

Concepts of Programming Language Design Composite and Algebraic Data Types

Gabriele Keller Tom Smeding

Overview

higher & first-order syntax

inference rules, induction

tools to talk about languages

abstract machines

big step and small step operational semantics

value & type environments

composite types/ algebraic data types

higher-order functions/ partial application/function closures control stacks

semantic features

functional

exception handling

language concepts

procedural/imperative

static & dynamic scoping

static & dynamic typing

explicit typing

Utrecht University

- What are types?
 - Sets of values which share applicable operations
 - ▶ We've looked at some basic types, such as Int, Bool

▶ and one *type operator*, ->:

- How can we define own types from scratch?
- What about other type (set) operators?
 - product of sets: A x B
 - union of sets: A \cup B
 - power sets: $\mathcal{P}(A)$
- How does it work in different programming languages?
- Three main ways:
 - machine oriented (i.e., close to the actual representation)
 - object/data oriented
 - operation (functionality) centred

- Enumeration types:
 - a new type with a finite number of elements
- Example: defining a new type to model colours

Defining our own type 'from scratch'

• Many languages offer enumeration types as syntactic sugar over existing types (with various levels of static checks, different operations allowed):

• C#

• C

enum Colour : byte {Red, Green, Blue};

Defining our own type 'from scratch'

- In functional languages, like Haskell, it's a regular algebraic data type, with pattern matching (other operations possible by deriving type class membership)
 - Haskell

```
data Colour = Red | Green | Blue
  deriving (Eq)
```

 Rust also allows pattern matching, choice of representation type, and associated methods

```
enum Colour { Red(i32),Green(i32),Blue(i23)};
```


Product types

• Defining a new type by combining values of existing types:

• Structs in C:

```
struct point {
   float x;
   float y;
};
struct point middlePoint (
   struct point p1,
   struct point p2) {
    struct point mid;
   mid.x = (p1.x + p2.x)/2.0;
   mid.y = (p1.y + p2.y)/2.0;
   return mid;
}
```


• In C#

```
public struct Point {
  public float X {get; set;}
  public float Y {get; set;}
  public Point(float x, float y) {
               X = x;
               Y = y;
           }
  •••
  }
```


• In Java

- using degenerate classes in Java:

```
class Point {
   public float x;
   public float y;
};
Point middlePoint (Point p1, Point p2) {
   Point mid;
   mid.x = (p1.x + p2.x)/2.0;
   mid.y = (p1.y + p2.y)/2.0;
   return mid;
}
```


- In Haskell:
 - using simple pairs (tuples are built-in type constructors):

```
type Point = (Float, Float) - not necessary to define a type synonym
middlePoint:: Point -> Point -> Point
middlePoint (x1, y1) (x2, y2) =
  ((x1+x2)/2, (y1+y2)/2)
middlePoint' p1 p2 =
  ((fst p1 + fst p2)/2, (snd p1 + snd p2)/2)
```

- using algebraic data types (with unnamed and named fields):

```
data Point = Point Float Float
middlePoint (Point x1 y1) (Point x2 y2) =
  Point ((x1+x2)/2) ((y1+y2)/2)
```


• Composite types that offer alternatives of existing types

• Composite types that offer alternatives of existing types

• Alternatives with varying component types in C:

```
union {
    int i;
    float f;
    } unsafe;
unsafe.f = 1.23456;
printf ("the value is: %d", unsafe.i);
```

the value is: 1067320848

• Alternatives with varying component types in C:

```
typedef enum {I, F} valueTag;
typedef struct {
 valueTag tag;
union {
    int intLit;
    float floatLit; } val;
} value_t;
```

```
value_t * val;
...
switch (val->tag) {
   case I: ... val->IntLit...
   case F: ... val->floatLit...
```

C makes things explicit which more abstract languages handle for you behind the scenes

more control for the programmer but also more ways to introduce bugs/undefined behaviour

• In Haskell

data	Value		
=	I Integer		
	B Bool		

• Alternatives with varying component types in object oriented languages:

```
public abstract class Value {
    private.Value() {}
}
public class I: Value {
    public int V;
    public I(int v) {V = v;}
}
public class B: Value {
    public bool V;
    public B(bool v) {V = v;}
}
```


Collections

- Often, structured collections are needed
 - lists, trees, ...
 - mappings from a key to a value
 - ▶ arrays
 - vectors
 - ▶ tables
- For lists and trees and such, we need a way to express recursion on the type level!

