
Concepts of Programming Language Design
Reference Types
Gabriele Keller
Tom Smeding

• Variables in TinyC represent values stored in a fixed memory location

- assigning a new value to a variable updated the value in that location

• Reference types refer to a location a value is stored

• Reference types are usually implemented as pointers, that is as address into the
memory of a process (often with some associated meta data, such as the size of the
data pointed to)

• Most high-level languages support or use reference types in one way or another

- explicitly, in an abstract way: only expose the interface (creation, read and write a
value)

- implicitly, using them behind the scenes to implement data structures

- explicitly, exposing the implementation as pointer: C

Reference types

• A pointer:

- machine address

- some meta data (size & stats of the data it points to)

• A reference is an abstract data type:

- we have a set of operations defined on it

‣ create, read, write, update

- often represented internally as pointer, but no guarantee that the address
stays constant, runtime system may relocate the data

Reference types vs pointers

• Haskell has not explicit built-in reference types, but Data.IORef provides it
as abstract data type:

Reference types

• these are functions which have an effect on the world (or depend on the
current state of the world)

xRef

510

x1

 5

x2

 10

Reference types

xRef

510

x1

 5

x2

 10

yRef

x1: 5 x2: 10

• Haskell also uses references behind the scenes

- even basic values (Int etc) are internally represented as
references to these values (boxed representation) or to as
to yet unevaluated computations

- enables sharing

Reference types

0

ys

1

2

3

xs

• The boxed representation is an efficient representation for lazy evaluation

Reference types

• This means evaluation has a side effect
(this can be problematic for parallel
execution)

 x

⟪sum [1,2..10]⟫

 y

⟪2 * ⟫

 z
⟪3 + ⟫

• The boxed representation is an effective representation for sharing (lazy
evaluation!)

Reference types

 x

 y

⟪2 * ⟫

 z
⟪3 + ⟫

 55

• The boxed representation is an effective representation for sharing (lazy
evaluation!)

Reference types

• This means evaluation has a side effect
(this can be problematic for parallel
execution)

 x

 y

 z
⟪3 + ⟫

 55

 110

• In functional languages, it doesn’t matter for the semantics of a program whether
a value has a boxed or unboxed representation

- it does affect performance, as dereferencing is expensive

- in Haskell, it’s possible to explicitly use unboxed types (denoted by # -
Int#…)

Reference types

• In languages with side effect, it is important to know whether we deal with
reference or value types to understand the behaviour of

- assignments

- function calls

• Unfortunately, this is not uniform, even across closely related languages

References in stateful languages

• In C#, Java some values are represented via references, some directly a the value

- value types:

‣ value types: boolean, integers, floating point numbers

- reference types:

‣ classes, interfaces, arrays

• In Swift

- everything is a value type, with the exception of functions, closures and classes

• C++

- all value types, references and pointers are explicit

Reference types vs value types

C#: C++:

ob2.value = 10 ob2.value = 20

https://en.wikipedia.org/wiki/Value_type_and_reference_type

Check out differences in value & reference type classification
when switching to a new language!

⠇

• Pointer types in C are denoted by an asterisk *
after the type name

• Dereferencing a pointer is done by the * operator

• The operator & returns the address of a variable

• Memory has to allocated and freed explicitly by
the programmer

Pointers in C

5

x_ptr

x_ptrptr

⠇

• Pointers in C are very powerful, but very unsafe!

- forget to free memory

- free an address which has not been allocated

- access a memory location after freeing

- return an address of a local variable

• Pointer arithmetic

Pointers in C

5

x_ptr

• Also called pass-by-reference/pass-by-value

• What is the calling convention for procedures/functions/methods?

• Call by value

- like in TinyC (and C): the value of the argument expression gets bound to the
formal parameter.

- function calls don’t affect the values of the variables in the caller

• Java, C#, C++ are all call by value, but since classes are reference types in C# &
Java, the behaviour is different

- Java/C#: the reference gets copied

- C++, the object gets copied)

• Fortran is always call by reference - even on constant values!

- this can result of constant values being changed!

Call-by-value vs call-by reference

Call-by-value vs call-by reference

• We add references as abstract data type to the language

- declaration & instantiation of a reference and the value it points to

- reading the value a reference points to

- updating the value a reference points to

TinyC with references

Adding references

• We have to do ‘proper’ type checking now:

- Environment of variables with type:

‣ V = {x1 : type1, x2:type2,….}

- Environment of functions with their type:

‣ F = {f1: (type1,type2 …) → type ,….}

- make sure arithmetic operations only applied to int

- dereferencing only on int * types, etc

- type of the return value of a function is what it is supposed to be

• same technique as for MinHs, so we skip this step and focus on the dynamic
semantics

Static semantics

• Consider how we modelled the memory in TinyC:

Dynamic semantics

y

x_ptr

20

5

1

y_ptr

?

 (g, x)⇓(g, v)
 g@x = v

 (g, x=e) ⇓

 (g, e)⇓(g’,v)

(g’@x← v, v) (g, {l ss})⇓
 (g.l, ss)⇓(g’.l’, rv)

(g’, rv)

• Problem:

- we can’t get away with only storing everything in a stack frame which we
remove from the stack when exiting a block

- we need persistent memory (in addition to the stack)!

