note that the absence of state makes loops (while/for) impossible

```
while condition
do
something
```

• Instead, repetition has to be modelled via recursion

```
f x = if (condition x)
    then result
    else f (update x)
```


- Some data structures are all about destructive updates
 - e.g., arrays, hash tables
 - In functional languages, other data structures are often used instead
 - lists instead of arrays
 - sophisticated tree structures for lookup tables

- But we can't do without state!
 - programs have to be able to do I/O, otherwise they are useless
 - destructive updates of data structures if often important for efficiency reasons (e.g., updating one element in an array)
- State is not a problem for referential transparency, implicit state is!

- Example:
 - graph computations: manipulating graphs, annotating graph nodes or edges
 - add an edge to a graph, return true if edge is new, false otherwise
- With destructive updates:

Bool addEdge (Edge edge, Graph g)

• In a purely functional world:

True

• Observation:

- we usually don't need the old graph/state after the update, so it's unnecessary to keep it around
- how can we ensure that the old graph is indeed not accessed again in the program?
- Idea:
 - thread the state (in this case, the graph) through the computations
 - only allow limited access to the state:
 - no copying
 - ▶ no 'losing' the state

• Graph computation:

• Functions over graphs are composed together, without making the graph directly accessible:

```
(|>) :: GraphComp a -> (a -> GraphComp b) -> GraphComp b
(|>) f1 f2 = f1f2
where
   f1f2 graph =
      let (a, newGraph) = f1 graph
   in f2 a newGraph
(|>>) :: GraphComp a -> GraphComp b -> GraphComp b
(|>>) f1 f2 = f1f2
where
   f1f2 graph =
      let (a, newGraph) = f1 graph
      in f2 newGraph
```

addEdge (1,2) |>> addEdge (1,4) |>> neighbours 1

- This is how IO computations are handled in Haskell
- An IO computation gets the state of the current world, returns a value and a new state of the world:

```
type IO a = World -> (a, World)
putStrLn :: String -> IO ()
readLn :: IO String
return :: a -> IO a
```

representation simplified

do-notation is a convenient way to compose such functions

```
main :: IO ()
main = do
   { putStrLn "What's your name?"
   ; name <- readLn
   ; let newStr = ("Hi "| ++ name)
   ; putStrLn newStr
   }</pre>
```

- preserves referential transparency, even though we have side effects 'behind the scenes'
- no safe function of type
 IO a -> a

• Observation:

- any function which calls an IO function has IO type
- functions which have an observable effect on the world, or depend on the state of the world, have type IO
- IO functions can call side-effect free functions, but not the other way around
- this has a profound impact on the way purely functional programs need to be designed!

• Design in a stateful language:

• Design in pure language

• Functions as first class citizens

- functions can accept other functions as arguments, return functions as result
- no fundamental distinction between functions and value
- This also has an effect on how programs are structured and designed
 - functions as combination of other functions
 - recursive data structures (lists, trees) manipulated using higher-order functions instead of explicit recursion

sum1 [] = 0
sum1 (x:xs) = x + sum1 xs

- The design of an application written in a (higher-order) functional language is often in terms of these 'patterns'.
- Example: the pattern we observed for threading state

type GraphComp a = (Graph -> (Graph, a))
type IO a = (World -> (World, a))

```
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a
```


Patterns

- Type constructors for which we can define those two functions in a way that they
 fulfil the three properties below are called a Monad, and we can use the do-notation
 to compose them
 - Left identity return a >>= h ≡ h a
 Right identity f >>= return ≡ f
 Associativity (f >>= g) >>= h ≡ f >>= (\x -> g x >>= h)
- Convenient to use for stateful computations, but also other type constructors (like lists) are in this class

Functional Programming

- Based on the lambda-calculus
- Lisp is one of the oldest high-level languages (Fortran is older), 1958
 - Clojure, CommonLisp, Scheme, Racket in this family of languages
- ML (Meta Language), strict & statically typed
 - OCaml, F#, Standard ML
- Haskell
 - lazy, strongly typed
 - Agda, Bluespec
 - Clean (older than Haskell, same family, with uniqueness type system)
- Erlang
 - concurrent, communication based on message passing
- Many other languages have features from functional languages
 - Python, C#, Rust, Go, C++, Java, PurseScript, Java, ...