Recursive types

- Abstract view on a list of integers
 - an empty list is a list
 - if *x* is an integer, and *xs* a list of integers, then we can build a list with the head *x* and the tail *xs*

• C

- space for recursive structures cannot be allocated statically
- necessary to store the address of the (possibly empty) tail of a list

```
typedef struct list_node {
    int elem;
    struct list_node * next;
} int_list_t;
```


• C#

```
class ListNode {
    int data;
    ListNode next;
    public ListNode(int d) {
        data = d;
        next = null;
    }}
```

• In Haskell (again, via algebraic data types)

Observation

- In an OO approach, we associate the operations directly with the new type
 - class declaration contains the methods
 - easy to extend the type by adding new subclasses
 - cumbersome to add new methods we have to change each subclass
- In a functional approach, the operations can be defined anywhere (if the constructors are exported)
 - easy to add new functionality just add the function anywhere in the program
 - cumbersome to add new variants we have add a case to each function definition

Extending MinHs with support for composite types

- We add algebraic data types to MinHs
 - product types
 - sum types
 - recursive types
- no support for letting the user give new names to types
 - could be easily added

Algebraic Data Types

- Algebraic data types (ADTs) in combination with pattern matching are a convenient way to construct and decompose composite types
 - traditionally, used in functional languages (Haskell, ML, ...)
 - also part now of many modern languages: Scala, Swift, Rust, C#
- Matching on simple constants:

Algebraic Data Types for MinHs: Products

- Products aka pairs in MinHs
 - minimal extension, only restricted case-pattern matching
 - no type declaration
 - no named fields
 - only pairs (e_1 , e_2) and
 - nullary tuples/unit ()
- New MinHs types:
 - Unit: singleton type with element ()
 - $\tau_1 * \tau_2$: binary product type with element type τ_1 and τ_2
- Operations on these types:
 - fst and snd to extract the first/second component

Products in MinHs: Concrete and Abstract Syntax

• Constructors

$$(e_1, e_2)$$
 (Pair $e_1 e_2$)
() ()

• Destructors

fst	e	(Fst	e)
snd	e	(Snd	<u>e</u>)

• Types

 $oldsymbol{ au}_1 * oldsymbol{ au}_2 \qquad oldsymbol{ au}_1 * oldsymbol{ au}_2$ Unit Unit

• Example:

```
recfun div :: ((Int * Int) -> Int) args =
    if (fst args < snd args)
        then 0
        else 1+ div (fst args - snd args, snd args)</pre>
```

- Side note:
 - what is the difference between these two (Haskell) functions:

```
average1 :: (Float, Float) -> Float
average1 (x, y) = (x+y)/2
average2 :: Float -> Float -> Float
average2 x y = (x+y)/2
```


Products in MinHs: Static Semantics

• Typing rules:

$$\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2$$

$$\Gamma \vdash (\text{Pair } e_1 \ e_2) : \tau_1 * \tau_2$$

$$\frac{\Gamma \vdash e : \tau_1 * \tau_2}{\Gamma \vdash (\text{Fst } e) : \tau_1}$$

