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Parametric Polymorphism

• Example: swap the elements of a pair (in Haskell) 

• What is swap’s type? 
- In Haskell: 

- in MinHs:

      swap (x, y) = (y, x)         

      swap :: (a, b) -> (b, a)   

recfun swapIntBool :: (Int, Bool) -> (Bool, Int) pair = 
  (snd pair, fst pair) 

recfun swapBoolInt :: (Bool, Int) -> (Int, Bool) pair = 
  (snd pair, fst pair) 

..... 

forall a. forall b. (a,b) -> (b,a)



Parametric polymorphism

The term polymorphism is used in the PL context to mean several different 
concepts: 

- Parametric polymorphism (when functional programmers talk about 
polymorphism, often referred to as ‘generics’ by OO ppl) 

‣ the operation can work on any type

swap :: (a, b) -> (b, a) 
swap (x, y) = (y, x) 

swap (1,”Hello”)   

swap (‘c’, \x -> x + 1) 

swap (True, odd) 



Parametric polymorphism

• Adhoc polymorphism (when OO programmers talk about polymorphism) 

‣ a function or operation is overloaded with multiple implementations to 
work on some specific types

 5 + 3 

 3.7 + 1.234 

 “Hello” + “ World” 

 

Sometimes polymorphism is used to refer to subtyping

We will cover all of these concepts in the course



Parametric Polymorphism in Haskell

• Parametric polymorphism: 

- a and b are type variables 

• Using a polymorphic function:  

- when a polymorphic function is applied to a concrete value, the type variables 
are instantiated: 

- instantiates type variable a to Int, b to Bool

swap :: (a, b) -> (b, a)  
swap pair = 
  (snd pair, fst pair)

      swap (1, True)    



Parametric Polymorphism (generics) in C#

static void Swap<T>(ref T a, ref T b) { 
  T temp; 
  temp = a; 
  a    = b; 
  b    = temp; 
} 
      

static void Main(string[] args) { 
  int a, b; 
  char c, d; 
  a = 5; 
  b = 10; 
  c = 'X'; 
  d = ‘Y'; 
         
  Swap<int>(ref a, ref b); 
  Swap<char>(ref c, ref d); 
          
 } 
} 

explicit introduction of type variable

explicit instantiation of type variable



Parametric Polymorphism (generics) in Swift

func swap<T>(_ a: inout T, _ b: inout T) { 
  let tmp = a 
	  a = b 
	  b = tmp 
}	  

var x = 3 
var y = 107 

swap(&x, &y)	  

var str1 = “hello" 
var str2 = "world" 
swap(&str1, &str2)

explicit introduction of type variable

but no explicit instantiation necessary  
(but possible)



Adding Parametric Polymorphism to MinHs
• First: with explicit typing (as in C#)  

- introduction of type variables is explicit 

- instantiation of type variables is explicit

static void Swap<T>(ref T a, ref T b)

func swap<T>(_ a: inout T, _ b: inout T)

Swap<int>(ref a, ref b)

• Later, we look into how this works for implicit typing (i.e., programmer does not 
have to provide the type



Adding Parametric Polymorphism to MinHs
• Type abstraction in polymorphic (explicitly typed) MinHs: 

• Type instantiation 

evaluates to

(Type a in 
(Type b in 
  recfun swap :: ((a * b) ➔ (b * a)) pair = 
    (snd pair, fst pair))) 

 

(inst (Type a in 
(inst (Type b in 
   recfun swap :: ((a * b) ➔ (b * a)) pair = 
     (snd pair, fst pair) 
   Bool) 

   Int)))

recfun swap :: (Int * Bool) ➔ (Bool * Int) pair =  
  (snd pair, fst pair)

explicit introduction of type variables

explicit instantiation of type variables 
(corresponds to application on the value level)



Parametric Polymorphism

• What is the type of this function? 