- MinHs, a stripped down, purely functional language
 - purely functional no side effects, functions are first class citizens
 - strict evaluation
 - Haskell is lazy, Standard ML, OCaml strict
 - statically typed
 - not all functional languages are statically typed (Haskell, Standard ML family of languages are, Lisp-like languages are dynamically typed)
 - types have to be provided by the programmer no type inference, only type checking

• The BNF is ambiguous, but the usual precedence and associativity rules apply:

• The function type constructor is right associative

$$\tau_1 \rightarrow \tau_2 \rightarrow \tau_3 \quad = \quad \tau_1 \rightarrow (\tau_2 \rightarrow \tau_3) \neq \quad (\tau_1 \rightarrow \tau_2) \rightarrow \tau_3$$

- Restrictions of the language
 - MinHs doesn't have a let-bindings
 - a function name is only visible in its own body
 - functions have only one argument at a time
- We could extend the language to change this, but it doesn't add any interesting problems
- These restrictions do not affect express expressiveness of the language

MinHs

• Example

```
recfun divBy5 :: (Int \rightarrow Int) x =
if x < 5
then 0
else 1 + divBy5 (x - 5)
```

```
recfun div :: (Int \rightarrow (Int \rightarrow Int)) x =
recfun div' :: (Int \rightarrow Int) y =
if x < y
then 0
else 1 + div (x - y) y
```

• Function application is left associative, so the two expressions are equivalent:

div 15 5

(div 15) 5

Abstract Syntax

- First-order abstract syntax:
 - Terms of the form $(Op \ t_1 \ \dots \ t_n)$
 - we need to store the type information, so types are also terms, but for convenience, we leave them in concrete syntax form, that is, we write

(Int \rightarrow Int) not (FunType Int Int)

- We don't formalise the translation rules. Informally:
 - replace all infix by prefix operators:
 - e_1 + e_2 becomes (Plus e_1 e_2)
 - if e_1 then e_2 else e_3 becomes (If $e_1 e_2 e_3$)
 - application becomes explicit
 - $e_1 e_2$ becomes (Apply $e_1 e_2$)
 - function definitions

• recfun ($f:: au_1
ightarrow au_2$) x = e becomes (Recfun $au_1 au_2 ext{ } f ext{ } x ext{ } e$)

Utrecht University

Abstract Syntax

- Higher-order abstract syntax:
 - only the representation of the functions changes with respect to first order
 - variable name ${\color{black}x}$ and function name ${\color{black}f}$ are bound in ${\color{black}e}$
 - (Recfun $\tau_1 \tau_2$ (*f.x.e*))
 - the scope of f and x is e

- We have to check that
 - all variables are defined
 - all expressions are well typed
- What about the environment?
 - the environment has to contain type information

▶ $\Gamma = \{x_1: \text{Int}, x_2: \text{Bool}, f: \text{Int} \rightarrow \text{Bool}, \dots\}$

- for the moment, we assume that all function and variable names are unique

Type and Scope Checking

- Proceeds by using typing rules over the structure of the abstract syntax of MinHs
- Essentially, an extension of the scoping rules
- We need typing rules for
 - constant values, variables
 - operators
 - function definitions
 - application
- We define a typing judgement of the form

 $\Gamma \vdash t : \tau$

stating that term t is a legal higher order syntax term of the language and has type τ under the environment Γ Utrecht University

$\Gamma \vdash t: \tau$

 $\Gamma \vdash (\text{Num } i) : \text{Int}$

 $b \in \{\text{True, False}\}$ $\Gamma \vdash (\text{Const } b): \text{Bool}$

 $\frac{\Gamma \vdash t_1: \text{Int} \quad \Gamma \vdash t_2: \text{Int}}{\Gamma \vdash (\text{Plus } t_1 t_2): \text{Int}}$