 $\Gamma \vdash e: \tau_1 * \tau_2$ $\Gamma \vdash (\text{Snd } e): \tau_2$

 $\Gamma \vdash$ (): Unit

Products in MinHs: Dynamic Semantics

- Evaluation rules (M-machine)
 - we add (Pair v_1 v_2) and () to the set of values/final states

$$(\text{Pair } e_1 \mathrel{\blacktriangleright_M} e_1')$$

$$(\text{Pair } e_1 \mathrel{e_2}) \mathrel{\rightarrowtail_M} (\text{Pair } e_1' \mathrel{e_2})$$

$$(\operatorname{Pair} v_1 \ e_2) \rightarrowtail_M (\operatorname{Pair} v_1 \ e_2)) \bowtie_M (\operatorname{Pair} v_1 \ e_2)$$

$$\frac{e \bowtie_M e'}{(\text{Fst } e) \bowtie_M (\text{Fst } e')}$$

 $\frac{e \mapsto_M e'}{(\text{Snd } e) \mapsto_M (\text{Snd } e')}$

(Fst (Pair v_1 v_2)) $\mapsto_M v_1$

 $(\text{Snd}(\text{Pair } v_1 \quad v_2)) \mapsto_M v_2$

Sum-types

- Sum-types to express alternatives in MinHs
 - we use binary sums:

• $\tau_1 + \tau_2$: either τ_1 or τ_2 (products: both τ_1 and τ_2)

- n-ary sums can be expressed by nesting
- similarities to the Haskell type **Either**:

Sum-types

• Types

 $\boldsymbol{\tau}_1 + \boldsymbol{\tau}_2 \qquad \qquad \boldsymbol{\tau}_1 + \boldsymbol{\tau}_2$

Constructors

Inl	e	(Inl	$ au_1$	$ au_2$	e)
Inr	е	(Inr	$\boldsymbol{ au}_1$	$ au_2$	e)

- Destructors (a very restricted form of pattern matching):
 - case e of Inl $x \rightarrow e_1$ Inr $y \rightarrow e_2$

(Case
$$\tau_1 \tau_2 e (x.e_1) (y.e_2)$$
)

Sums in MinHs: Static Semantics

• Typing rules:

$$\Gamma \vdash e_1 : \tau_1$$

$$\Gamma \vdash (\operatorname{Inl} \tau_1 \tau_2 e_1) : \tau_1 + \tau_2$$

$$\frac{\Gamma \vdash e_2 : \tau_2}{(\operatorname{Inl} \tau_1 \tau_2 e_2) : \tau_1 + \tau_2}$$

 $\frac{\Gamma \vdash e: \tau_1 + \tau_2 \quad \Gamma \cup \{x: \tau_1\} \vdash e_1:\tau \quad \Gamma \cup \{y: \tau_2\} \vdash e_2:\tau}{\Gamma \vdash (\text{Case } \tau_1 \ \tau_2 \ e \ (x.e_1) \ (y.e_2)): \tau}$

Sums in MinHs: Dynamic Semantics

- Evaluation rules (M-machine), omitting the types for brevity
 - we add (Inl v) and (Inr v) to the set of final states/values

$$(Inl e) \mapsto_M (Inl e') \qquad e \mapsto_M e' \\ (Inr e) \mapsto_M (Inr e') \qquad (Inr e) \mapsto_M (Inr e')$$

 $e \mapsto_M e'$

(Case $e(x.e_1)(y.e_2)) \mapsto_M$ (Case $e'(x.e_1)(y.e_2)$)

Case(Inl v) $(x.e_1)(y.e_2) \mapsto_M e_1[x:=v]$

Case(Inr v) $(x.e_1)(y.e_2) \mapsto_M e_1[y:=v]$

Recursive Types

Recursive types

- Types
- Rec $t \cdot \tau$ (Rec $(t \cdot \tau)$)
- Constructor
 - Roll e (Roll e)
- Destructor
 - unroll *e* (Unroll *e*)

Examples

- List of integer values:
 - Type

Rec List. (Unit + (Int * List))

- Terms

		Roll (Inl ())	[]
H	Roll(Inr (1,	(Roll (Inl ())))	[1]
Roll (Inr (1, H	Roll(Inr (2,	(Roll (Inl ()))))	[1,2]

() :: Unit Inl () :: Unit + (Int * Rec List. (Unit + (Int * List))) Roll (Inl ()) :: Rec List. (Unit + (Int * List))

