

# Concepts of Programming Language Design Parametric Polymorphism

Gabriele Keller Tom Smeding

## Overview

higher & first-order syntax

inference rules, induction

#### tools to talk about languages

abstract machines

big step and small step operational semantics

value & type environments

parametric polymorphism/ generics

partial application/function closures semantic features

control stacks

functional

(algebraic) data types

language concepts

procedural/imperative

type checking static & dynamic scoping

static & dynamic typing

explicit & implicit typing



# Parametric Polymorphism

• Example: swap the elements of a pair (in Haskell)

swap (x, y) = (y, x)

- What is swap's type?
  - In Haskell: forall a. forall b. (a,b) -> (b,a) swap :: (a, b) -> (b, a)

- in MinHs:

. . . . .

```
recfun swapIntBool :: (Int, Bool) -> (Bool, Int) pair =
  (snd pair, fst pair)
```

```
recfun swapBoolInt :: (Bool, Int) -> (Int, Bool) pair =
  (snd pair, fst pair)
```



# Parametric polymorphism

The term **polymorphism** is used in the PL context to mean several different concepts:

- Parametric polymorphism (when functional programmers talk about polymorphism, often referred to as 'generics' by OO ppl)
  - the operation can work on any type

```
swap :: (a, b) -> (b, a)
swap (x, y) = (y, x)
swap (1,'Hello'')
swap ('c', \x -> x + 1)
swap (True, odd)
```



# Parametric polymorphism

- Adhoc polymorphism (when OO programmers talk about polymorphism)
  - a function or operation is overloaded with multiple implementations to work on some specific types

5 + 3 3.7 + 1.234 ''Hello" + " World"

Sometimes polymorphism is used to refer to subtyping

We will cover all of these concepts in the course



• Parametric polymorphism:

```
swap :: (a, b) -> (b, a)
swap pair =
  (snd pair, fst pair)
```

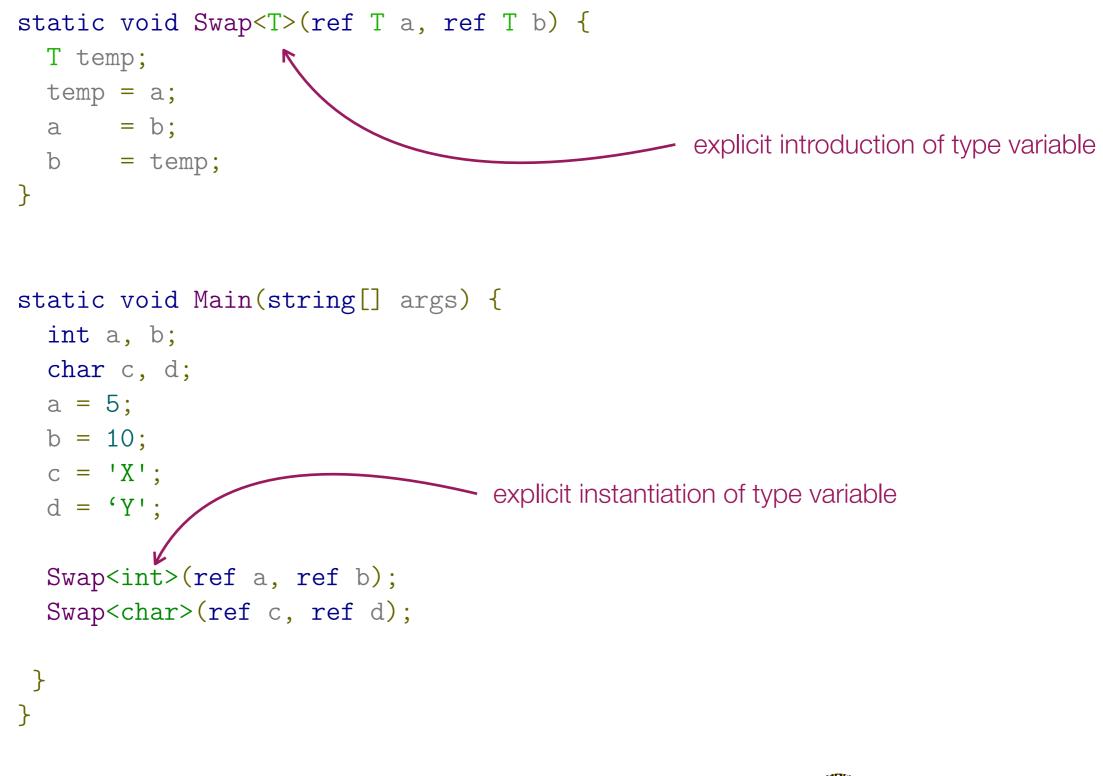
- a and b are type variables
- Using a polymorphic function:
  - when a polymorphic function is applied to a concrete value, the type variables are instantiated:

swap (1, True)

- instantiates type variable a to Int, b to Bool

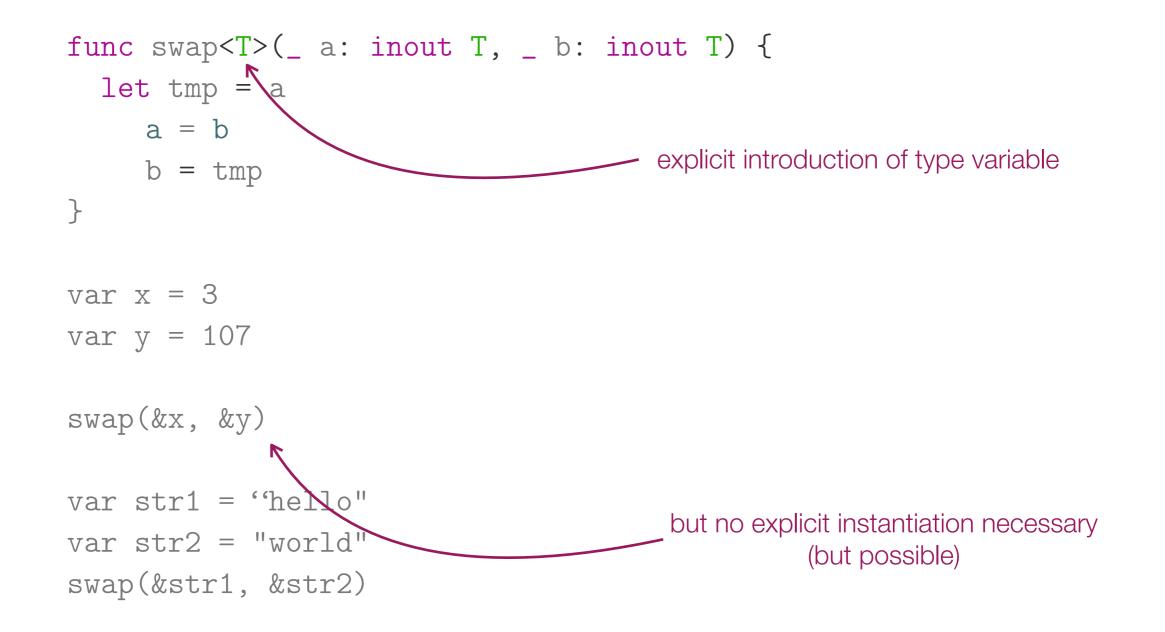


# Parametric Polymorphism (generics) in C#





## Parametric Polymorphism (generics) in Swift





# Adding Parametric Polymorphism to MinHs

- First: with explicit typing (as in C#)
  - introduction of type variables is explicit

```
static void Swap<T>(ref T a, ref T b)
func swap<T>(_ a: inout T, _ b: inout T)
```

- instantiation of type variables is explicit

```
Swap<int>(ref a, ref b)
```

• Later, we look into how this works for implicit typing (i.e., programmer does not have to provide the type



# Adding Parametric Polymorphism to MinHs

• Type abstraction in polymorphic (explicitly typed) MinHs:

explicit introduction of type variables (Type a in (Type b<sup>v</sup>in recfun swap :: ((a \* b)  $\rightarrow$  (b \* a)) pair = (snd pair, fst pair))) Type instantiation explicit instantiation of type variables (inst (Type a in (corresponds to application on the value level) (inst (Type b in recfun swap ::  $((a * b) \rightarrow (b * a))$  pair = (snd pair, fst pair) Bool) Int))) evaluates to recfun swap :: (Int \* Bool) → (Bool \* Int) pair = (snd pair, fst pair)