 $\Gamma \vdash \underline{t_1: \text{Bool}} \quad \Gamma \vdash t_1: \tau \quad \Gamma \vdash t_2: \tau$ $\Gamma \vdash (\text{If } t_1 \ t_2 \ t_3): \tau$

 $\frac{x:\tau\in\Gamma}{\Gamma\vdash x:\tau}$

• Functions and applications:

$$\Gamma \vdash t_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \vdash t_2 : \tau_1$$

$$\Gamma \vdash (\text{Apply } t_1 \ t_2) : \tau_2$$

$$\Gamma \cup \{ \boldsymbol{f} : \boldsymbol{\tau}_1 \to \boldsymbol{\tau}_2 , \boldsymbol{x} : \boldsymbol{\tau}_1 \} \vdash \boldsymbol{t} : \boldsymbol{\tau}_2$$
$$\Gamma \vdash (\operatorname{Recfun} \boldsymbol{\tau}_1 \ \boldsymbol{\tau}_2 \ (\boldsymbol{f} \cdot \boldsymbol{x} \cdot \boldsymbol{t})) : \boldsymbol{\tau}_1 \to \boldsymbol{\tau}_2$$

Inversion

Observation

- there is only one rule for each type of expression
- the typing is syntax directed
 - the form of the syntax uniquely defines the typing rule
- as a result, *the inversion principle* is applicable
- Example: typing rule for if-expressions:

 $\Gamma \vdash \underline{t_1: \text{Bool}} \quad \Gamma \vdash t_1: \tau \quad \Gamma \vdash t_2: \tau$ $\Gamma \vdash (\text{If } t_1 \ t_2 \ t_3): \tau$

- The rule states that

if $\Gamma \vdash t_1$: Bool and $\Gamma \vdash t_1$: τ and $\Gamma \vdash t_1$: τ are all derivable, then $\Gamma \vdash (\text{If } t_1 \ t_2 \ t_3) : \tau$ is derivable

- Inversion (since there is only one rule for If):

if $\Gamma \vdash (\text{If } t_1 \ t_2 \ t_3) : \tau$ is derivable

then, $\Gamma \vdash t_1$: Bool, $\Gamma \vdash t_2$: τ and $\Gamma \vdash t_3$: τ are derivable.

Utrecht University

because the above rule must have been used

Inversion

• Hence, we can conclude inverse rules

$$\Gamma \vdash (\text{If } t_1 \ t_2 \ t_3): \tau$$

$$\Gamma \vdash t_1: \text{Bool}$$

$$\Gamma \vdash (\text{If } t_1 \ t_2 \ t_3): \tau$$

$$\Gamma \vdash t_1: \tau$$

$$\Gamma \vdash t_1: \tau$$

$$\Gamma \vdash t_1: \tau$$

- Inversion hold for all other typing rules in MinHs as well
- Formally, it can very easily (really!) be proven using rule induction

Dynamic Semantics of MinHs

- Structured operational semantics (SOS)
 - Initial states:
 - ▶ all well typed expression
 - Final states:
 - boolean and integer constants
 - and functions!

• Evaluation of built-in operations: just like for the arithmetic expression language

.

• Evaluation of *if*-expressions

$$\begin{array}{c} e_1 \mapsto e_1 \\ \hline (\text{If } e_1 e_2 e_3) \mapsto (\text{If } e_1 e_2 e_3) \end{array}$$

(If (Const True)
$$e_2$$
 e_3) \mapsto e_2

(If (Const False) e_2 e_3) \mapsto e_3

Structural Operational Semantics of MinHs

• How about functions?

(Recfun τ_1 τ_2 (f.x.t)) \mapsto ?

• Function application

(recfun f :: Int -> Int x = x * (x + 1)) 5

evaluates to

5 * (5 + 1)

- There is a similarity to let-bindings in the arithmetic expression language
- We replace the variable (function parameter) by the function argument (after it has been evaluated)

• How about recursion?

```
(recfun f :: Int -> Int x =
    if (x < 1)
        then 1
        else x * f(x - 1)) 3</pre>
```

```
to
```

```
if (3 < 1)
    then 1
    else 3 * f(3 - 1))</pre>
```

something is wrong here - f occurs now free in the expression!