Inl () = unroll (Roll (Inl ()) :: Unit + (Int * (Rec List. (Unit + (Int * List)))


```
recfun head
:: ((Rec L = Unit + (Int * L)) -> Int) xs
= case unroll xs of
    Inl unit -> 0
    Inr cons -> fst cons
recfun tail
::((Rec L = Unit + (Int * L)) -> (Rec L = Unit + (Int * L))) xs
= case unroll xs of
    Inl unit -> Roll (Inl ())
    Inr cons -> snd cons
```


Recursive Types in MinHs: Static Semantics

• Typing rules:

$$\Gamma \vdash e: \tau [t := \operatorname{Rec}(t, \tau)]$$
$$\Gamma \vdash (\operatorname{Roll} e): \operatorname{Rec}(t, \tau)$$

$$\Gamma \vdash e : \operatorname{Rec}(t, \tau)$$

$$\Gamma \vdash (\operatorname{Unroll} e) : \tau[t := \operatorname{Rec}(t, \tau)]$$

Sums in MinHs: Dynamic Semantics

- Evaluation rules (M-machine)
 - we add (Roll v) to the set of values/final states

$$(\text{Roll } e) \mapsto_M (\text{Roll } e') \qquad (\text{Unroll } e) \mapsto_M (\text{Unroll } e')$$

(Unroll (Roll v)) $\mapsto_M v$

A lazy interpretations of type constructors

- With our new algebraic data types, we added terms of the form
 - (Pair $v_1 v_2$), (Inl v), (Inr v), (Roll v)

to the set of final states F, if $v, v_i \in F$, resulting in a strict interpretation

• Lazy interpretation: final states can have the form

- (Pair $e_1 e_2$), (Inl e), (Inr e), (Roll e)

for $e, e_i \in S$ (any legal state)

Terms of this form are also said to be in Weak Head Normal Form (WHNF)

Products in MinHs: Dynamic Semantics

- Evaluation rules (M-machine), lazy
 - no rule for terms of the form (Pair e_1 e_2)

$$e \mapsto_M e'$$

(Fst e) \mapsto_M (Fst e')

 $(\text{Snd } e) \mapsto_M (\text{Snd } e')$

(Fst (Pair $e_1 e_2$)) $\mapsto_M e_1$

(Snd(Pair $e_1 e_2$)) $\mapsto_M e_2$

Recursive types in MinHs: Dynamic Semantics

• Evaluation rules (M-machine), lazy sum types

Case(Inl e) ($x.e_1$)($y.e_2$) $\mapsto_M e_1[x:=e]$

Case(Inr e) $(x.e_1)(y.e_2) \mapsto_M e_2[y:=e]$

 $e \mapsto_M e'$

(Case $e(x.e_1)(y.e_2)$) \mapsto_M (Case $e'(x.e_1)(y.e_2)$)

Recursive types in MinHs: Dynamic Semantics

• Evaluation rules (M-machine), lazy

(Unroll (Roll e)) $\bowtie_M e$

 $e \mapsto_M e'$ (Unroll e) \mapsto_M (Unroll e')

Isomorphic Types

• Type correspondence: which MinHs type corresponds to the following Haskell

data Colour = Red | Green | Blue

- **Colour** is isomorphic to
 - Unit + (Unit + Unit) and also to
 - (Unit + Unit) + Unit

sínce all three types have exactly three elements

- We cannot define the same type, but we can define an isomorphic type in MinHs
 - a type τ_1 is isomorphic to a type τ_2 iff there exists a bijection between τ_1 and τ_2
- Recursive types:

data Tree = Node Int Tree Tree | Leaf

Isomorphic Types

• In actual programming languages, we want to have **named** user defined types which are distinguished by the type checker:

```
data Direction = North | South | East | West
data Colour = Red | Black | Blue | Yellow
data Vector = Vector Float Float
data Point = Point Float Float
```


Isomorphic Types

- Type generic programming exploits the fact that all compound types are built from unit, products, sums, and recursion
 - think about writing a *show* function that works on any user-defined type in Haskell
 - covered in more detail in Advanced Functional Programming course