• Universal quantification: 

- it is        ∀a.∀b.(a * b) ➔ (b * a) 

- written in Haskell (leading forall a. forall b. optional)

(Type a in 
(Type b in 
  recfun swap :: ((a * b) ➔ (b * a)) pair = 
    (snd pair, fst pair)))

      forall a. forall b. (a * b) ➔ (b * a)



Polymorphic MinHS - Concrete Syntax

Polytypes σ ::= τ | ∀ Ident . σ
Monotypes τ ::= Bool | Int | (τ ➔ τ) | Ident 

Expressions Expr
r

::=  Ident 
| inst (Expr, τ)
| recfun  Ident ::(τ ➔ τ) Ident = Expr
| Type Ident in Expr | ...

• Note that we only allow quantifiers at the outermost position 

- this restriction is not necessary for explicitly typed MinHs



Polymorphic MinHS

• Valid Types:  

- types can now contain type variables, but they need to be “in scope” (bound 
by a quantifier)

t ∈ Δ

Δ ⊢ t okΔ ⊢ ∀ t. σ ok
Δ ∪ {t} ⊢ σ  ok      t ∉     Δ

Δ ⊢ τ1 ➔ τ2 ok
Δ ⊢ τ1 ok Δ ⊢ τ1 ok

Δ ⊢ Bool ok Δ ⊢ Int ok



Polymorphic MinHS 

• Typing rules

Δ ∪ {t}, Γ ⊢ e : σ      t ∉ Δ

Δ, Γ ⊢ (Type (t.e )):

Δ, Γ ⊢ e: ∀ t. σ       Δ ⊢ τ  ok
Δ, Γ ⊢ (Inst e τ):

∀ t. σ

σ [t := τ]



Polymorphic MinHS 

• Dynamic Semantics

(Inst e  τ) ↦M (Inst e’  τ) 
e  ↦M e’

(Inst(Type(t.e)) τ) ↦M e[t:= τ]



Polymorphic MinHs

• Polymorphic MinHs with 

- explicit introduction of type variables:  

‣ (Type a in recfun id :: (a -> a) x = x)   

-  explicit instantiation of type variables: 

‣ (Inst(Type a in recfun id : (a->a) x = x) Bool)

:: ∀ a.a ➔ a

:: Bool ➔ Bool



Parametric Polymorphism

• We only allow quantifiers in a type at the outermost position. Does this matter? 

- Example: can we give a type to this function?

strangeFun f = if (f True)  
                 then (f 5) 
                 else 10

- Possible type:    

       strangeFun :: (∀ a. a ➔ a) ➔ Int

but there is not possible type which would be legal in our MinHs definition! 

• Polymorphic types are not first class citizens in MinHs!  

- we can’t specify that a function requires or produces a polymorphic 
function/value!  



Implementing parametric polymorphism

• We discussed the implications of parametric polymorphism/generics for the static 
and dynamic semantics  

• But how can it actually be implemented? What code should be generated by the 
compiler for polymorphic functions 

• Let’s look how generics can be simulated in a language which doesn’t support 
parametric polymorphism



Implementing parametric polymorphism

C:

#define SWAP(x, y, T) {T SWAPTMP = x; x = y; y = SWAPTMP;} 

double x = 10.12; 
double y = 2.123; 
SWAP(x, y, double);

void swap (void **x, void **y){ 
  void *tmp = *x; 
  *x = *y; 
  *y = *x; 
} 

double *a = malloc (sizeof (double)); 
*a = 10.12; 

double *b = malloc (sizeof (double)); 
*b = 3.14; 

swap((void**)&a, (void**)&b);



Implementing parametric polymorphism

• There are two choices (somewhat simplified): 

- generate monomorphic code for every instance used 

‣ code size? 

‣ separate compilation? 

- `box’ every value, so all polymorphic operations can be expressed in terms on 
operations on pointers 

‣ runtime overhead? 

‣ locality? 

