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Overview

semantic features

tools to talk about languages

static & dynamic 
scoping

static & dynamic 
typing

language concepts

functional 

procedural/imperative

higher & first-order syntax

big step and small step operational 
semantics

abstract machines

inference rules, induction

composite types/ 
algebraic data types

higher-order functions/ 
partial application/function closures

value & type environments

control stacks

explicit 
typing

exception handling
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Composite types

• What are types? 

- Sets of values which share applicable operations  

‣ We’ve looked at some basic types, such as Int, Bool
Int Bool

12
3

4
…

True

False

odd

Int -> Bool

even

…
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‣ and one type operator, ->:



Composite types

• How can we define own types from scratch? 

• What about other type (set) operators? 

- product of sets:  A x B 

- union of sets: A ∪ B    

- power sets:  𝒫(A) 

• How does it work in different programming languages? 

• Three main ways: 

- machine oriented (i.e., close to the actual representation) 

- object/data oriented 

- operation (functionality) centred

4



Defining our own type ‘from scratch’

• Enumeration types: 

- a new type with a finite number of elements 

• Example: defining a new type to model colours

Colour

Green
Red

Blue
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Defining our own type ‘from scratch’

• Many languages offer enumeration types as syntactic sugar over existing types 
(with various levels of static checks, different operations allowed):

 
 

enum Colour : byte {Red, Green, Blue}; 

• C
 
 typedef enum {Red = 1, Green = 2, Blue = 3} colour;

 

• C# 
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Defining our own type ‘from scratch’

• In functional languages, like Haskell, it’s a regular algebraic data type, with 
pattern matching (other operations possible by deriving type class 
membership)

 
 

data Colour = Red | Green | Blue

   deriving (Eq)

• Haskell
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• Rust also allows pattern matching, choice of representation type, and 
associated methods

 
 

enum Colour { Red(i32),Green(i32),Blue(i23)};



Product types

Int Bool

True

False

Int × Bool

(1, True)

(2, False)

…

12
3

4
…

• Defining a new type by combining values of existing types:
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• Structs in C:

Tuples example: modelling a point in a 2D space

 
 

struct point { 
float  x; 
float  y; 

}; 

struct point middlePoint ( 
  struct point p1, 
  struct point p2) { 
  struct point mid; 
  mid.x = (p1.x + p2.x)/2.0; 
  mid.y = (p1.y + p2.y)/2.0; 
  return mid; 
} 
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Tuples example: modelling a point in a 2D space

• In C#

 
 

public struct Point { 
  public float X {get; set;} 
  public float Y {get; set;}  
  

public Point(float x, float y) { 
            X = x; 
            Y = y;  
        } 
… 
}
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Tuples example: modelling a point in a 2D space

• In Java 

- using degenerate classes in Java:

 
 

class Point { 
public float  x; 
public float  y; 

}; 

Point  middlePoint (Point p1, Point p2) { 
  Point mid; 
  mid.x = (p1.x + p2.x)/2.0; 
  mid.y = (p1.y + p2.y)/2.0; 
  return mid; 
} 
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• In Haskell: 

- using simple pairs (tuples are built-in type constructors):

Tuples example: modelling a point in a 2D space

 
 

type Point = (Float, Float) — not necessary to define a type synonym  

middlePoint:: Point -> Point -> Point 
middlePoint (x1, y1) (x2, y2) = 
  ((x1+x2)/2, (y1+y2)/2) 

middlePoint’ p1 p2 = 
  ((fst p1 + fst p2)/2, (snd p1 + snd p2)/2)

 
 

data Point = Point {x:: Float, y:: Float} 

middlePoint (Point x1 y1) (Point x2 y2) = 
  Point ((x1+x2)/2) ((y1+y2)/2) 

middlePoint’ p1 p2 = Point { x = (x p1 + x p2)/2   
                             y = (x p2 + y p2)/2}

