NI

= M < Utrecht University

N

Concepts of Programming Language Design
Parametric Polymorphism

Gabriele Keller
Tom Smeding

higher & first-order syntax Inference rules, induction

tools to talk about languages

abstract machines big step and small step operational
semantics

value & type environments

parametric polymorphism/

generics control stacks

partial application/function closures semantic features

type checking
static & dynamic static & dynamic

scoping typing

functional
(algebraic) data types

language concepts

explicit & implicit

procedural/imperative typing

Utrecht University

e Example: swap the elements of a pair (in Haskell)

swap (x, y) = (y, %)

e \What is swap’s type”?

- InHaskell: forall a. forall b. (a,b) -> (b,a)
swap :: (a, b) -> (b, a)

- In MinHSs:
recfun swapIntBool :: (Int, Bool) -> (Bool, Int) pair =
(snd pair, fst pair)

recfun swapBoolInt :: (Bool, Int) -> (Int, Bool) pair =
(snd pair, fst pair)

Utrecht University

The term polymorphism is used in the PL context to mean several different
concepts:

- Parametric polymorphism (when functional programmers talk about
polymorphism, often referred to as ‘generics’ by OO ppl)

» the operation can work on any type

swap :: (a, b) -> (b, a)
swap (x, y) = (y, %)

swap (1,”’Hello’’)
swap (‘c’, \x -> x + 1)

swap (True, odd)

Utrecht University

e Adhoc polymorphism (when OO programmers talk about polymorphism)

» a function or operation is overloaded with multiple implementations to
work on some specific types

5 + 3
3.7 + 1.234

““Hello” + ¢ World”

Sometimes polymorphism is used to refer to subtyping

We will cover all of these concepts in the course

Utrecht University

e Parametric polymorphism:

swap :: (a, b) -> (b, a)
swap pair =
(snd pair, fst pair)

- a and b are type variables

e Using a polymorphic function:

- when a polymorphic function is applied to a concrete value, the type variables
are instantiated:

swap (1, True)

- Instantiates type variable a to Int, b t0 Bool

Utrecht University

static void Swap<T>(ref T a, ref T b) {

~____— explicit introduction of type variable

T temp;

temp = a,

a = b;

b = temp;
¥

static void Main(stringl[] args) {
int a, b;

char c, d;
a = b;

b = 10;

c = 'X';

d

Swap<int>(ref a, ref b);
Swap<char>(ref c, ref d);

_ oy / - explicit instantiation of type variable

Utrecht University

func swap<T>(_ a:
let tmp =\a
a=>
b = tmp

var X = 3

var y = 107

swap (&x, &y)

var strl = “heN.o"

var str2 = "world"
swap (&strl, &str2)

inout T,

__/

_ b: inout T) {

~____— explicit introduction of type variable

but no explicit instantiation necessary
(but possible)

Utrecht University

e First: with explicit typing (as in C#)

- Introduction of type variables is explicit

static void Swap<T>(ref T a, ref T b)

func swap<T>(_ a: inout T, _ b: inout T)

- Instantiation of type variables is explicit

Swap<int>(ref a, ref b)

e | ater, we look into how this works for implicit typing (i.e., programmer does not
have to provide the type

Utrecht University

e Type abstraction in polymorphic (explicitly typed) MinHs:

(Type aiI\IK/ — . explicit introduction of type variables
(Type b"in
recfun swap :: ((a * b) » (b * a)) pair =
(snd pair, fst pair)))

¢ [ype instantiation

—___ explicit instantiation of type variables

(ins %&Pmn (corresponds to application on the value level)
(inst (Type b in

recfun swap :: ((a * b) » (b *x a)) pair =
(snd pair, fst pair)
Bool)
Int)))

evaluates 1o

recfun swap :: (Int * Bool) = (Bool * Int) pair =
(snd pair, fst pair)

* Utrecht University

e \What is the type of this function?