- monomorphisation optimisation: boxed values, but specialise to 
monomorphic version where possible

• OO languages where everything is an object and associated with a vTable have  
other options available (similar to overloading, will be covered later)



Polymorphism in implicitly typed languages

• Explicitly typed languages require type annotations for every new variable/
function/method name 

- explicitly typed languages: C, C++, Fortran, Java, Objective C, Visual Basic, 
C# (2.0 and earlier) 

• Implicitly typed languages make the compiler infer the correct type  

- implicitly typed languages: C# (>= 3.0), Haskell, Python, Go  

• Some languages allow omission of types in some circumstances (Swift) 

• Many implicitly typed languages allow the user to add optional type annotations 

- correctness 

- performance



From types to programs

• We showed that

(Type a in 
(Type b in 
  recfun swap :: ((a * b) -> (b * a)) pair = 
    (snd pair, fst pair)))

has the type

  ∀a.∀b.(a * b) ➔ (b * a)

Can we go backwards?   

given a type, what is the program? 

which other programs have this type?



From types to programs

• Observations: 
- a function  can’t do anything with a value of polymorphic type but to pass it 

along, copy it, or ignore it

f :: ∀a. [a] ➔ Int

the Int value cannot depend on the 

values in the list! 

it can only depend on the structure of 

the list! 

- Assume a function has this type:

f (map g xs)   = f xs

- Therefore, we know that for any function g and list xs



From types to programs

• Observations: 
- only Error values can have type

∀a. a



Total polymorphic functions

• For which of the following types can we write total, terminating MinHs functions?     

- ∀ a. ∀ b.(a * b) ➔ (b * a) 

- ∀ a. ∀ b.(a + b) ➔ (b + a) 

- ∀ a. ∀ b.(a * b) ➔ a 

- ∀ a. ∀ b.(a + b) ➔ a 

- ∀ a. ∀ b. a ➔ (a + b)  

- ∀ a. ∀ b.(a ➔ b) ➔ (b ➔ a)  

- ∀ a. ∀ b. ∀ c. ((a  ➔ c) * (b  ➔ c)) ➔ (a+b ➔c)

✔

✔

✔

✔

✘

✘

✔



Total polymorphic functions

• Curry-Howard correspondence: 
- The type constructors +, * , and  ➔ correspond to the logical operators ∨,∧ and 
⇒   

- Types correspond to theorems, and total, terminating programs to 
(constructive) proofs 

- A type checker then corresponds to a proof checker! 
- our MinHs types correspond to propositional formulae, therefore the theorems 

are not very exciting 
- more powerful type systems correspond to more powerful logics 



Total polymorphic functions

(A ∧ B) ⇒ A 

(A ∧ B) ⇒ B 

A ⇒ (A ∨ B )

B ⇒ (A ∨ B )

(A  ∧ ( A ⇒ B ))  ⇒ B

• What does the unit type correspond to? 
• What about primitive types (int, bool)?

• Some propositional logic theorems:

• Currying /uncurrying

A  ⇒ ( B ⇒ C ) (A ∧ B) ⇒ C  ≡
a → (b → c) (a * b) → c≡
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Polymorphism

• Parametric polymorphism: 

- we already know how to type check an explicitly typed polymorphic program 

- today we discuss how to infer the type of a polymorphic program 

• Looking at other flavours of polymorphism: 

- Subtyping 

- Subclassing in the context of OO (Featherweight Java), overriding 

- Overloading



How can a compiler infer types?



Principal Type

• What type should the compiler infer for function f? 

