Parameter reference
time
start
Year in which the model starts
-
Type: int
-
Default: 2020
-
Can be false: False
-
Min: 1900
-
Max: 2100
Example usage:
end
Last year of the model run
-
Type: int
-
Default: 2150
-
Can be false: False
-
Min: 1901
-
Max: 2300
Example usage:
SSP
SSP, used for population, baseline GDP and baseline emissions
-
Type: enum
-
Default: SSP2
-
Can be false: False
-
Allowed values:
- SSP1
- SSP2
- SSP3
- SSP4
- SSP5
Example usage:
economics
PRTP
Pure rate of time preference
-
Type: float
-
Default: 0.015
-
Can be false: False
-
Min: 0
-
Max: 0.2
Example usage:
elasmu
Elasticity of marginal utility
-
Type: float
-
Default: 1.001
-
Can be false: False
-
Min: 0.1
-
Max: 10
Example usage:
inequal_aversion
Parameter of inequality aversion. Should be between 0 and elasmu
. Only used when welfare_module='inequal_aversion_general'
-
Type: float
-
Default: 0.5
-
Can be false: False
-
Min: 0.0
-
Max: 3
Example usage:
GDP
alpha
Output elasticity of capital
-
Type: float
-
Default: 0.3
-
Can be false: False
-
Min: 0
-
Max: 1
Example usage:
depreciation of capital
Yearly depreciation rate of capital stock
-
Type: float
-
Default: 0.05
-
Can be false: False
-
Min: 0
-
Max: inf
Example usage:
MAC
beta
Power factor of the MAC curve
-
Type: float
-
Default: 3
-
Can be false: False
-
Min: 0.01
-
Max: 10
Example usage:
gamma
Calibration level of the MAC (carbon price for 100% reduction)
-
Type: quantity
-
Default: 2601 USD2005/tCO2
-
Can be false: False
-
Unit: currency_unit/emissionsrate_unit
Example usage:
LBD_rate
Learning by doing rate: reduction in marginal mitigation costs for doubling cumulative mitigation capacity. Empirical studies show values between 0.65 (high learning) and 0.95 (low learning)
-
Type: float
-
Default: 0.82
-
Can be false: False
-
Min: 0.1
-
Max: 1
Example usage:
LBD_scaling
Scaling factor for learning by doing to transform the units of cumulative mitigation in relative terms (compared to baseline emissions in t=0). Only used for calibration, and should not be used to change the amount of LBD (for this, use the economics > MAC > rho parameter)
-
Type: quantity
-
Default: 40 GtCO2
-
Can be false: False
-
Unit: emissions_unit
Example usage:
LOT_rate
Learning rate of exogenous learning (learning over time). By default, there is no exogenous learning assumed, as all the technological learning happens endogenously (learning by doing).
-
Type: float
-
Default: 0
-
Can be false: False
-
Min: 0
-
Max: inf
Example usage:
regional calibration factor
Column from mac.csv to be used for the regional MACs. The MACs are calibrated from TIMER SSP2-RCP2.6 MACs at a given year and a given carbon price / abatement level.
-
Type: enum
-
Default: kappa_rel_abatement_0.75_2050
-
Can be false: False
-
Allowed values:
- kappa_carbonprice_200_2030
- kappa_carbonprice_200_2050
- kappa_carbonprice_200_2070
- kappa_carbonprice_200_2100
- kappa_carbonprice_300_2030
- kappa_carbonprice_300_2050
- kappa_carbonprice_300_2070
- kappa_carbonprice_300_2100
- kappa_carbonprice_500_2030
- kappa_carbonprice_500_2050
- kappa_carbonprice_500_2070
- kappa_carbonprice_500_2100
- kappa_carbonprice_1000_2030
- kappa_carbonprice_1000_2050
- kappa_carbonprice_1000_2070
- kappa_carbonprice_1000_2100
- kappa_rel_abatement_0.25_2030
- kappa_rel_abatement_0.25_2050
- kappa_rel_abatement_0.25_2070
- kappa_rel_abatement_0.25_2100
- kappa_rel_abatement_0.4_2030
- kappa_rel_abatement_0.4_2050
- kappa_rel_abatement_0.4_2070
- kappa_rel_abatement_0.4_2100
- kappa_rel_abatement_0.5_2050
- kappa_rel_abatement_0.5_2070
- kappa_rel_abatement_0.5_2100
- kappa_rel_abatement_0.75_2050
- kappa_rel_abatement_0.75_2070
- kappa_rel_abatement_0.75_2100
Example usage:
SSP_calibration_factor
SSP2
Dictionary of year-value pairs giving time dependent multiplication factor of the SSP2 MAC. Linear interpolation is taken in between keyframes. Used for time-dependent changes between SSPs.