(Type a in
(Type b in
recfun swap :: ((a * b) » (b * a)) pair =
(snd pair, fst pair)))

e Universal quantification:

- itis Va.Vb.(a * b) » (b *x a)

- written in Haskell (leading forall a. forall b. optional)

forall a. forall b. (a * b) =2 (b * a)

Utrecht University

Polytypes o = 1t |vident.o
Monotypes T = Bool|Int| (v~ 7v) | Ident
Expressions Expr = Ident

inst (Fxpr, t)

recfun JIdent::(t > 7) Ident = FExpr

Type Ident in Expr |..

- Note that we only allow quantifiers at the outermost position

- this restriction is not necessary for explicitly typed MinHs

Utrecht University

e \alid Types:
- types can now contain type variables, but they need to be “in scope” (bound
by a quantifier)
A+ T, 0k A+ T; 0k
A + Bool ok A+~ Int ok A 7,2 7o 0k
Au{tl- ook t& A feA

Utrecht University

e Typing rules

Au{th,'e: o t&A
A, '+ (Type (f.e)): vi.o

AT He: vt. o A+ T ok

AT (Inst e 7): olt:= 1]

* Utrecht University

e Dynamic Semantics

e Ly e

(Inst e T) my (Inst e 1)

(Inst(Type(t.e)) T) by elt:= 7]

* Utrecht University

e Polymorphic MinHs with

- explicit introduction of type variables:

» (Type a in recfun id :: (a -> a) x = x) ::V a.a - a

- explicit instantiation of type variables:

» (Inst(Type a in recfun id : (a->a) x = x) Bool) :: Bool -» Bool

Utrecht University

e \Ve only allow quantifiers in a type at the outermost position. Does this matter?

- Example: can we give a type to this function?

strangeFun f = if (f True)

then (f 5)
else 10
- Possible type:
strangeFun :: (va. a ® a) 2 Int

but there is not possible type which would be legal in our MinHs definition!

e Polymorphic types are not first class citizens in MinHs!

- we can’t specify that a function requires or produces a polymorphic

function/value!
Utrecht University

¢ \/Ve discussed the implications of parametric polymorphism/generics for the static
and dynamic semantics

e But how can it actually be implemented? What code should be generated by the
compiler for polymorphic functions

e | et’s look how generics can be simulated in a language which doesn’t support
parametric polymorphism

Utrecht University

C:

#define SWAP(x, y, T) {T SWAPTMP = x; x = y; y = SWAPTMP;}

double x = 10.12;
double y = 2.123;
SWAP(x, y, double);

void swap (void **x, void *xy){
vold *tmp = *Xx;
*X = *V;
Xy = *X;

¥

double *a = malloc (sizeof (double));

*a = 10.12;

double *b = malloc (sizeof (double)):;

*b = 3.14;

swap ((void**x)&a, (void**)&b);

Utrecht University

e There are two choices (somewhat simplified):

- generate monomorphic code for every instance used
» code size?
» separate compilation?

- box’ every value, so all polymorphic operations can be expressed in terms on
operations on pointers

» runtime overhead?
» locality”?

- monomorphisation optimisation: boxed values, but specialise to
monomorphic version where possible

e OO languages where everything is an object and associated with a vlable have
other options available (similar to overloading, will be covered later)

Utrecht University

e Explicitly typed languages require type annotations for every new variable/
function/method name

- explicitly typed languages: C, C++, Fortran, Java, Objective C, Visual Basic,
C# (2.0 and earlier)

e Implicitly typed languages make the compiler infer the correct type
- implicitly typed languages: C# (>= 3.0), Haskell, Python, Go

e Some languages allow omission of types in some circumstances (Swift)

e Many implicitly typed languages allow the user to add optional type annotations
- correctness

- performance

Utrecht University

¢ \e showed that

(Type a in
(Type b in
recfun swap :: ((a * b) -> (b * a)) pair =
(snd pair, fst pair)))

has the type

Va.Vb.(a * b) = (b *x a)

Can we go backwards”?
given a type, what is the program?

which other programs have this type”?