# Parametric Polymorphism

• What is the type of this function?

```
(Type a in
 (Type b in
 recfun swap :: ((a * b) → (b * a)) pair =
    (snd pair, fst pair)))
```

- Universal quantification:
  - it is  $\forall a. \forall b. (a * b) \rightarrow (b * a)$
  - written in Haskell (leading forall a. forall b. optional)

forall a. forall b.  $(a * b) \rightarrow (b * a)$ 



| Polytypes   | $\sigma$ | ::= | $\boldsymbol{\tau} \mid \forall \boldsymbol{Ident} \cdot \boldsymbol{\sigma}$ |
|-------------|----------|-----|-------------------------------------------------------------------------------|
| Monotypes   | τ        | ::= | Bool   Int   $(\tau \rightarrow \tau)$   <i>Ident</i>                         |
|             |          |     |                                                                               |
| Expressions | Expr     | ::= | Ident                                                                         |
|             |          |     | inst ( <i>Expr</i> , <i>t</i> )                                               |
|             |          |     | recfun Ident:: $(\tau \rightarrow \tau)$ Ident = Expr                         |
|             |          |     | Type <i>Ident</i> in <i>Expr</i>                                              |

- Note that we only allow quantifiers at the outermost position
  - this restriction is not necessary for explicitly typed MinHs



# Polymorphic MinHS

- Valid Types:
  - types can now contain type variables, but they need to be "in scope" (bound by a quantifier)

$$\frac{\Delta \vdash \text{Bool } ok}{\Delta \vdash \text{ook}} \qquad \frac{\Delta \vdash \tau_1 ok}{\Delta \vdash \tau_1 \rightarrow \tau_2 ok} \qquad \frac{\Delta \vdash \tau_1 ok}{\Delta \vdash \tau_1 \rightarrow \tau_2 ok} \\
\frac{\Delta \cup \{t\} \vdash \sigma ok}{\Delta \vdash \forall t. \sigma ok} \qquad \frac{t \in \Delta}{\Delta \vdash t ok}$$



# Polymorphic MinHS

• Typing rules

$$\Delta \cup \{t\}, \Gamma \vdash e : \sigma \quad t \notin \Delta$$
$$\Delta, \Gamma \vdash (\text{Type } (t \cdot e)): \forall t \cdot \sigma$$

$$\Delta, \Gamma \vdash e: \forall t. \sigma \quad \Delta \vdash \tau \ ok$$
$$\Delta, \Gamma \vdash (\text{Inst } e \ \tau): \sigma[t:=\tau]$$



• Dynamic Semantics

$$\begin{array}{c} e \mapsto_M e' \\ (\text{Inst } e \ \tau) \ \mapsto_M (\text{Inst } e' \ \tau) \end{array}$$

 $(Inst(Type(t.e)) \tau) \mapsto_M e[t:=\tau]$ 



# Polymorphic MinHs

## • Polymorphic MinHs with

- explicit introduction of type variables:
  - (Type a in recfun id :: (a -> a) x = x) ::  $\forall$  a.a  $\rightarrow$  a
- explicit instantiation of type variables:
  - ▶ (Inst(Type a in recfun id : (a->a) = x) Bool) :: Bool → Bool



# Parametric Polymorphism

- We only allow quantifiers in a type at the outermost position. Does this matter?
  - Example: can we give a type to this function?

- Possible type:

```
strangeFun :: (\forall a. a \rightarrow a) \rightarrow Int
```

but there is not possible type which would be legal in our MinHs definition!

- Polymorphic types are not first class citizens in MinHs!
  - we can't specify that a function requires or produces a polymorphic function/value!



