
Concepts of Programming Language Design
Composite and Algebraic Data Types

Gabriele Keller
Tom Smeding

 1

Overview

semantic features

tools to talk about languages

static & dynamic
scoping

static & dynamic
typing

language concepts

functional

procedural/imperative

higher & first-order syntax

big step and small step operational
semantics

abstract machines

inference rules, induction

composite types/
algebraic data types

higher-order functions/
partial application/function closures

value & type environments

control stacks

explicit
typing

exception handling

2

Composite types

• What are types?

- Sets of values which share applicable operations

‣ We’ve looked at some basic types, such as Int, Bool
Int Bool

12
3

4
…

True

False

odd

Int -> Bool

even

…
3

‣ and one type operator, ->:

Composite types

• How can we define own types from scratch?

• What about other type (set) operators?

- product of sets: A x B

- union of sets: A ∪ B

- power sets: 𝒫(A)

• How does it work in different programming languages?

• Three main ways:

- machine oriented (i.e., close to the actual representation)

- object/data oriented

- operation (functionality) centred

4

Defining our own type ‘from scratch’

• Enumeration types:

- a new type with a finite number of elements

• Example: defining a new type to model colours

Colour

Green
Red

Blue

5

Defining our own type ‘from scratch’

• Many languages offer enumeration types as syntactic sugar over existing types
(with various levels of static checks, different operations allowed):

enum Colour : byte {Red, Green, Blue};

• C

 typedef enum {Red = 1, Green = 2, Blue = 3} colour;

• C#

6

Defining our own type ‘from scratch’

• In functional languages, like Haskell, it’s a regular algebraic data type, with
pattern matching (other operations possible by deriving type class
membership)

data Colour = Red | Green | Blue

 deriving (Eq)

• Haskell

7

• Rust also allows pattern matching, choice of representation type, and
associated methods

enum Colour { Red(i32),Green(i32),Blue(i23)};

Product types

Int Bool

True

False

Int × Bool

(1, True)

(2, False)

…

12
3

4
…

• Defining a new type by combining values of existing types:

8

• Structs in C:

Tuples example: modelling a point in a 2D space

struct point {
float x;
float y;

};

struct point middlePoint (
 struct point p1,
 struct point p2) {
 struct point mid;
 mid.x = (p1.x + p2.x)/2.0;
 mid.y = (p1.y + p2.y)/2.0;
 return mid;
}

9

Tuples example: modelling a point in a 2D space

• In C#

public struct Point {
 public float X {get; set;}
 public float Y {get; set;}

public Point(float x, float y) {
 X = x;
 Y = y;
 }
…
}

10

Tuples example: modelling a point in a 2D space

• In Java

- using degenerate classes in Java:

class Point {
public float x;
public float y;

};

Point middlePoint (Point p1, Point p2) {
 Point mid;
 mid.x = (p1.x + p2.x)/2.0;
 mid.y = (p1.y + p2.y)/2.0;
 return mid;
}

11

• In Haskell:

- using simple pairs (tuples are built-in type constructors):

Tuples example: modelling a point in a 2D space

type Point = (Float, Float) — not necessary to define a type synonym

middlePoint:: Point -> Point -> Point
middlePoint (x1, y1) (x2, y2) =
 ((x1+x2)/2, (y1+y2)/2)

middlePoint’ p1 p2 =
 ((fst p1 + fst p2)/2, (snd p1 + snd p2)/2)

data Point = Point {x:: Float, y:: Float}

middlePoint (Point x1 y1) (Point x2 y2) =
 Point ((x1+x2)/2) ((y1+y2)/2)

middlePoint’ p1 p2 = Point { x = (x p1 + x p2)/2
 y = (x p2 + y p2)/2}

data Point = Point Float Float

middlePoint (Point x1 y1) (Point x2 y2) =
 Point ((x1+x2)/2) ((y1+y2)/2)

- using algebraic data types (with unnamed and named fields):

12

Composite types

Int Bool

True

False

• Composite types that offer alternatives of existing types

Int ∪ Bool

True

False

2

3

4

…

12
3

4
…

we need to
‘label’ the values for

type safety

13

Composite types

Int Bool

Int ∪ Bool

12
3

4
…

True

False

• Composite types that offer alternatives of existing types

True

False

2

3
4

…

Bool
Bool

Int

Int

Int

we need to
‘label’ the values for

type safety

14

Composite types

• Alternatives with varying component types in C:

union {
 int i;
 float f;
} unsafe;

unsafe.f = 1.23456;
printf (“the value is: %d”, unsafe.i);

the value is: 1067320848

15

Composite types

• Alternatives with varying component types in C:

typedef enum {I, F} valueTag;

typedef struct {
 valueTag tag;
 union {
 int intLit;
 float floatLit; } val;
} value_t;

value_t * val;
…
switch (val->tag) {
 case I: … val->IntLit…
 case F: … val->floatLit…