Utrecht University

e Observations:

- a function can’t do anything with a value of polymorphic type but to pass it
along, copy it, or ignore it

- Assume a function has this type:

f :: Va. [a] » Int

the Int value cannot olepewal on the
values L the List!

it can only depend on the structure of
the List!

- Therefore, we know that for any function g and list xs

f (map g xs) = £f xs

Utrecht University

e Observations:
- only Error values can have type

Va. a

% Utrecht University

e For which of the following types can we write total, terminating MinHs functions?
-va.vb.(a*b)> (b*a) v
-va.vb.(a+b)>(b+a)
-va.vb.(a*b)>a v
- va.vb.(a+b)»a X
-va.vb.a»(a+b) v
- va.vb(as>b)>b-sa) X

-va.vb.ve.((a »c¢c) *(b »c))-» (a+b-c) 4

Utrecht University

e Curry-Howard correspondence:

- The type constructors +, * , and - correspond to the logical operators v,A and
—%

- Types correspond to theorems, and total, terminating programs to
(constructive) proofs

- A type checker then corresponds to a proof checker!

- our MinHs types correspond to propositional formulae, therefore the theorems
are not very exciting

- more powerful type systems correspond to more powerful logics

Utrecht University

e Some propositional logic theorems:

(AAB)=A
(AAB)=1B
A= (AvB)
B=(AvB)

(A A(A=B)) =B
e Currying /uncurrying

a— (b—c)
A=(B=C)

(a *b) — c
(AAB)="C

Utrecht University

e \What does the unit type correspond to?
e \What about primitive types (int, bool)?

NI

= M < Utrecht University

N

Concepts of Programming Language Design
Parametric Polymorphism: Type Inference

Gabriele Keller
Tom Smeding

e Parametric polymorphism:
- we already know how to type check an explicitly typed polymorphic program
- today we discuss how to infer the type of a polymorphic program
e | ooking at other flavours of polymorphism:
- Subtyping
- Subclassing in the context of OO (Featherweight Java), overriding

- Overloading

Utrecht University

oW can a compiler infer types”?

N
= ¥ = Utrecht University

NS

e \What type should the compiler infer for function £7?

recfun f x = (fst x) + 1

e Possible types

(1) Int* Int > Int
(2) Int* Bool = Int
(3) Int* (Int -> (Int + Bool)) - Int

(4) v a. Int * a > Int

e Types (1) - (3) are instances of type (4)

* Utrecht University

e \We write T’ = 7 if £’is less general than z, or in other words, Is ¢’ an instance of T

- Int * Int » Int < V a. Int * a > Int
- YV a. Int * a » Int < Va. Vb. b*xa>»>o
- Y a. Int * a » Int §\ Va. ax*xa->a

- Va. ax*xa»->a < Va. Vb. b*xa->»>
- Va. (a*a) x (ax a) » (ax a) < Va. a*a»->a

e More formally:

- Vby..b. TO<Vay...a, T ifthereis a substitution S such that
v’=(S 7))

e \We are interested in the most general type = of the expression e such that
e:’impliest’=s

e [his is called the principal type of the expression

Utrecht University

e MinHs with the following changes:

no type annotations for functions and type constructors (sum & product type)

Roll, Unroll, Rec not part of the language

no explicit type abstraction and instantiation (Type and Inst not part of the
language)

Types of the build-in functions and constructors are part of the environment:

» I'={+ : Int > Int > Int, fst : Va. Vb.(a xb) > a,..}

no overloading yet, e.g., == still only compares integers,

Utrecht University

e \Vhat is the type of the following expressions:

- Inl True

» we would not be able to determine the type in a monomorphic setting
» polymorphic type: V a. (Bool + a)
- Fst (1, True)
» type of Fst: Va. Vb.(a *Db) » a
» type of argument (Int * Bool)
» type: Int
- Roll (Inl 1))

» impossible to derive a most general type in implicitly typed language,
therefore not part of the language (hamed recursive types %O problem!)

