
Concepts of Programming Language Design
Parametric Polymorphism

Gabriele Keller
Tom Smeding

Overview

semantic features

tools to talk about languages

static & dynamic
scoping

static & dynamic
typing

explicit & implicit
typing

language concepts

functional

procedural/imperative

higher & first-order syntax

big step and small step operational
semantics

abstract machines

inference rules, induction

(algebraic) data types

partial application/function closures

value & type environments

control stacksparametric polymorphism/
generics

explicit & implicit
typing

type checking

Parametric Polymorphism

• Example: swap the elements of a pair (in Haskell)

• What is swap’s type?
- In Haskell:

- in MinHs:

 swap (x, y) = (y, x)

 swap :: (a, b) -> (b, a)

recfun swapIntBool :: (Int, Bool) -> (Bool, Int) pair =
 (snd pair, fst pair)

recfun swapBoolInt :: (Bool, Int) -> (Int, Bool) pair =
 (snd pair, fst pair)

.....

forall a. forall b. (a,b) -> (b,a)

Parametric polymorphism

The term polymorphism is used in the PL context to mean several different
concepts:

- Parametric polymorphism (when functional programmers talk about
polymorphism, often referred to as ‘generics’ by OO ppl)

‣ the operation can work on any type

swap :: (a, b) -> (b, a)
swap (x, y) = (y, x)

swap (1,”Hello”)

swap (‘c’, \x -> x + 1)

swap (True, odd)

Parametric polymorphism

• Adhoc polymorphism (when OO programmers talk about polymorphism)

‣ a function or operation is overloaded with multiple implementations to
work on some specific types

 5 + 3

 3.7 + 1.234

 “Hello” + “ World”

Sometimes polymorphism is used to refer to subtyping

We will cover all of these concepts in the course

Parametric Polymorphism in Haskell

• Parametric polymorphism:

- a and b are type variables

• Using a polymorphic function:

- when a polymorphic function is applied to a concrete value, the type variables
are instantiated:

- instantiates type variable a to Int, b to Bool

swap :: (a, b) -> (b, a)
swap pair =
 (snd pair, fst pair)

 swap (1, True)

Parametric Polymorphism (generics) in C#

static void Swap<T>(ref T a, ref T b) {
 T temp;
 temp = a;
 a = b;
 b = temp;
}

static void Main(string[] args) {
 int a, b;
 char c, d;
 a = 5;
 b = 10;
 c = 'X';
 d = ‘Y';

 Swap<int>(ref a, ref b);
 Swap<char>(ref c, ref d);

 }
}

explicit introduction of type variable

explicit instantiation of type variable

Parametric Polymorphism (generics) in Swift

func swap<T>(_ a: inout T, _ b: inout T) {
 let tmp = a
	 a = b
	 b = tmp
}	

var x = 3
var y = 107

swap(&x, &y)	

var str1 = “hello"
var str2 = "world"
swap(&str1, &str2)

explicit introduction of type variable

but no explicit instantiation necessary
(but possible)

Adding Parametric Polymorphism to MinHs
• First: with explicit typing (as in C#)

- introduction of type variables is explicit

- instantiation of type variables is explicit

static void Swap<T>(ref T a, ref T b)

func swap<T>(_ a: inout T, _ b: inout T)

Swap<int>(ref a, ref b)

• Later, we look into how this works for implicit typing (i.e., programmer does not
have to provide the type

Adding Parametric Polymorphism to MinHs
• Type abstraction in polymorphic (explicitly typed) MinHs:

• Type instantiation

evaluates to

(Type a in
(Type b in
 recfun swap :: ((a * b) ➔ (b * a)) pair =
 (snd pair, fst pair)))

(inst (Type a in
(inst (Type b in
 recfun swap :: ((a * b) ➔ (b * a)) pair =
 (snd pair, fst pair)
 Bool)

 Int)))

recfun swap :: (Int * Bool) ➔ (Bool * Int) pair =
 (snd pair, fst pair)

explicit introduction of type variables

explicit instantiation of type variables
(corresponds to application on the value level)

Parametric Polymorphism

• What is the type of this function?

• Universal quantification:

- it is ∀a.∀b.(a * b) ➔ (b * a)

- written in Haskell (leading forall a. forall b. optional)

(Type a in
(Type b in
 recfun swap :: ((a * b) ➔ (b * a)) pair =
 (snd pair, fst pair)))

 forall a. forall b. (a * b) ➔ (b * a)

Polymorphic MinHS - Concrete Syntax

Polytypes σ ::= τ | ∀ Ident . σ
Monotypes τ ::= Bool | Int | (τ ➔ τ) | Ident

Expressions Expr
r

::= Ident
| inst (Expr, τ)
| recfun Ident ::(τ ➔ τ) Ident = Expr
| Type Ident in Expr | ...