 
 

data Point = Point Float Float 

middlePoint (Point x1 y1) (Point x2 y2) = 
  Point ((x1+x2)/2) ((y1+y2)/2) 

- using algebraic data types (with unnamed and named fields):
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Composite types

Int Bool

True

False

• Composite types that offer alternatives of existing types 

Int ∪ Bool

True

False

2

3

4

…

12
3

4
…

we need  to 
‘label’ the values for 

type safety
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Composite types

Int Bool

Int ∪ Bool

12
3

4
…

True

False

• Composite types that offer alternatives of existing types 

True

False

2

3
4

…

Bool
Bool

Int

Int

Int

we need  to 
‘label’ the values for 

type safety
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Composite types

• Alternatives with varying component types in C:

 
 

union { 
  int i; 
  float f; 
} unsafe; 

unsafe.f = 1.23456; 
printf (“the value is: %d”, unsafe.i);

the value is: 1067320848
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Composite types

• Alternatives with varying component types in C:

 
 

typedef enum {I, F} valueTag; 

typedef struct { 
 valueTag tag; 
 union { 
    int   intLit; 
    float floatLit; } val; 
} value_t;

 
 

value_t * val; 
… 
switch (val->tag) { 
  case I: … val->IntLit… 
  case F: … val->floatLit… 

  

C makes things 
explicit which more  
abstract languages  

handle for you 
behind the scenes 

more control for the  
programmer 

but also 
more ways to introduce 

bugs/undefined behaviour 
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Composite types

• In Haskell

 
 

data Value  
  =  I Integer 
  |  B Bool 

Value

(B True)

(B False)

(I 2)

(I 3)

(I 4)

…

17



Composite types

• Alternatives with varying component types in object oriented languages:

 
 

public abstract class Value { 
    private.Value() {} 
} 

public class I: Value { 
  public int V; 
  public I(int v) {V = v;} 
} 

public class B: Value { 
  public bool V; 
  public B(bool v) {V = v;} 
} 
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Collections

• Often, structured collections are needed  

- lists, trees, … 

- mappings from a key to a value 

‣ arrays 

‣ vectors 

‣ tables 

• For lists and trees and such, we need a way to express recursion on the type 
level!
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Recursive types

 
 

typedef struct list_node { 
  int                elem; 
  struct list_node * next; 
} int_list_t;

• Abstract view on a list of integers 

• an empty list is a list 

• if x is an integer, and xs a list of integers, then we can build a list with the 
head x and the tail xs  

• C 

- space for recursive structures cannot be allocated statically 

- necessary to store the address of the (possibly empty) tail of a list
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Recursive types

• In Haskell (again, via algebraic data types)

 
 

data IntList 
  =  ICons   Int IntList 
  |  Nil 

 
 

class ListNode {   
    int      data;   
    ListNode next;   
    public ListNode(int d) {   
        data = d;  
        next = null;   
    }}   

• C# 



Observation

• In an OO approach, we associate the operations directly with the new type 

- class declaration contains the methods 

- easy to extend the type by adding new subclasses 

- cumbersome to add new methods - we have to change each subclass 

• In a functional approach, the operations can be defined anywhere (if the 
constructors are exported) 

- easy to add new functionality - just add the function anywhere in the 
program 

- cumbersome to add new variants - we have add a case to each function 
definition
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Extending MinHs with support for composite types

• We add algebraic data types to MinHs 

- product types 

- sum types 

- recursive types 

• no support for letting the user give new names to types 

- could be easily added
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Algebraic Data Types

• Algebraic data types (ADTs) in combination with pattern matching are a 
convenient way to construct and decompose composite types 

- traditionally, used in functional languages (Haskell, ML, …) 

- also part now of many modern languages: Scala, Swift, Rust, C# 

• Matching on simple constants:
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Algebraic Data Types for MinHs: Products