# Implementing parametric polymorphism

- We discussed the implications of parametric polymorphism/generics for the static and dynamic semantics
- But how can it actually be implemented? What code should be generated by the compiler for polymorphic functions
- Let's look how generics can be simulated in a language which doesn't support parametric polymorphism



# Implementing parametric polymorphism

```
C:
```

```
#define SWAP(x, y, T) {T SWAPTMP = x; x = y; y = SWAPTMP;}
double x = 10.12;
double y = 2.123;
SWAP(x, y, double);
void swap (void **x, void **y){
 void *tmp = *x;
  *x = *y;
  *y = *x;
}
double *a = malloc (sizeof (double));
*a = 10.12;
double *b = malloc (sizeof (double));
*b = 3.14;
```

swap((void\*\*)&a, (void\*\*)&b);



# Implementing parametric polymorphism

- There are two choices (somewhat simplified):
  - generate monomorphic code for every instance used
    - ▶ code size?
    - separate compilation?
  - `box' every value, so all polymorphic operations can be expressed in terms on operations on pointers
    - runtime overhead?
    - ► locality?
  - monomorphisation optimisation: boxed values, but specialise to monomorphic version where possible
- OO languages where everything is an object and associated with a vTable have other options available (similar to overloading, will be covered later)



# Polymorphism in implicitly typed languages

- Explicitly typed languages require type annotations for every new variable/ function/method name
  - explicitly typed languages: C, C++, Fortran, Java, Objective C, Visual Basic, C# (2.0 and earlier)
- Implicitly typed languages make the compiler infer the correct type
  - implicitly typed languages: C# (>= 3.0), Haskell, Python, Go
- Some languages allow omission of types in some circumstances (Swift)
- Many implicitly typed languages allow the user to add optional type annotations
  - correctness
  - performance



# From types to programs

• We showed that

```
(Type a in
 (Type b in
 recfun swap :: ((a * b) -> (b * a)) pair =
     (snd pair, fst pair)))
```

has the type

 $\forall a. \forall b. (a * b) \rightarrow (b * a)$ 

Can we go backwards?

given a type, what is the program?

which other programs have this type?



# From types to programs

### • Observations:

- a function can't do anything with a value of polymorphic type but to pass it along, copy it, or ignore it
- Assume a function has this type:

```
f :: \forall a. [a] \rightarrow Int
```

the Int value cannot depend on the values in the list! it can only depend on the structure of the list!

- Therefore, we know that for any function  ${\bf g}$  and list  ${\bf xs}$ 



# From types to programs

- Observations:
  - only Error values can have type

∀a. a



# Total polymorphic functions

- For which of the following types can we write total, terminating MinHs functions?
  - $\neg \forall a. \forall b.(a * b) \rightarrow (b * a) \checkmark$
  - $\neg \forall a. \forall b.(a+b) \rightarrow (b+a) \checkmark$
  - $\neg \forall a. \forall b.(a * b) \rightarrow a \checkmark$
  - $\forall a. \forall b.(a + b) \rightarrow a \cong$
  - $\neg \forall a. \forall b. a \rightarrow (a + b) \checkmark$
  - $\neg \forall a. \forall b.(a \rightarrow b) \rightarrow (b \rightarrow a) \quad \bigstar$
  - $\neg \forall a. \forall b. \forall c. ((a \rightarrow c) * (b \rightarrow c)) \rightarrow (a+b \rightarrow c) \checkmark$



- Curry-Howard correspondence:
  - The type constructors +, \* , and  $\rightarrow$  correspond to the logical operators  $\lor$ ,  $\land$  and  $\Rightarrow$
  - Types correspond to theorems, and total, terminating programs to (constructive) proofs
  - A type checker then corresponds to a proof checker!
  - our MinHs types correspond to propositional formulae, therefore the theorems are not very exciting
  - more powerful type systems correspond to more powerful logics



# Total polymorphic functions

- Some propositional logic theorems:  $(A \land B) \Rightarrow A$   $(A \land B) \Rightarrow B$   $A \Rightarrow (A \lor B)$   $B \Rightarrow (A \lor B)$  $(A \land (A \Rightarrow B)) \Rightarrow B$
- Currying /uncurrying

$$a \rightarrow (b \rightarrow c) \equiv (a * b) \rightarrow c$$
  
 $A \Rightarrow (B \Rightarrow C) \equiv (A \land B) \Rightarrow C$ 

- What does the unit type correspond to?
- What about primitive types (int, bool)?