• Possible types 

(1)  Int* Int ➔ Int 

(2)  Int* Bool ➔ Int

(3) Int* (Int -> (Int  + Bool)) ➔ Int

(4) ∀ a. Int * a ➔ Int

• Types (1) - (3) are instances of type (4)

      recfun f x = (fst x) + 1



Principal Type
• We write τ’ ≤ τ  if τ’ is less general than τ, or in other words,  is τ’  an instance of τ

- Int * Int ➔ Int                 ≤    ∀ a. Int * a ➔ Int 

- ∀ a. Int * a ➔ Int             ≤    ∀ a. ∀ b. b * a ➔ b 

- ∀ a. Int * a ➔ Int             ≤    ∀ a. a * a ➔ a 

- ∀ a. a * a ➔ a              ≤    ∀ a. ∀ b. b * a ➔ b 

- ∀ a. (a * a) * (a* a) ➔ (a* a)  ≤    ∀ a. a * a ➔ a 

• More formally: 

- ∀ b1 …bk. τ’ ≤ ∀ a1 …an. τ  if there is a substitution S such that                                              
τ’= (S τ )  

• We are interested in the most general type τ  of the expression e such that      

e : τ’ implies τ’ ≤ τ 

• This is called the principal type of the expression



Implicitly Typed MinHs

• MinHs with the following changes: 

- no type annotations for functions and type constructors (sum & product type) 

- Roll, Unroll, Rec  not part of the language 

- no explicit type abstraction and instantiation (Type and Inst not part of the 
language) 

- Types of the build-in functions and constructors are part of the environment: 

‣ Γ = {+ : Int ➔ Int ➔  Int, fst : ∀ a. ∀ b.(a * b) ➔ a , ….}

- no overloading yet, e.g.,   == still only compares integers,



Implicitly Typed MinHs

• What is the type of the following expressions: 

- Inl True 

‣ we would not be able to determine the type in a monomorphic setting 

‣ polymorphic type: ∀ a. (Bool + a)

- Fst (1, True) 

‣ type of Fst:     ∀ a. ∀ b.(a * b) ➔ a 

‣ type of argument   (Int * Bool) 

‣ type:                         Int 

-  Roll (Inl 1))

‣ impossible to derive a most general type in implicitly typed language, 
therefore not part of the language (named recursive types are no problem!)



Typing Rules

• First, let us look at typing rules that are sufficient to derive 

Γ ⊢ e : σ

if σ is a possible (possibly polymorphic) type of e  under the environment Γ



Typing Rules

• Can we use the type checking rules to infer the type? 

• Application, if-expression, variable and product rules:

 Γ ⊢ t1 : τ1 ➔τ2 Γ ⊢ t2 : τ1

Γ ⊢(Apply t1  t2): τ2

Γ ⊢ x : τ
x : τ ∈ Γ

Γ ⊢(If t1  t2  t3): τ

Γ ⊢ t1  : Bool Γ ⊢ t2 : τ Γ ⊢ t3 : τ

 Γ ⊢ t1 : τ1  Γ ⊢ t2 : τ2

Γ ⊢ (Pair t1  t2) : τ1  * τ2

input:   env Γ and expression

output:  type of expression τ



Typing Rules

• Functions,  Inr, Inl

 Γ∪{f : τ1 ➔τ2 , x : τ1 } ⊢ t : τ2

Γ ⊢(Recfun  (f.x.t)): τ1 ➔τ2

 Γ ⊢ t1 : τ1  

Γ ⊢ (Inl t1): τ1  + τ2

problem:  env Γ is not an input!  

we have to guess the types of f and x

problem:  type is not an output, 
we have to guess τ2 



Typing Rules

• ∀ -introduction and elimination

Γ ⊢ e : ∀ t.τ
Γ ⊢ e : τ [t := τ’]   

Γ ⊢ e : ∀ t.τ
Γ ⊢ e : τ    t ∉ FreeTypeVars(Γ) 

problem: type not an output (guess)

problem: not syntax directed



Type Inference Algorithm - summary so far

• The rules above do not specify a type inference algorithm: 

- it is not possible to view the environment and the expression as input, the type as 
an output  

- the rules are not syntax directed 

Γ ⊢ e : ∀ t.τ
Γ ⊢ e : τ [t := τ’]   Γ ⊢ e : ∀ t.τ

Γ ⊢ e : τ    t ∉ FreeTypeVars(Γ) 