• Products aka pairs in MinHs 

- minimal extension, only restricted case-pattern matching 

- no type declaration 

- no named fields 

- only pairs (e1, e2) and 

- nullary tuples/unit ()

• New MinHs types: 

- Unit: singleton type with element ()

- τ1 * τ2 :  binary product type with element type τ1 and τ2   

• Operations on these types: 

- fst and snd to extract the first/second component
25



Products in MinHs: Concrete and Abstract Syntax 

• Constructors 

• Destructors 

• Types 

(e1, e2) (Pair e1 e2)
() ()

fst e (Fst e)
snd e   (Snd e)

τ1 * τ2  τ1 * τ2

Unit Unit
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Products in MinHs

• Example:

• Side note: 

- what is the difference between these two (Haskell) functions:
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Products in MinHs: Static Semantics

• Typing rules:

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (Pair e1  e2) :  τ1 *  τ2

Γ ⊢ (Fst e) : τ1

Γ ⊢  e :  τ1 * τ2 Γ ⊢  e :  τ1 * τ2

Γ	⊢ (): Unit 

28

Γ ⊢ (Snd e) : τ2



Products in MinHs: Dynamic Semantics

• Evaluation rules (M-machine) 

- we add (Pair v1 v2) and () to the set of values/final states

(Pair v1 e2) ↦M (Pair v1  e2’) 
e2 ↦M e2’

(Pair e1  e2) ↦M (Pair e1’ e2) 

e1 ↦M e1’

 (Fst (Pair v1  v2)) ↦M v1  (Snd(Pair v1  v2)) ↦M v2 
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 (Fst e) ↦M (Fst e’)  (Snd e) ↦M (Snd e’)
e ↦M e’ e ↦M e’



Sum-types

• Sum-types to express alternatives in MinHs 

- we use binary sums:   

‣ τ1+τ2 : either τ1 or τ2  (products: both τ1 and τ2)   

- n-ary sums can be expressed by nesting 

- similarities to the Haskell type Either:
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Sum-types

• Types 

• Constructors 

• Destructors (a very restricted form of pattern matching):

Inl e (Inl τ1 τ2  e)

case e of 
   Inl x -> e1 
   Inr y -> e2  

  (Case τ1 τ2  e (x.e1) (y.e2))

τ1 + τ2  τ1 + τ2

(Inr τ1 τ2  e)Inr e
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Sums in MinHs: Static Semantics

• Typing rules:

Γ ⊢ e1 : τ1

Γ ⊢ (Inl τ1 τ2 e1) :

Γ ⊢ (Case τ1 τ2 e (x.e1) (y.e2)): 
Γ ⊢ e : τ1 + τ2 Γ∪ {x : τ1} ⊢ e1:τ Γ∪ {y : τ2} ⊢ e2 :τ

 τ

τ1 + τ2
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Γ ⊢ e2 : τ2

Γ ⊢ (Inl τ1 τ2 e2) : τ1 + τ2



Sums in MinHs: Dynamic Semantics

• Evaluation rules (M-machine), omitting the types for brevity 

- we add (Inl v) and (Inr v) to the set of final states/values

(Inl e) ↦M (Inl e’)
e ↦M e’

 Case(Inl v) (x.e1)(y.e2) ↦M e1 [x:=v] 
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(Inr e) ↦M (Inr e’)
e ↦M e’

 (Case e (x.e1) (y.e2)) ↦M (Case e’ (x.e1) (y.e2)) 

e ↦M e’

 Case(Inr v) (x.e1)(y.e2) ↦M e1 [y:=v] 



Recursive Types

• What about the list type?
 
 data IntList = Nil | ICons Int IntList

 
               Unit + (Int *   ) 

 
       Rec t. Unit + (Int * t  ) 

we need a way to recursively refer 
 to a type!

we use notation like in higher-order 
abstract syntax to express  

that ’t’ is bound34



Recursive types

• Types 

• Constructor 

• Destructor

Rec t . τ (Rec (t.τ))