# Concepts of Programming Language Design Parametric Polymorphism: Type Inference

Gabriele Keller Tom Smeding

# Polymorphism

- Parametric polymorphism:
  - we already know how to type check an explicitly typed polymorphic program
  - today we discuss how to infer the type of a polymorphic program
- Looking at other flavours of polymorphism:
  - Subtyping
  - Subclassing in the context of OO (Featherweight Java), overriding
  - Overloading



# How can a compiler infer types?



# **Principal Type**

• What type should the compiler infer for function f?

recfun f x = (fst x) + 1

- Possible types
  - (1) Int\* Int  $\rightarrow$  Int
  - (2) Int\* Bool  $\rightarrow$  Int
  - (3) Int\* (Int -> (Int + Bool))  $\rightarrow$  Int
  - (4)  $\forall$  a. Int \* a  $\rightarrow$  Int
- Types (1) (3) are instances of type (4)



# **Principal Type**

- We write  $\tau' \leq \tau$  if  $\tau'$  is less general than  $\tau$ , or in other words, is  $\tau'$  an instance of  $\tau$ 
  - Int \* Int  $\rightarrow$  Int $\leq$  $\forall$  a. Int \* a  $\rightarrow$  Int-  $\forall$  a. Int \* a  $\rightarrow$  Int $\leq$  $\forall$  a.  $\forall$  b. b \* a  $\rightarrow$  b-  $\forall$  a. Int \* a  $\rightarrow$  Int $\leq$  $\forall$  a. a \* a  $\rightarrow$  a-  $\forall$  a. a \* a  $\rightarrow$  a $\leq$  $\forall$  a. a \* a  $\rightarrow$  a-  $\forall$  a. a \* a  $\rightarrow$  a $\leq$  $\forall$  a.  $\forall$  b. b \* a  $\rightarrow$  b-  $\forall$  a. (a \* a) \* (a\* a)  $\rightarrow$  (a\* a) $\leq$  $\forall$  a. a \* a  $\rightarrow$  a
- More formally:
  - $\forall b_1 \dots b_k$ .  $\tau' \leq \forall a_1 \dots a_n$ .  $\tau$  if there is a substitution S such that  $\tau' = (S \ \tau)$
- We are interested in the most general type au of the expression e such that

 $e: \tau$ 'implies  $\tau' \leq \tau$ 

• This is called the principal type of the expression



# Implicitly Typed MinHs

- MinHs with the following changes:
  - no type annotations for functions and type constructors (sum & product type)
  - Roll, Unroll, Rec not part of the language
  - no explicit type abstraction and instantiation (Type and Inst not part of the language)
  - Types of the build-in functions and constructors are part of the environment:

▶  $\Gamma = \{+ : \text{Int} \rightarrow \text{Int} \rightarrow \text{Int}, \text{fst} : \forall a. \forall b.(a * b) \rightarrow a, ....\}$ 

- no overloading yet, e.g., == still only compares integers,



# Implicitly Typed MinHs

- What is the type of the following expressions:
  - Inl True
    - we would not be able to determine the type in a monomorphic setting
    - ▶ polymorphic type: ∀ a. (Bool + a)
  - Fst (1, True)
    - ▶ type of Fst:  $\forall$  a.  $\forall$  b.(a \* b) → a
    - b type of argument (Int \* Bool)
    - ▶ type: Int
  - Roll (Inl 1))
    - impossible to derive a most general type in implicitly typed language, therefore not part of the language (named recursive types are no problem!)

**Utrecht University** 

# **Typing Rules**

• First, let us look at typing rules that are sufficient to derive

#### $\Gamma \vdash e: \sigma$

if  $\sigma$  is a possible (possibly polymorphic) type of e under the environment  $\Gamma$ 



# **Typing Rules**

- Can we use the type checking rules to infer the type?
- Application, if-expression, variable and product rules:

$$\begin{array}{c} \begin{array}{c} x: \tau \in \Gamma \\ \hline \Gamma \vdash x: \tau \end{array} & \text{input: env } \Gamma \text{ and expression} \\ \hline \Gamma \vdash x: \tau \end{array} & \text{output: type of expression } \tau \end{array}$$

$$\begin{array}{c} \Gamma \vdash t_1: \tau_1 & \Gamma \vdash t_2: \tau_2 \\ \hline \Gamma \vdash (\text{Pair } t_1 \ t_2): \ \tau_1 \ * \ \tau_2 \end{array}$$

$$\Gamma \vdash t_1: \tau_1 \rightarrow \tau_2 \qquad \Gamma \vdash t_2: \tau_1 \\ \hline \Gamma \vdash (\text{Apply } t_1 \ t_2): \ \tau_2 \end{array}$$

$$\Gamma \vdash t_1: \text{Bool} \quad \Gamma \vdash t_2: \tau \quad \Gamma \vdash t_3: \tau$$