: Utrecht University

e irst, let us look at typing rules that are sufficient to derive

I'+-e: o

if o is a possible (possibly polymorphic) type of e under the environment I

% Utrecht University

e Can we use the type checking rules to infer the type?

e Application, if-expression, variable and product rules:

lwpu.t: env 1 and e)qaressiow
r: e I

'—x: 1 out‘Pu.t: tgpe 0'{: e)anessiow T

' t;: 74 ' to: 7o

I'— (Pair t; ts2) : T1 * 7o

't : Ti1272 ' to: 4

I I—(Apply t; ta): 7o

I'- t;,: Bool I'+Hte: 7 I'F ty: 7

I' =(If t; to t3): T

Utrecht University

* Functions, Inr, Inl

problem: env I’ LS not an prut!

we have to guess the types of fand

FU{f: T12T2 , L : ‘L"1}|— t: 7o

I' m(Recfun (f.xz.1)): Ti2>7>

probleme: type LS ot an output,

we have to guess T2
'~ t;: 74

I' (Inl t1): 71 + 7o

Utrecht University

e v -introduction and elimination

problem: type not an output (guess)

I'- e: v t.t
' e: [t := 7]

I'- e: 7z te FreeTypeVars(I')

' e:vitr

problemt: not sywntax directed

Utrecht University

' e: v t.t I'- e: 7z te FreeTypeVars(I')
'+ e: [t := 7] ' e: vtz
FU{f:T1-)TQ,33:T1}|— t: T2 ' t;: 74
I' m(Recfun (f.xz.1)): T/27> ' (Inl t1): 71 + 7o

¢ [he rules above do not specity a type inference algorithm:

- it IS not possible to view the environment and the expression as input, the type as
an output

- the rules are not syntax directed

Utrecht University

¢ |dea
- delay the instantiation of type variables until necessary

- replace v-quantified variables by free, fresh variables

* Utrecht University

e [he type of an expression alone as output is not sufficient:

I'— £;: Bool I't;: 7 THFHtE: T

I' —(If t; to tg): T

f xy = if Tru gAssume X has unknowwn typea, y unknowwn type b

then (x, y + 1) (a * Int) a must be Bool
else (False, y) (Bool * b) b must be Int

e |nspecting the then-branch reveals that it has type pair of something and integer, but also that y has
to have type Int

e Since both branches have to have the same type, we know that x has to have type Bool

e By looking at the if-expression, we can determine that is has type (Bool * Int), but also what
type variables a and b are standing for

Utrecht University

¢ |dea

delay the instantiation of type variables until necessary

replace v-quantified variables by free, fresh variables

find a substitution to unify the derived with the required type

make the substitution part of the result of the type inference

- Input: expression e and environment I

- QOutput: type of expression z, substitution S with
possible instantiations of type variables in

ST'H e: 7

[a := Bool, b := Int]] {x :: a, y :: b} ~ (If True (Pair x (Plus y 1)) (Pair False y)):: (Bool * Int)

Utrecht University

® |[n some cases, it Is necessary to substitute variables on both sides:

?
(Bool * x)[y := Bool,x := Int]= (y * Int) [y :=Bool,x := Int]

or to replace variables with other variables

What about

(x * x) [x:=y]= (&x *xy) [x:=y]

(x * x)[x:=Int, y := Intl= (x * y)[x:=Int, y := Int]

Utrecht University

e A substitution S, with § =S z’is called a unifier of T and ¢’

e For the algorithm, we need the most general unifier (mgu)

- there may be more than one mgu

- resulting terms are the same module renaming

S

e Wewrite 7; ~ 72 If Sisan mgu of z; and 2

e Examples:

- are there mgu’s for the following pairs of types”?
?