Roll e  (Roll e)  

unroll e  (Unroll e)  
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Examples

• List of integer values: 

- Type
 
 

      Rec List. (Unit + (Int * List))   

 
 

                                                Roll (Inl ())      []  
              Roll(Inr  (1,  (Roll (Inl ())))        [1] 
Roll (Inr (1, Roll(Inr  (2,  (Roll (Inl ())))))      [1,2]    

          ()  ::            Unit 
      Inl ()  ::            Unit + (Int * Rec List. (Unit + (Int * List)))    
Roll (Inl ()) :: Rec List. (Unit + (Int * List))  

Inl () =  unroll (Roll (Inl ()) :: Unit + (Int * (Rec List. (Unit + (Int * List)))

- Terms

36



Examples
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Recursive Types in MinHs: Static Semantics

• Typing rules:

Γ ⊢ e :   τ
Γ ⊢ (Roll e) :

Γ	⊢ e  : Rec(t.τ)
Γ	⊢ (Unroll e) : 

Rec(t.τ)

τ[t := Rec(t.τ)]

[t := Rec(t.τ)]
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Sums in MinHs: Dynamic Semantics

• Evaluation rules (M-machine) 

- we add (Roll v) to the set of values/final states

 (Unroll (Roll v)) ↦M v

(Roll e) ↦M (Roll e’) 
e ↦M e’
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(Unroll e) ↦M (Unroll e’) 
e ↦M e’



A lazy interpretations of type constructors

• With our new algebraic data types, we added terms of the form 

- (Pair v1 v2), (Inl v), (Inr v), (Roll v) 

to the set of final states F, if v, vi ∈ F, resulting in a strict interpretation 

• Lazy interpretation: final states can have the form 

- (Pair e1 e2), (Inl e), (Inr e), (Roll e) 

for e,ei ∈ S (any legal state) 

Terms of this form are also said to be in Weak Head Normal Form (WHNF)
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Products in MinHs: Dynamic Semantics

• Evaluation rules (M-machine), lazy  

- no rule for terms of the form (Pair e1  e2) 

41

 (Fst e) ↦M (Fst e’)  (Snd e) ↦M (Snd e’)

 (Fst (Pair e1  e2)) ↦M e1  (Snd(Pair e1  e2)) ↦M e2 

e ↦M e’ e ↦M e’



Recursive types in MinHs: Dynamic Semantics

• Evaluation rules (M-machine), lazy sum types

42

 Case(Inl e) (x.e1)(y.e2) ↦M e1 [x:=e] 

 Case(Inr e) (x.e1)(y.e2) ↦M e2 [y:=e] 

 (Case e (x.e1) (y.e2)) ↦M (Case e’ (x.e1) (y.e2)) 

e ↦M e’



Recursive types in MinHs: Dynamic Semantics

• Evaluation rules (M-machine), lazy
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 (Unroll (Roll e)) ↦M e

(Unroll e) ↦M (Unroll e’) 
e ↦M e’



Isomorphic Types

• Type correspondence: which MinHs type corresponds to the following Haskell 

since all three types have  
exactly three elements

• We cannot define the same type, but we can define an isomorphic type in MinHs 

- a type τ1 is isomorphic to  a type τ2 iff there exists a bijection between τ1 and τ2

• Colour is isomorphic to 

-  Unit + (Unit + Unit)  and also to 

- (Unit + Unit) + Unit

• Recursive types:

- Rec tree . ((Int, (tree, tree)) + Unit) 
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Isomorphic Types

• In actual programming languages, we want to have named user defined types 
which are distinguished by the type checker:
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Isomorphic Types

• Type generic programming exploits the fact that all compound types are built from 
unit, products, sums, and recursion 

- think about writing a show function that works on any user-defined type in 
Haskell 

- covered in more detail in Advanced Functional Programming  course
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