 $\Gamma \vdash (\text{If } t_1 \ t_2 \ t_3): \tau$ 



#### **Typing Rules**

• Functions, Inr, Inl

problem: env  $\Gamma$  is not an input! we have to guess the types of f and x

$$\Gamma \cup \{ \boldsymbol{f}: \boldsymbol{\tau}_1 \boldsymbol{\rightarrow} \boldsymbol{\tau}_2 , \boldsymbol{x}: \boldsymbol{\tau}_1 \} \vdash \boldsymbol{t}: \boldsymbol{\tau}_2$$

 $\Gamma \vdash (\text{Recfun} (f. x. t)): \tau_1 \rightarrow \tau_2$ 

problem: type is not an output, we have to guess  $au_2$ 

 $\Gamma \vdash t_1 : \tau_1$ 

 $\Gamma \vdash (\text{Inl } t_1): \tau_1 + \tau_2$ 



## **Typing Rules**

• ∀ -introduction and elimination

$$\frac{\Gamma \vdash e : \forall t.\tau}{\Gamma \vdash e : \tau [t := \tau']}$$

$$\Gamma \vdash e : \tau \quad t \notin Free Type Vars(\Gamma)$$

 $\Gamma \vdash e : \forall t.\tau$ 

problem: not syntax directed



#### Type Inference Algorithm - summary so far

| $\Gamma \vdash e : \forall t.\tau$   | $\boldsymbol{\Gamma} \vdash \boldsymbol{e} : \boldsymbol{\tau}  \boldsymbol{t} \notin \mathit{FreeTypeVars}(\boldsymbol{\Gamma})$ |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| $\Gamma \vdash e : \tau[t := \tau']$ | $\Gamma \vdash e : \forall t.\tau$                                                                                                |

$$\Gamma \cup \{ \boldsymbol{f} : \boldsymbol{\tau}_1 \rightarrow \boldsymbol{\tau}_2 , \boldsymbol{x} : \boldsymbol{\tau}_1 \} \vdash \boldsymbol{t} : \boldsymbol{\tau}_2 \\ \Gamma \vdash (\operatorname{Recfun} (\boldsymbol{f} \cdot \boldsymbol{x} \cdot \boldsymbol{t})) : \boldsymbol{\tau}_1 \rightarrow \boldsymbol{\tau}_2 \end{cases}$$

 $\Gamma \vdash t_1 : \tau_1$  $\Gamma \vdash (\text{Inl } t_1) : \tau_1 + \tau_2$ 

- The rules above do **not** specify a type inference algorithm:
  - it is not possible to view the environment and the expression as input, the type as an output
  - the rules are not syntax directed



- Idea
  - delay the instantiation of type variables until necessary
  - replace v-quantified variables by free, fresh variables



• The type of an expression alone as output is not sufficient:

 $\Gamma \vdash t_1:$  Bool  $\Gamma \vdash t_1: \tau \quad \Gamma \vdash t_2: \tau$ 

 $\Gamma \vdash (\text{If } t_1 \ t_2 \ t_3): \tau$ 

- Inspecting the then-branch reveals that it has type pair of something and integer, but also that y has to have type Int
- Since both branches have to have the same type, we know that x has to have type Bool
- By looking at the if-expression, we can determine that is has type (Bool \* Int), but also what type variables a and b are standing for



- Idea
  - delay the instantiation of type variables until necessary
  - replace v-quantified variables by free, fresh variables
  - find a substitution to unify the derived with the required type
  - make the substitution part of the result of the type inference
  - Input: expression e and environment  $\Gamma$
  - Output: type of expression  $\boldsymbol{\tau}$ , substitution  $\boldsymbol{S}$  with possible instantiations of type variables in

$$S \Gamma \vdash e : \tau$$

[a := Bool, b := Int]] {x :: a, y :: b} ⊢ (If True (Pair x (Plus y 1)) (Pair False y)):: (Bool \* Int)