 Γ∪{f : τ1 ➔τ2 , x : τ1 } ⊢ t : τ2

Γ ⊢(Recfun  (f.x.t)): τ1 ➔τ2

 Γ ⊢ t1 : τ1  

Γ ⊢ (Inl t1): τ1  + τ2



Type Inference Algorithm

• Idea 

- delay the instantiation of type variables until necessary 

- replace ∀-quantified variables by free, fresh variables



Type inference algorithm 
• The type of an expression alone as output is not sufficient:

 f x y  = if True 
            then (x, y + 1) 
            else (False, y) 

• Inspecting the then-branch reveals that it has type pair of something and integer, but also that y has 
to have type Int 

• Since both branches have to have the same type, we know that x has to have type Bool

• By looking at the if-expression, we can determine that is has type (Bool * Int), but also what 
type variables a and b are standing for  

(a   * Int)
(Bool *   b)

assume x has unknown type a, y unknown type b

 b must be Int
 a must be Bool

𝚪 ⊢(If t1  t2  t3) : τ

𝚪 ⊢ t1 : Bool 𝚪 ⊢ t1 : τ 𝚪 ⊢ t2 : τ



Type Inference Algorithm

• Idea 

- delay the instantiation of type variables until necessary 

- replace ∀-quantified variables by free, fresh variables 

- find a substitution to unify the derived with the required type 

- make the substitution part of the result of the type inference

S Γ ⊢ e : τ

- Input: expression e  and environment Γ 

- Output: type of expression τ, substitution S with 
possible instantiations of type variables in 

{x :: a, y :: b} ⊢ (If True (Pair x (Plus y 1)) (Pair False y))::  [a := Bool, b := Int]] (Bool * Int)



Type Inference Algorithm

• In some cases, it is necessary to substitute variables on both sides: 

or to replace variables with other variables

(Bool * x)                    = (y * Int)
?

[y := Bool,x := Int] [y :=Bool,x := Int]

What about

  (x * x)        = (x * y)  

(x * x)                  = (x * y)  [x:=Int, y := Int]    [x:=Int, y := Int]

[x:=y] [x:=y]



Unification

• A substitution S, with S τ = S τ’ is called a unifier of τ and τ’  

• For the algorithm, we need the most general unifier (mgu)  

- there may be more than one mgu 

- resulting terms are the same module renaming 

• We write   τ1  ∼  τ2    if S is an mgu of τ1  and τ2    

• Examples: 

- are there mgu’s for the following pairs of types?

  (a *(a * a)) =                  (b * c)  ?

  Int          =          Bool                               ?

  a            =       (a * a)  ?

S



• Simple unification algorithm 

‣ input: two type terms t1 and t2, ∀-quantified variables replaced by fresh, 
unique variables 

‣ output: the most general unifier of t1 and t2 (if it exists)

Unification



Unification - Computing the Most General Unifier (MGU)

• Cases t1 and t2 
- are both type variables v1 and v2 
‣ if v1 = v2, return empty substitution 
‣ otherwise return [v2:=v1] 

- are both primitive types 
‣ if they are the same, return the empty substitution 
‣ otherwise, there is no unifier 

- both are product types with t1 = (t11*t12) and t2 = (t21*t22) 
‣ compute the mgu S of t11 and t21 
‣ compute the mgu S’ of S t12 and  S t22 

‣ return S ∪ S’ 
- both function types, sum types (see product types) 
- only one is is type variable v, the other an arbitrary term t 
‣ if v occurs in t, there is no unifier (occurs check) 
‣ otherwise, return [v:= t] 

- otherwise, there is no unifier



Unification - Computing the Most General Unifier (MGU)

• We discussed how to calculate the Most General Unifier of two type terms: 

- most general substitution to unify two type terms:

 f x y  = if True 
            then (x, y + 1) 
            else (False, y)
            

(a    * Int)
(Bool * b)

(Bool * b) (a * Int)~[a := Bool, b := Int]