• How about recursion?

```
(recfun f :: Int -> Int x =
    if (x < 1)
        then 1
        else x * f(x-1)) 3</pre>
```

```
to
```


• Evaluation rules for function application (strict):

(Apply (Recfun τ_1 τ_2 (f.x.t)) v) \mapsto

(Apply $e_1 e_2$) \mapsto

 $(Apply(Recfun ...) e) \mapsto$

Static and Dynamic Semantics

- MinHs is a type-safe (or strongly typed) language
- What exactly do we mean by this?
 - these terms are used by different authors to mean different things
 - in general, it refers to guarantees about the run-time behaviour derived from static properties of the program
 - Robin Milner: "Well typed programs never go wrong"

do not exhibit undefined behaviour

- we define type safety to be the following two properties:
 - preservation
 - ▶ progress
- we look at both preservation and progress in turn

Preservation and Progress

- Preservation:
 - Idea: evaluation does not change the type of an expression
 - Formally: If $\vdash e : \tau$ and $e \mapsto e'$, then $\vdash e' : \tau$
- Progress:
 - Idea: a well-defined program can not get stuck
 - Formally: If e is well typed, then either e is a final state, or there exists e', with e ↦ e'

 $e: \tau \mapsto e_1: \tau \mapsto e_2: \tau \mapsto e_3: \tau \mapsto e_4: \tau \dots$

• Together is means that a program will either evaluate to a value of the promised type, or run forever

- For any language to be type safe, the progress and preservation properties need to hold!
- Strictly speaking, the term type safety only makes sense in the context of a formal static and dynamic semantics
- This is one reason why formal methods in programming languages are essential
- The more expressive a type system is, the more information and assertions the type checker can derive at compile type
 - type systems usually should be decidable
 - but there are exceptions
- MinHs is type safe
 - we can show that progress and preservation hold!
 - but what if the language contains partial operations, like division?

Run-time Errors and Safety

- Stuck states: in a type safe language language, stuck states correspond to illdefined programs, e.g.,
 - use (+) on values of function type, for example
 - treat an integer value as a pointer
 - use an integer as function

let x = 1 in x = 5

- Unsafe languages/operations do not get stuck
 - something happens, but its not predictable and/or portable:

```
void boom () {
    void (f*)(void) = 0xdeadbeef;
    f ();
}
```


Run-time Errors and Safety

• How can we deal with **partial functions**, for example division by zero?

 $\Gamma \vdash t_1 : \text{Int} \quad \Gamma \vdash t_2 : \text{Int}$ $\Gamma \vdash (\text{Div} \ t_1 \ t_2) : \text{Int}$

Problem: the expression 5/0 is well-typed, but does not evaluate to a value.

- Since this a mismatch between the static and dynamic semantics, there are two ways to fix this:
- (1) Change static semantics: can we enhance the type system to check for division by zero?
 - ▶ in general, such a type system would not be decidable
 - there exist systems that approximate this
- (2) Change dynamic semantics: can we modify the semantics such that the devision by zero does not lead to a stuck state
 - this approach is widely used for type safe languages

Run-time Errors and Safety

• Application of a partial function can yield Error

Div v (Num O) \mapsto Error

• An Error interrupts any computation

Plus Error *e* ↦ Error

Plus e Error \mapsto Error

If Error $e_1 e_2 \mapsto$ Error

and so on....

Run-time errors and Safety

- Typing the Error value:
 - a run-time error can have any type

- What type of situations lead to checked run-time errors in Haskell?
 - could they be avoided?

Undefined behaviour

- Many languages have some undefined behaviour
 - indexing out of range
 - overflow/underflow
 - accessing uninitialised variables
 - order of evaluation of (stateful) subexpressions in an expression
- Why?
- In general, undefined behaviour is a correctness/safety/security problem