• In some cases, it is necessary to substitute variables on both sides:

(Bool \* x)[y := Bool,x := Int] ? (y \* Int) [y :=Bool,x := Int]

or to replace variables with other variables

What about

$$(x * x) [x:=y] = (x * y) [x:=y]$$

(x \* x)[x:=Int, y := Int] = (x \* y)[x:=Int, y := Int]



#### Unification

- A substitution S, with S  $\tau = S \tau$ ' is called a unifier of  $\tau$  and  $\tau$ '
- For the algorithm, we need the most general unifier (mgu)
  - there may be more than one mgu
  - resulting terms are the same module renaming
- We write  $\tau_1 \stackrel{S}{\sim} \tau_2$  if *S* is an mgu of  $\tau_1$  and  $\tau_2$

• Examples:

a

- are there mgu's for the following pairs of types?

$$(a * (a * a)) \stackrel{?}{=} (b * c)$$

Int <sup>2</sup> Bool

? = (a \* a)



- Simple unification algorithm
  - ▶ input: two type terms  $t_1$  and  $t_2$ , ∀-quantified variables replaced by fresh, unique variables
  - output: the most general unifier of  $t_1$  and  $t_2$  (if it exists)



## Unification - Computing the Most General Unifier (MGU)

- Cases  $t_1$  and  $t_2$ 
  - are both type variables  $v_1$  and  $v_2$ 
    - if  $v_1 = v_2$ , return empty substitution
    - otherwise return  $[v_2:=v_1]$
  - are both primitive types
    - ▶ if they are the same, return the empty substitution
    - otherwise, there is no unifier
  - both are product types with  $t_1 = (t_{11} * t_{12})$  and  $t_2 = (t_{21} * t_{22})$ 
    - $\blacktriangleright$  compute the mgu S of  $t_{11}$  and  $t_{21}$
    - $\blacktriangleright$  compute the mgu S of S  $t_{12}$  and S  $t_{22}$
    - ▶ return S U S'
  - both function types, sum types (see product types)
  - only one is is type variable  $\boldsymbol{v}$ , the other an arbitrary term  $\boldsymbol{t}$ 
    - if v occurs in t, there is no unifier (occurs check)
    - otherwise, return [v := t]



#### Unification - Computing the Most General Unifier (MGU)

- We discussed how to calculate the Most General Unifier of two type terms:
  - most general substitution to unify two type terms:

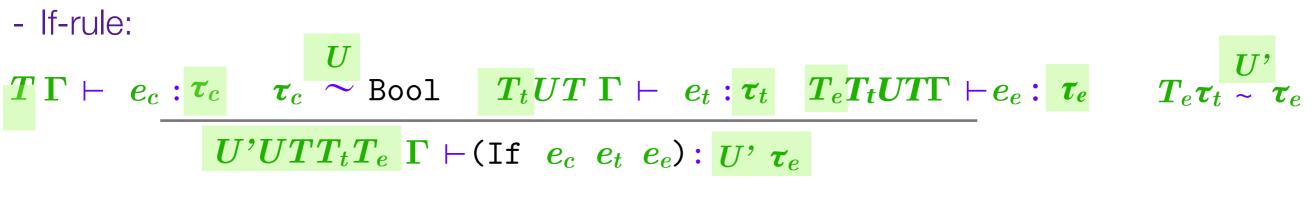


- Now back to our type inference algorithm
  - $T \Gamma \vdash e : \tau$
  - $\forall$  elimination:

compare to previous rule:

$$\frac{\Gamma \vdash e : \forall t.\tau}{\Gamma \vdash e : \tau [t := \tau']}$$





- algorithmic interpretation:
  - Input :  $\Gamma$  and expression (If  $e_c \ e_t \ e_e$ )
  - first, derive type of expression  $e_c$  with environment  $\Gamma$ 
    - result: the substitution T and the type  $au_c$
  - unify the types  $\tau_c$  and **Bool** 
    - result: substitution  $\boldsymbol{U}$
  - derive type of expression  $\mathbf{e}_t$  with new environment  $UT\Gamma$ 
    - result: the substitution  $T_t$  and the type  $au_t$
  - derive type of expression  $e_{e}$  with new environment  $T_{t}UT$   $\Gamma$ 
    - result: the substitution  $T_e$  and the type  $au_e$
  - unify the types  $T_t$   $au_t$  and  $au_e$ 
    - result: substitution  $oldsymbol{U}'$
  - return substitution  $U'UTT_tT_e$  and type U'  $au_e$