(a x(a * a)) = (b *x c)

l1e~D

Int Bool

11°™

(a *x a)

Utrecht University

e Simple unification algorithm

» iInput: two type terms t; and tq, v-quantified variables replaced by fresh,
unigue variables

» output: the most general unifier of £; and &, (if it exists)

Utrecht University

e Cases t; and t»

are both type variables v; and vz
» If v = vg, return empty substitution

» otherwise return [vz:=v;]

are both primitive types
» If they are the same, return the empty substitution
» otherwise, there is no unifier
both are product types with t; = (t11*t:2) and te = (ter*ta2)

» compute the mgu S of t;; and ta;
» compute the mgu S’ of § tizand S teg
» return S U S”

both function types, sum types (see product types)
only one is is type variable v, the other an arbitrary term ¢

» if v occurs in t, there is no unifier (occurs check)

» otherwise, return [v:={]

Utrecht University

e \Ve discussed how to calculate the Most General Unifier of two type terms:

- most general substitution to unify two type terms:

f xy = 1f True
then (x, y + 1) (a * Int)
else (False, y) (Bool * b)

[a := Bool, b := Int]
(Bool * b) ~ (a *x Int)

Utrecht University

e Now back to our type inference algorithm

- TT'+ e: T

- v- elimination:

Tr:VvVai...va,. T

LI+ 2 :v]a;:= By an:= Pnl

compare to previous rule:

I'- e: v itrt
'+ e: [t = 7]

Utrecht University

- |f-rule:

U U’

U'UTT,T. T" —(If e. e; e): U’ T,

¢ algorithmic interpretation:
« Input : T" and expression (If e. e: ee)

first, derive type of expression e. with environment T
- result: the substitution T and the type .

* unify the types 7. and Bool
» result: substitution U
- derive type of expression et with new environment UTT

« result: the substitution T;and the type

« derive type of expression ee with new environment T.:UT T
« result: the substitution T.and the type .

« unify the types T; z: and .
« result: substitution U’

« return substitution U’UTT:T. and type U’ z.

Utrecht University

e Application rule

U
TI'+- e; : 7 T/, TTF es: T2 T: T: ~ T22a

o fresh
UT;TT +~ (Apply e; e2): Ua

¢ algorithmic interpretation:
« Input : T' and expression (Apply e: ez)

first, derive type of expression e; with environment I

« result: the substitution T' and the type 7;

now, derive type of expression ez with new environment T' T

« result: the substitution T';and the type 72

now, unify the types T; T; and T2->a

 result: substitution U

return substitution UT; T and type Ua

Utrecht University

e Note
¢ the rules are syntax directed
e for every type of expression, there is exactly one rule which applies

e the environment and expression are input & unifier and type are output

Utrecht University

e Function rule

U
TTU{z:a;tU{f:a2})+ et Tas ~ Ta; >t
a; fresh

UTT +~Recfun (f.x.e)): U (T a;> 7)

Utrecht University

e None of the rules so far re-introduced the v-quantifier

e |s this necessary at all”?

let let
f = recfun g x = (x,x) f x = (x,x)
in (f True, f 1) in (f True, f 1)

e only necessary if we have let-bindings (or global function bindings) so
polymorphic functions can be applied in different contexts

Utrecht University

e Generalise over all variables which occur free in z, but not in I

» Let TV(I') be the set of all free type variables in I', TV () the set of all
free type variables in =

» Define Gen(I', 7) as
e Gen(I',) =v(TV(x)\TV()).

- Example:

» Gen({x:a,y: Int}, (axb) » b)=vb. (axb) > b
e New Vv-introduction rule:

T, I' - et TQ(T]FU a::Gen(TJ‘, ‘C’)) - es: T’
T, To I' - (Let e; (z.es)): T’

I'- e: 7z te FreeTypeVars(I')

' e:vitr

Utrecht University

U
TI'+- e; : 7 T/, TTF es: T2 T: T: ~ T22a

o fresh
UT;TT +~ (Apply e; e2): Ua

(Apply Fst (Pair 1 True))

* Utrecht University