- we need to keep track of which addresses in the persistent memory are
available

Dynamic semantics

y

x_ptr

20

5

1

y_ptr

g h

• Modelling the persistent memory (heap)

- state as a triple: stack g, heap h with next free address k, current statement s

Dynamic semantics

(g ◆ hk , s)
- judgements:

(g ◆ hk , rv)prgm⇓
(g’ ◆ h’k’ , v)(g ◆ hk , expr)⇓

(g’ ◆ h’k’ , rv)(g ◆ hk , stmt)⇓

Dynamic semantics

(g ◆ hk , int * x = alloc(v);) ⇓ ((g, int * x = k) ◆ (h. k = v)k+1, v)

(g ◆ hk, v)

hk @(g @ x) = v

(g ◆ hk , *x) ⇓

(g @ x) = j(g ◆ hk , e)⇓ (g’ ◆ h’k’ , v)

(g ◆ hk ,*x = e) ⇓ (g’ ◆(h’ @ j ← v)k’ , v)

• Declaration and initialisation of references:

• Dereferencing and assignment

• Is TinyC with references still type safe (assuming we did the type checking properly)?

- dereferencing will always return a result, since all variables of type int * are either

‣ introduced and instantiated by a declaration and therefore have a value, or

‣ assigned to a variable of type int * (has a value if that variable has a value)

‣ or bound via a function call to another value of type int *

- we don’t have an address operator (&) like C, so we don’t have to worry about
addresses not pointing to h

- once a legal reference, always a legal reference (never freed, never out of scope)

- the actual address k is not observable and can’t be manipulated (no pointer
arithmetic)

Observations

• The problem with our heap h:

- the heaps keeps growing, as memory on the heap is never freed

• Should we introduce a free operation?

- we could introduce a runtime error whenever we dereference a freed
reference

- but how can we re-use an address then?

- still no guarantee that the programmer frees memory once its not required
anymore

- in real languages, this leads to memory fragmentation

Observations

Memory Fragmentation

?

• We know that only addresses which are still referred to from the stack are
reachable

Observations

y

x_ptr

20

5

1

y_ptr

g h

can be reused!

• How can we identify those addresses?

• Many ways to do this, for example:

- keep track of number of references to each heap location during execution

‣ disadvantage: runtime overhead, possible fragmentation of memory if
allocated blocks have different size (not a problem in Tiny, since only space
for ints is allocated), cyclic structures?

- tracing garbage collection:

‣ stop execution of program and trace all stack references, copy only live data
to new heap space, free old heap space

‣ it is necessary to be able to identify references on the stack

- keep track of references via static semantics/type system

‣ we’ll discuss this later in the course

Memory management

• Garbage collection in our simple model can be viewed as a mapping from

- a memory state (g ◆ hk) to a state (g’ ◆ h’k’)

- which yields the same result for all data look ups.

• More formally, (g ◆ hk) ≈ (g’ ◆ h’k’), with

Garbage Collection

(◦ ◆ hk) ≈ (◦ ◆ h’k’)

 (g ◆ hk) ≈ (g’ ◆ h’k’)

 (g , int x = v ◆ hk) ≈ (g’ , int x = v ◆ h’k’)

 (g ◆ hk) ≈ (g’ ◆ h’k’)

 (g , int* x = l ◆ hk) ≈ (g’ , int x = l’ ◆ h’k’)

hk@l = h’k’@l

• Stop-and-copy:

- we maintain two heaps, the current and the new heap

- when the current heap gets too full, traverse the stack

‣ copy each object referenced from the stack into the new heap

‣ for realistic languages, where we also have references on the heap, we follow
the references recursively, until all objects referenced from the stack directly or
indirectly have been moved to the new heap

- swap current and new heap, repeat

- disadvantage:

‣ (large data structures which live for a long time get copied back and forth
repeatedly

Garbage collection

• Generational garbage collection:

- based on the observation that most objects can be freed soon after creation,
the older objects are, the more like they are still in use in the next interval

- multiple heaps, gen 0 to gen n

- objects get copied from gen i to gen (i+1)

- garbage collect more frequently in younger generations

- only gen n has its new heap

- objects cannot refer back to objects of a younger generation

Garbage collection

• In languages with manual memory management, we can have memory leaks if
the programmer forgets to free memory

• How about languages with automatic memory management?

- external resources the runtime system doesn’t have control over

- references to unused resources in an object, or a closure

- interaction with sharing and laziness, e.g., Haskell

Memory leaks

- and laziness, e.g., Haskell

• It is important to know which types are represented as value types, which as reference
types

- for pure languages, it influences performance

- for stateful languages, performance and semantics!

• Memory management

- manual memory management

‣ allows fine grained control, potentially much more economical regarding memory
consumption

‣ also, huge source of bugs, security vulnerabilities

- automatic memory management

‣ convenient

‣ safer

‣ hard to predict runtime performance, still necessary to be aware of what’s going
on behind the scenes to some extend

- we will hear about a third approach later in the course!

Summary