• Application rule

$$T \Gamma \vdash e_{1} : \tau_{1} \qquad T_{1}T \Gamma \vdash e_{2} : \tau_{2} \qquad T_{1}\tau_{1} \sim \tau_{2} \rightarrow a$$

$$UT_{1}T \Gamma \vdash (\text{Apply } e_{1} e_{2}) : Ua$$

$$\alpha \text{ fresh}$$

- algorithmic interpretation:
  - Input :  $\Gamma$  and expression (Apply  $e_1$   $e_2$ )
  - first, derive type of expression  $e_1$  with environment  $\Gamma$ 
    - result: the substitution T and the type  $au_1$
  - now, derive type of expression  $e_2$  with new environment T  $\Gamma$ 
    - result: the substitution  $T_1$  and the type  $au_2$
  - now, unify the types  $T_1 \ au_1$  and  $\ au_2 
    ightarrow lpha$ 
    - result: substitution  $oldsymbol{U}$
  - return substitution  $UT_1T$  and type Ua



#### • Note

- the rules are syntax directed
  - for every type of expression, there is exactly one rule which applies
- the environment and expression are input & unifier and type are output



• Function rule

$$\frac{T(\Gamma \cup \{x:a_1\} \cup \{f:a_2\}) \vdash e:\tau \quad T a_2 \stackrel{U}{\sim} T a_1 \rightarrow \tau}{UT\Gamma \vdash (\text{Recfun } (f.x.e)): \quad U(T a_1 \rightarrow \tau)} a_i \text{ fresh}$$



#### Re-introducing the ∀-quantifier

- None of the rules so far re-introduced the ∀-quantifier
- Is this necessary at all?

```
let let
f = recfun g x = (x,x) f x = (x,x)
in (f True, f 1) in (f True, f 1)
```

 only necessary if we have let-bindings (or global function bindings) so polymorphic functions can be applied in different contexts



#### Re-introducing the ∀-quantifier

- Generalise over all variables which occur free in au, but not in  $\Gamma$ 
  - Let TV(Γ) be the set of all free type variables in Γ, TV(τ) the set of all free type variables in τ
  - Define  $\operatorname{Gen}(\Gamma, \tau)$  as
    - Gen( $\Gamma$ ,  $\tau$ ) =  $\forall$ (TV( $\tau$ ) \ TV( $\Gamma$ )).  $\tau$
  - Example:
    - ► Gen({x: a, y: Int},  $(a*b) \rightarrow b$ ) =  $\forall b. (a*b) \rightarrow b$
- New ∀-introduction rule:

 $\begin{array}{cccc} T_1 \ \Gamma \ \vdash \ e_1: \tau & T_2 \left( T_1 \Gamma \cup \ x: \operatorname{Gen} \left( T_1 \Gamma, \tau \right) \right) \vdash \ e_2: \ \tau' \\ \hline T_1 \ T_2 \ \Gamma \ \vdash \ (\operatorname{Let} \ e_1 \ (x. e_2)): \ \tau' \end{array}$ 

 $\Gamma \vdash e : \tau \quad t \notin Free Type Vars(\Gamma)$  $\overline{\Gamma \vdash e : \forall t.\tau}$ 



# $T \Gamma \vdash e_{1} : \tau_{1} \qquad T_{1}T \Gamma \vdash e_{2} : \tau_{2} \qquad T_{1}\tau_{1} \stackrel{U}{\sim} \tau_{2} \rightarrow \alpha$ $UT_{1}T \Gamma \vdash (\text{Apply } e_{1} e_{2}) : U\alpha$ $\alpha \text{ fresh}$

#### (Apply Fst (Pair 1 True))