C makes things
explicit which more
abstract languages

handle for you
behind the scenes

more control for the
programmer

but also
more ways to introduce

bugs/undefined behaviour

16

Composite types

• In Haskell

data Value
 = I Integer
 | B Bool

Value

(B True)

(B False)

(I 2)

(I 3)

(I 4)

…

17

Composite types

• Alternatives with varying component types in object oriented languages:

public abstract class Value {
 private.Value() {}
}

public class I: Value {
 public int V;
 public I(int v) {V = v;}
}

public class B: Value {
 public bool V;
 public B(bool v) {V = v;}
}

18

Collections

• Often, structured collections are needed

- lists, trees, …

- mappings from a key to a value

‣ arrays

‣ vectors

‣ tables

• For lists and trees and such, we need a way to express recursion on the type
level!

19

Recursive types

typedef struct list_node {
 int elem;
 struct list_node * next;
} int_list_t;

• Abstract view on a list of integers

• an empty list is a list

• if x is an integer, and xs a list of integers, then we can build a list with the
head x and the tail xs

• C

- space for recursive structures cannot be allocated statically

- necessary to store the address of the (possibly empty) tail of a list

20

Recursive types

• In Haskell (again, via algebraic data types)

data IntList
 = ICons Int IntList
 | Nil

class ListNode {
 int data;
 ListNode next;
 public ListNode(int d) {
 data = d;
 next = null;
 }}

• C#

Observation

• In an OO approach, we associate the operations directly with the new type

- class declaration contains the methods

- easy to extend the type by adding new subclasses

- cumbersome to add new methods - we have to change each subclass

• In a functional approach, the operations can be defined anywhere (if the
constructors are exported)

- easy to add new functionality - just add the function anywhere in the
program

- cumbersome to add new variants - we have add a case to each function
definition

22

Extending MinHs with support for composite types

• We add algebraic data types to MinHs

- product types

- sum types

- recursive types

• no support for letting the user give new names to types

- could be easily added

23

Algebraic Data Types

• Algebraic data types (ADTs) in combination with pattern matching are a
convenient way to construct and decompose composite types

- traditionally, used in functional languages (Haskell, ML, …)

- also part now of many modern languages: Scala, Swift, Rust, C#

• Matching on simple constants:

24

Algebraic Data Types for MinHs: Products

• Products aka pairs in MinHs

- minimal extension, only restricted case-pattern matching

- no type declaration

- no named fields

- only pairs (e1, e2) and

- nullary tuples/unit ()

• New MinHs types:

- Unit: singleton type with element ()

- τ1 * τ2 : binary product type with element type τ1 and τ2

• Operations on these types:

- fst and snd to extract the first/second component
25

Products in MinHs: Concrete and Abstract Syntax

• Constructors

• Destructors

• Types

(e1, e2) (Pair e1 e2)
() ()

fst e (Fst e)
snd e (Snd e)

τ1 * τ2 τ1 * τ2

Unit Unit

26

Products in MinHs

• Example:

• Side note:

- what is the difference between these two (Haskell) functions:

27

Products in MinHs: Static Semantics

• Typing rules:

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (Pair e1 e2) : τ1 * τ2

Γ ⊢ (Fst e) : τ1

Γ ⊢ e : τ1 * τ2 Γ ⊢ e : τ1 * τ2

Γ	⊢ (): Unit

28

Γ ⊢ (Snd e) : τ2

Products in MinHs: Dynamic Semantics

• Evaluation rules (M-machine)

- we add (Pair v1 v2) and () to the set of values/final states

(Pair v1 e2) ↦M (Pair v1 e2’)
e2 ↦M e2’

(Pair e1 e2) ↦M (Pair e1’ e2)

e1 ↦M e1’

 (Fst (Pair v1 v2)) ↦M v1 (Snd(Pair v1 v2)) ↦M v2

29

 (Fst e) ↦M (Fst e’) (Snd e) ↦M (Snd e’)
e ↦M e’ e ↦M e’

Sum-types

• Sum-types to express alternatives in MinHs

- we use binary sums:

‣ τ1+τ2 : either τ1 or τ2 (products: both τ1 and τ2)

- n-ary sums can be expressed by nesting

- similarities to the Haskell type Either:

30

Sum-types

• Types

• Constructors

• Destructors (a very restricted form of pattern matching):

Inl e (Inl τ1 τ2 e)

case e of
 Inl x -> e1
 Inr y -> e2

 (Case τ1 τ2 e (x.e1) (y.e2))

τ1 + τ2 τ1 + τ2

(Inr τ1 τ2 e)Inr e

31

Sums in MinHs: Static Semantics

• Typing rules:

Γ ⊢ e1 : τ1

Γ ⊢ (Inl τ1 τ2 e1) :

Γ ⊢ (Case τ1 τ2 e (x.e1) (y.e2)):
Γ ⊢ e : τ1 + τ2 Γ∪ {x : τ1} ⊢ e1:τ Γ∪ {y : τ2} ⊢ e2 :τ