• Note that we only allow quantifiers at the outermost position

- this restriction is not necessary for explicitly typed MinHs

Polymorphic MinHS

• Valid Types:

- types can now contain type variables, but they need to be “in scope” (bound
by a quantifier)

t ∈ Δ

Δ ⊢ t okΔ ⊢ ∀ t. σ ok
Δ ∪ {t} ⊢ σ ok t ∉ Δ

Δ ⊢ τ1 ➔ τ2 ok
Δ ⊢ τ1 ok Δ ⊢ τ1 ok

Δ ⊢ Bool ok Δ ⊢ Int ok

Polymorphic MinHS

• Typing rules

Δ ∪ {t}, Γ ⊢ e : σ t ∉ Δ

Δ, Γ ⊢ (Type (t.e)):

Δ, Γ ⊢ e: ∀ t. σ Δ ⊢ τ ok
Δ, Γ ⊢ (Inst e τ):

∀ t. σ

σ [t := τ]

Polymorphic MinHS

• Dynamic Semantics

(Inst e τ) ↦M (Inst e’ τ)
e ↦M e’

(Inst(Type(t.e)) τ) ↦M e[t:= τ]

Polymorphic MinHs

• Polymorphic MinHs with

- explicit introduction of type variables:

‣ (Type a in recfun id :: (a -> a) x = x)

- explicit instantiation of type variables:

‣ (Inst(Type a in recfun id : (a->a) x = x) Bool)

:: ∀ a.a ➔ a

:: Bool ➔ Bool

Parametric Polymorphism

• We only allow quantifiers in a type at the outermost position. Does this matter?

- Example: can we give a type to this function?

strangeFun f = if (f True)
 then (f 5)
 else 10

- Possible type:

 strangeFun :: (∀ a. a ➔ a) ➔ Int

but there is not possible type which would be legal in our MinHs definition!

• Polymorphic types are not first class citizens in MinHs!

- we can’t specify that a function requires or produces a polymorphic
function/value!

Implementing parametric polymorphism

• We discussed the implications of parametric polymorphism/generics for the static
and dynamic semantics

• But how can it actually be implemented? What code should be generated by the
compiler for polymorphic functions

• Let’s look how generics can be simulated in a language which doesn’t support
parametric polymorphism

Implementing parametric polymorphism

C:

#define SWAP(x, y, T) {T SWAPTMP = x; x = y; y = SWAPTMP;}

double x = 10.12;
double y = 2.123;
SWAP(x, y, double);

void swap (void **x, void **y){
 void *tmp = *x;
 *x = *y;
 *y = *x;
}

double *a = malloc (sizeof (double));
*a = 10.12;

double *b = malloc (sizeof (double));
*b = 3.14;

swap((void**)&a, (void**)&b);

Implementing parametric polymorphism

• There are two choices (somewhat simplified):

- generate monomorphic code for every instance used

‣ code size?

‣ separate compilation?

- `box’ every value, so all polymorphic operations can be expressed in terms on
operations on pointers

‣ runtime overhead?

‣ locality?

- monomorphisation optimisation: boxed values, but specialise to
monomorphic version where possible

• OO languages where everything is an object and associated with a vTable have
other options available (similar to overloading, will be covered later)

Polymorphism in implicitly typed languages

• Explicitly typed languages require type annotations for every new variable/
function/method name

- explicitly typed languages: C, C++, Fortran, Java, Objective C, Visual Basic,
C# (2.0 and earlier)

• Implicitly typed languages make the compiler infer the correct type

- implicitly typed languages: C# (>= 3.0), Haskell, Python, Go

• Some languages allow omission of types in some circumstances (Swift)

• Many implicitly typed languages allow the user to add optional type annotations

- correctness

- performance

From types to programs

• We showed that

(Type a in
(Type b in
 recfun swap :: ((a * b) -> (b * a)) pair =
 (snd pair, fst pair)))

has the type

 ∀a.∀b.(a * b) ➔ (b * a)

Can we go backwards?

given a type, what is the program?

which other programs have this type?

From types to programs

• Observations:
- a function can’t do anything with a value of polymorphic type but to pass it

along, copy it, or ignore it

f :: ∀a. [a] ➔ Int

the Int value cannot depend on the

values in the list!

it can only depend on the structure of

the list!

- Assume a function has this type:

f (map g xs) = f xs

- Therefore, we know that for any function g and list xs

From types to programs

• Observations:
- only Error values can have type

∀a. a

Total polymorphic functions

• For which of the following types can we write total, terminating MinHs functions?