Type Inference Algorithm

• Now back to our type inference algorithm 

-  T Γ ⊢ e : τ 

- ∀- elimination:

 Γ ⊢ x :
x : ∀ a1. .... ∀ an .  τ ∈ Γ

βi  fresh

 τ [a1 := β1, ..... an:= βn][ ]

compare to previous rule: 

Γ ⊢ e : ∀ t.τ
Γ ⊢ e : τ [t := τ’]   



Type Inference Algorithm

- If-rule:

Γ ⊢ ec : UT Γ ⊢ et :

   Γ ⊢(If ec  et  ee):

 τc ∼ Bool
U

TtUTΓ ⊢ee :  Teτt ∼ τe
U’

• algorithmic interpretation: 
• Input : Γ and expression (If ec  et  ee) 

• first, derive type of expression ec  with environment Γ


• result: the substitution T and the type τc

• unify the types τc  and  Bool
• result: substitution U


• derive type of expression et  with new environment UTΓ 

• result: the substitution Tt and the type τt 

• derive type of expression ee  with new environment TtUT Γ 

• result: the substitution Te and the type τe


• unify the types Tt τt  and  τe 

• result: substitution U’ 

• return substitution U’UTTtTe  and type U’ τe

U’UTTtTe  U’ τe

T τc Tt τt Te τe



Type Inference Algorithm

• Application rule

• algorithmic interpretation: 
• Input : Γ  and expression (Apply e1  e2) 

• first, derive type of expression e1  with environment Γ

• result: the substitution T  and the type τ1


• now, derive type of expression e2  with new environment T Γ

• result: the substitution T1 and the type τ2 

• now, unify the types T1 τ1  and  τ2 ➔α

• result: substitution U 


• return substitution UT1T and type Uα

T Γ ⊢ e1 : τ1  T1T Γ ⊢ e2 : τ2

UT1T Γ ⊢ (Apply e1  e2): Uα

T1 τ1  ∼  τ2 ➔α
U

α fresh



Type Inference Algorithm

• Note 
• the rules are syntax directed 
• for every type of expression, there is exactly one rule which applies 

•  the environment and expression are input & unifier and type are output



Type Inference Algorithm

T (Γ∪{ x : α1 }∪{ f : α2 } ) ⊢ e:τ    T α2  ∼  T α1 ➔ τ    

UTΓ ⊢(Recfun (f.x.e)): U (T α1 ➔ τ)
αi fresh

U

• Function rule



Re-introducing the ∀-quantifier

• None of the rules so far re-introduced the ∀-quantifier  

• Is this necessary at all? 

• only necessary if we have let-bindings (or global function bindings) so 
polymorphic functions can be applied in different contexts

 
 

let  
  f = recfun g x = (x,x)  
in (f True, f 1)

let  
  f x = (x,x)  
in (f True, f 1)



Re-introducing the ∀-quantifier

• Generalise over all variables which occur free in τ, but not in Γ	

‣ Let TV(Γ)  be the set of all free type variables in Γ,  TV(τ) the set of all 
free type variables in τ  

‣ Define Gen(Γ, τ) as 

• Gen(Γ, τ) = ∀(TV(τ) \ TV(Γ)). τ

- Example: 

‣ Gen({x : a , y: Int}, (a*b) ➔ b) = ∀b. (a*b) ➔ b
• New ∀-introduction rule:

T1 Γ ⊢ e1:τ        
T1 T2 Γ ⊢ (Let e1 (x.e2)): τ’ 

T2 (T1Γ∪ x:Gen (T1Γ, τ)) ⊢ e2 : τ’      

Γ ⊢ e : ∀ t.τ
Γ ⊢ e : τ    t ∉ FreeTypeVars(Γ) 



Example

T Γ ⊢ e1 : τ1  T1T Γ ⊢ e2 : τ2

UT1T Γ ⊢ (Apply e1  e2): Uα

T1 τ1  ∼  τ2 ➔α
U

α fresh

(Apply Fst (Pair 1 True))