 τ

τ1 + τ2

32

Γ ⊢ e2 : τ2

Γ ⊢ (Inl τ1 τ2 e2) : τ1 + τ2

Sums in MinHs: Dynamic Semantics

• Evaluation rules (M-machine), omitting the types for brevity

- we add (Inl v) and (Inr v) to the set of final states/values

(Inl e) ↦M (Inl e’)
e ↦M e’

 Case(Inl v) (x.e1)(y.e2) ↦M e1 [x:=v]

33

(Inr e) ↦M (Inr e’)
e ↦M e’

 (Case e (x.e1) (y.e2)) ↦M (Case e’ (x.e1) (y.e2))

e ↦M e’

 Case(Inr v) (x.e1)(y.e2) ↦M e1 [y:=v]

Recursive Types

• What about the list type?

 data IntList = Nil | ICons Int IntList

 Unit + (Int *)

 Rec t. Unit + (Int * t)

we need a way to recursively refer
 to a type!

we use notation like in higher-order
abstract syntax to express

that ’t’ is bound34

Recursive types

• Types

• Constructor

• Destructor

Rec t . τ (Rec (t.τ))

Roll e (Roll e)

unroll e (Unroll e)

35

Examples

• List of integer values:

- Type

 Rec List. (Unit + (Int * List))

 Roll (Inl ()) []
 Roll(Inr (1, (Roll (Inl ()))) [1]
Roll (Inr (1, Roll(Inr (2, (Roll (Inl ()))))) [1,2]

 () :: Unit
 Inl () :: Unit + (Int * Rec List. (Unit + (Int * List)))
Roll (Inl ()) :: Rec List. (Unit + (Int * List))

Inl () = unroll (Roll (Inl ()) :: Unit + (Int * (Rec List. (Unit + (Int * List)))

- Terms

36

Examples

37

Recursive Types in MinHs: Static Semantics

• Typing rules:

Γ ⊢ e : τ
Γ ⊢ (Roll e) :

Γ	⊢ e : Rec(t.τ)
Γ	⊢ (Unroll e) :

Rec(t.τ)

τ[t := Rec(t.τ)]

[t := Rec(t.τ)]

38

Sums in MinHs: Dynamic Semantics

• Evaluation rules (M-machine)

- we add (Roll v) to the set of values/final states

 (Unroll (Roll v)) ↦M v

(Roll e) ↦M (Roll e’)
e ↦M e’

39

(Unroll e) ↦M (Unroll e’)
e ↦M e’

A lazy interpretations of type constructors

• With our new algebraic data types, we added terms of the form

- (Pair v1 v2), (Inl v), (Inr v), (Roll v)

to the set of final states F, if v, vi ∈ F, resulting in a strict interpretation

• Lazy interpretation: final states can have the form

- (Pair e1 e2), (Inl e), (Inr e), (Roll e)

for e,ei ∈ S (any legal state)

Terms of this form are also said to be in Weak Head Normal Form (WHNF)

40

Products in MinHs: Dynamic Semantics

• Evaluation rules (M-machine), lazy

- no rule for terms of the form (Pair e1 e2)

41

 (Fst e) ↦M (Fst e’) (Snd e) ↦M (Snd e’)

 (Fst (Pair e1 e2)) ↦M e1 (Snd(Pair e1 e2)) ↦M e2

e ↦M e’ e ↦M e’

Recursive types in MinHs: Dynamic Semantics

• Evaluation rules (M-machine), lazy sum types

42

 Case(Inl e) (x.e1)(y.e2) ↦M e1 [x:=e]

 Case(Inr e) (x.e1)(y.e2) ↦M e2 [y:=e]

 (Case e (x.e1) (y.e2)) ↦M (Case e’ (x.e1) (y.e2))

e ↦M e’

Recursive types in MinHs: Dynamic Semantics

• Evaluation rules (M-machine), lazy

43

 (Unroll (Roll e)) ↦M e

(Unroll e) ↦M (Unroll e’)
e ↦M e’

Isomorphic Types

• Type correspondence: which MinHs type corresponds to the following Haskell

since all three types have
exactly three elements

• We cannot define the same type, but we can define an isomorphic type in MinHs

- a type τ1 is isomorphic to a type τ2 iff there exists a bijection between τ1 and τ2

• Colour is isomorphic to

- Unit + (Unit + Unit) and also to

- (Unit + Unit) + Unit

• Recursive types:

- Rec tree . ((Int, (tree, tree)) + Unit)
44

Isomorphic Types

• In actual programming languages, we want to have named user defined types
which are distinguished by the type checker:

45

Isomorphic Types

• Type generic programming exploits the fact that all compound types are built from
unit, products, sums, and recursion

- think about writing a show function that works on any user-defined type in
Haskell

- covered in more detail in Advanced Functional Programming course

46