- ∀ a. ∀ b.(a * b) ➔ (b * a)

- ∀ a. ∀ b.(a + b) ➔ (b + a)

- ∀ a. ∀ b.(a * b) ➔ a

- ∀ a. ∀ b.(a + b) ➔ a

- ∀ a. ∀ b. a ➔ (a + b)

- ∀ a. ∀ b.(a ➔ b) ➔ (b ➔ a)

- ∀ a. ∀ b. ∀ c. ((a ➔ c) * (b ➔ c)) ➔ (a+b ➔c)

✔

✔

✔

✔

✘

✘

✔

Total polymorphic functions

• Curry-Howard correspondence:
- The type constructors +, * , and ➔ correspond to the logical operators ∨,∧ and
⇒

- Types correspond to theorems, and total, terminating programs to
(constructive) proofs

- A type checker then corresponds to a proof checker!
- our MinHs types correspond to propositional formulae, therefore the theorems

are not very exciting
- more powerful type systems correspond to more powerful logics

Total polymorphic functions

(A ∧ B) ⇒ A

(A ∧ B) ⇒ B

A ⇒ (A ∨ B)

B ⇒ (A ∨ B)

(A ∧ (A ⇒ B)) ⇒ B

• What does the unit type correspond to?
• What about primitive types (int, bool)?

• Some propositional logic theorems:

• Currying /uncurrying

A ⇒ (B ⇒ C) (A ∧ B) ⇒ C ≡
a → (b → c) (a * b) → c≡

Concepts of Programming Language Design
Parametric Polymorphism: Type Inference

Gabriele Keller
Tom Smeding

Polymorphism

• Parametric polymorphism:

- we already know how to type check an explicitly typed polymorphic program

- today we discuss how to infer the type of a polymorphic program

• Looking at other flavours of polymorphism:

- Subtyping

- Subclassing in the context of OO (Featherweight Java), overriding

- Overloading

How can a compiler infer types?

Principal Type

• What type should the compiler infer for function f?

• Possible types

(1) Int* Int ➔ Int

(2) Int* Bool ➔ Int

(3) Int* (Int -> (Int + Bool)) ➔ Int

(4) ∀ a. Int * a ➔ Int

• Types (1) - (3) are instances of type (4)

 recfun f x = (fst x) + 1

Principal Type
• We write τ’ ≤ τ if τ’ is less general than τ, or in other words, is τ’ an instance of τ

- Int * Int ➔ Int ≤ ∀ a. Int * a ➔ Int

- ∀ a. Int * a ➔ Int ≤ ∀ a. ∀ b. b * a ➔ b

- ∀ a. Int * a ➔ Int ≤ ∀ a. a * a ➔ a

- ∀ a. a * a ➔ a ≤ ∀ a. ∀ b. b * a ➔ b

- ∀ a. (a * a) * (a* a) ➔ (a* a) ≤ ∀ a. a * a ➔ a

• More formally:

- ∀ b1 …bk. τ’ ≤ ∀ a1 …an. τ if there is a substitution S such that
τ’= (S τ)

• We are interested in the most general type τ of the expression e such that

e : τ’ implies τ’ ≤ τ

• This is called the principal type of the expression

Implicitly Typed MinHs

• MinHs with the following changes:

- no type annotations for functions and type constructors (sum & product type)

- Roll, Unroll, Rec not part of the language

- no explicit type abstraction and instantiation (Type and Inst not part of the
language)

- Types of the build-in functions and constructors are part of the environment:

‣ Γ = {+ : Int ➔ Int ➔ Int, fst : ∀ a. ∀ b.(a * b) ➔ a , ….}

- no overloading yet, e.g., == still only compares integers,

Implicitly Typed MinHs

• What is the type of the following expressions:

- Inl True

‣ we would not be able to determine the type in a monomorphic setting

‣ polymorphic type: ∀ a. (Bool + a)

- Fst (1, True)

‣ type of Fst: ∀ a. ∀ b.(a * b) ➔ a

‣ type of argument (Int * Bool)

‣ type: Int

- Roll (Inl 1))

‣ impossible to derive a most general type in implicitly typed language,
therefore not part of the language (named recursive types are no problem!)

Typing Rules

• First, let us look at typing rules that are sufficient to derive

Γ ⊢ e : σ

if σ is a possible (possibly polymorphic) type of e under the environment Γ

Typing Rules

• Can we use the type checking rules to infer the type?

• Application, if-expression, variable and product rules:

 Γ ⊢ t1 : τ1 ➔τ2 Γ ⊢ t2 : τ1

Γ ⊢(Apply t1 t2): τ2

Γ ⊢ x : τ
x : τ ∈ Γ

Γ ⊢(If t1 t2 t3): τ

Γ ⊢ t1 : Bool Γ ⊢ t2 : τ Γ ⊢ t3 : τ

 Γ ⊢ t1 : τ1 Γ ⊢ t2 : τ2

Γ ⊢ (Pair t1 t2) : τ1 * τ2

input: env Γ and expression

output: type of expression τ

Typing Rules

• Functions, Inr, Inl

 Γ∪{f : τ1 ➔τ2 , x : τ1 } ⊢ t : τ2

Γ ⊢(Recfun (f.x.t)): τ1 ➔τ2

 Γ ⊢ t1 : τ1

Γ ⊢ (Inl t1): τ1 + τ2

problem: env Γ is not an input!

we have to guess the types of f and x

problem: type is not an output,
we have to guess τ2

Typing Rules

• ∀ -introduction and elimination

Γ ⊢ e : ∀ t.τ
Γ ⊢ e : τ [t := τ’]

Γ ⊢ e : ∀ t.τ
Γ ⊢ e : τ t ∉ FreeTypeVars(Γ)

problem: type not an output (guess)

problem: not syntax directed

Type Inference Algorithm - summary so far

• The rules above do not specify a type inference algorithm:

- it is not possible to view the environment and the expression as input, the type as
an output

- the rules are not syntax directed

Γ ⊢ e : ∀ t.τ
Γ ⊢ e : τ [t := τ’] Γ ⊢ e : ∀ t.τ

Γ ⊢ e : τ t ∉ FreeTypeVars(Γ)

 Γ∪{f : τ1 ➔τ2 , x : τ1 } ⊢ t : τ2

Γ ⊢(Recfun (f.x.t)): τ1 ➔τ2

 Γ ⊢ t1 : τ1

Γ ⊢ (Inl t1): τ1 + τ2

Type Inference Algorithm

• Idea

- delay the instantiation of type variables until necessary

- replace ∀-quantified variables by free, fresh variables

Type inference algorithm
• The type of an expression alone as output is not sufficient:

 f x y = if True
 then (x, y + 1)
 else (False, y)

• Inspecting the then-branch reveals that it has type pair of something and integer, but also that y has
to have type Int

• Since both branches have to have the same type, we know that x has to have type Bool

• By looking at the if-expression, we can determine that is has type (Bool * Int), but also what
type variables a and b are standing for

(a * Int)
(Bool * b)

assume x has unknown type a, y unknown type b

 b must be Int
 a must be Bool

𝚪 ⊢(If t1 t2 t3) : τ

𝚪 ⊢ t1 : Bool 𝚪 ⊢ t1 : τ 𝚪 ⊢ t2 : τ

Type Inference Algorithm

• Idea

- delay the instantiation of type variables until necessary

- replace ∀-quantified variables by free, fresh variables

- find a substitution to unify the derived with the required type

- make the substitution part of the result of the type inference

S Γ ⊢ e : τ

- Input: expression e and environment Γ

- Output: type of expression τ, substitution S with
possible instantiations of type variables in

{x :: a, y :: b} ⊢ (If True (Pair x (Plus y 1)) (Pair False y)):: [a := Bool, b := Int]] (Bool * Int)

Type Inference Algorithm

• In some cases, it is necessary to substitute variables on both sides:

or to replace variables with other variables

(Bool * x) = (y * Int)
?

[y := Bool,x := Int] [y :=Bool,x := Int]

What about

 (x * x) = (x * y)

(x * x) = (x * y) [x:=Int, y := Int] [x:=Int, y := Int]

[x:=y] [x:=y]

Unification

• A substitution S, with S τ = S τ’ is called a unifier of τ and τ’

• For the algorithm, we need the most general unifier (mgu)

- there may be more than one mgu

- resulting terms are the same module renaming

• We write τ1 ∼ τ2 if S is an mgu of τ1 and τ2

• Examples:

- are there mgu’s for the following pairs of types?

 (a *(a * a)) = (b * c) ?

 Int = Bool ?

 a = (a * a) ?

S

• Simple unification algorithm

‣ input: two type terms t1 and t2, ∀-quantified variables replaced by fresh,
unique variables

‣ output: the most general unifier of t1 and t2 (if it exists)

Unification

Unification - Computing the Most General Unifier (MGU)

• Cases t1 and t2
- are both type variables v1 and v2
‣ if v1 = v2, return empty substitution
‣ otherwise return [v2:=v1]

- are both primitive types
‣ if they are the same, return the empty substitution
‣ otherwise, there is no unifier

- both are product types with t1 = (t11*t12) and t2 = (t21*t22)
‣ compute the mgu S of t11 and t21
‣ compute the mgu S’ of S t12 and S t22

‣ return S ∪ S’
- both function types, sum types (see product types)
- only one is is type variable v, the other an arbitrary term t
‣ if v occurs in t, there is no unifier (occurs check)
‣ otherwise, return [v:= t]

- otherwise, there is no unifier

Unification - Computing the Most General Unifier (MGU)

• We discussed how to calculate the Most General Unifier of two type terms:

- most general substitution to unify two type terms:

 f x y = if True
 then (x, y + 1)
 else (False, y)

(a * Int)
(Bool * b)

(Bool * b) (a * Int)~[a := Bool, b := Int]

Type Inference Algorithm

• Now back to our type inference algorithm

- T Γ ⊢ e : τ

- ∀- elimination:

 Γ ⊢ x :
x : ∀ a1. ∀ an . τ ∈ Γ

βi fresh

 τ [a1 := β1, an:= βn][]

compare to previous rule:

Γ ⊢ e : ∀ t.τ
Γ ⊢ e : τ [t := τ’]

Type Inference Algorithm

- If-rule:

Γ ⊢ ec : UT Γ ⊢ et :

 Γ ⊢(If ec et ee):

 τc ∼ Bool
U

TtUTΓ ⊢ee : Teτt ∼ τe
U’

• algorithmic interpretation:
• Input : Γ and expression (If ec et ee)

• first, derive type of expression ec with environment Γ

• result: the substitution T and the type τc

• unify the types τc and Bool
• result: substitution U

• derive type of expression et with new environment UTΓ

• result: the substitution Tt and the type τt

• derive type of expression ee with new environment TtUT Γ

• result: the substitution Te and the type τe

• unify the types Tt τt and τe

• result: substitution U’

• return substitution U’UTTtTe and type U’ τe

U’UTTtTe U’ τe

T τc Tt τt Te τe

Type Inference Algorithm

• Application rule

• algorithmic interpretation:
• Input : Γ and expression (Apply e1 e2)

• first, derive type of expression e1 with environment Γ

• result: the substitution T and the type τ1

• now, derive type of expression e2 with new environment T Γ

• result: the substitution T1 and the type τ2

• now, unify the types T1 τ1 and τ2 ➔α

• result: substitution U

• return substitution UT1T and type Uα

T Γ ⊢ e1 : τ1 T1T Γ ⊢ e2 : τ2

UT1T Γ ⊢ (Apply e1 e2): Uα

T1 τ1 ∼ τ2 ➔α
U

α fresh

Type Inference Algorithm

• Note
• the rules are syntax directed
• for every type of expression, there is exactly one rule which applies

• the environment and expression are input & unifier and type are output

Type Inference Algorithm

T (Γ∪{ x : α1 }∪{ f : α2 }) ⊢ e:τ T α2 ∼ T α1 ➔ τ

UTΓ ⊢(Recfun (f.x.e)): U (T α1 ➔ τ)
αi fresh

U

• Function rule

Re-introducing the ∀-quantifier

• None of the rules so far re-introduced the ∀-quantifier

• Is this necessary at all?

• only necessary if we have let-bindings (or global function bindings) so
polymorphic functions can be applied in different contexts

let
 f = recfun g x = (x,x)
in (f True, f 1)

let
 f x = (x,x)
in (f True, f 1)

Re-introducing the ∀-quantifier

• Generalise over all variables which occur free in τ, but not in Γ	

‣ Let TV(Γ) be the set of all free type variables in Γ, TV(τ) the set of all
free type variables in τ

‣ Define Gen(Γ, τ) as

• Gen(Γ, τ) = ∀(TV(τ) \ TV(Γ)). τ

- Example:

‣ Gen({x : a , y: Int}, (a*b) ➔ b) = ∀b. (a*b) ➔ b
• New ∀-introduction rule:

T1 Γ ⊢ e1:τ
T1 T2 Γ ⊢ (Let e1 (x.e2)): τ’

T2 (T1Γ∪ x:Gen (T1Γ, τ)) ⊢ e2 : τ’

Γ ⊢ e : ∀ t.τ
Γ ⊢ e : τ t ∉ FreeTypeVars(Γ)

Example

T Γ ⊢ e1 : τ1 T1T Γ ⊢ e2 : τ2

UT1T Γ ⊢ (Apply e1 e2): Uα

T1 τ1 ∼ τ2 ➔α
U

α fresh

(Apply Fst (Pair 1 True))