-
Type: dict
-
Default: {2020: 1}
-
Can be false: False
Example usage:
SSP1
Dictionary of year-value pairs giving time dependent multiplication factor of the SSP2 MAC. Linear interpolation is taken in between keyframes. Used for time-dependent changes between SSPs.
-
Type: dict
-
Default: {2020: 1, 2100: 0.618}
-
Can be false: False
Example usage:
SSP3
Dictionary of year-value pairs giving time dependent multiplication factor of the SSP2 MAC. Linear interpolation is taken in between keyframes. Used for time-dependent changes between SSPs.
-
Type: dict
-
Default: {2020: 1, 2050: 1.265, 2100: 1.3184}
-
Can be false: False
Example usage:
SSP4
Dictionary of year-value pairs giving time dependent multiplication factor of the SSP2 MAC. Linear interpolation is taken in between keyframes. Used for time-dependent changes between SSPs.
-
Type: dict
-
Default: {2020: 1}
-
Can be false: False
Example usage:
SSP5
Dictionary of year-value pairs giving time dependent multiplication factor of the SSP2 MAC. Linear interpolation is taken in between keyframes. Used for time-dependent changes between SSPs.
-
Type: dict
-
Default: {2020: 1, 2030: 1.0724, 2040: 1.16, 2050: 1.17, 2100: 1.198}
-
Can be false: False
Example usage:
rel_mitigation_costs_min_level
Minimum level of mitigation costs (rel to GDP). By default, this is 0: no negative abatement costs are allowed. For certain burden sharing regimes, this value can become negative to allow certain (small) financial transfers.
-
Type: float
-
Default: 0
-
Can be false: False
-
Min: -2
-
Max: 0
Example usage:
emission trade
min rel payment level
Which percentage of the area under the MAC of a region should it pay itself (minimum)? If false: no limt
-
Type: float
-
Default: False
-
Can be false: True
-
Min: 0
-
Max: 1
Example usage:
max rel payment level
Which percentage of the area under the MAC of a region should it pay itself (maximum)? If false: no limit
-
Type: float
-
Default: False
-
Can be false: True
-
Min: 1
-
Max: inf
Example usage:
damages
percentage reversible
Factor of damages that are reversible
-
Type: float
-
Default: 1
-
Can be false: False
-
Min: 0
-
Max: 1
Example usage:
scale factor
Manual scaling factor to increase or decrease damages
-
Type: float
-
Default: 1
-
Can be false: False
-
Min: -inf
-
Max: inf
Example usage:
ignore damages
Flag to not take into account the damages in the GDP (but damages are calculated)
-
Type: bool
-
Default: False
-
Can be false: False
Example usage:
quantile
Damage quantile (Only used for COACCH)
-
Type: enum
-
Default: 0.5
-
Can be false: False
-
Allowed values:
- 0.025
- 0.05
- 0.16
- 0.25
- 0.33
- 0.5
- 0.67
- 0.75
- 0.84
- 0.95
- 0.975
Example usage:
coacch_slr_withadapt
Flag to use the SLR-with-Adapation damage functions (Only used for COACCH)
-
Type: bool
-
Default: True
-
Can be false: False
Example usage:
coacch_combined_slr_nonslr_damages
If true, do not model SLR damages separately from non-SLR, but use the combined damage functions (Only used for COACCH)
-
Type: bool
-
Default: False
-
Can be false: False
Example usage:
emissions
carbonbudget
Value of the carbon budget. Example: "800 GtCO2" (the unit is important). If set to False, no carbon budget is imposed: this is cost-benefit mode. Default: False.
-
Type: quantity
-
Default: False
-
Can be false: True
-
Unit: emissions_unit
Example usage:
global min level
Limit on the emission level (globally), mostly used for negative emissions. Can also be false, then no limit is imposed
-
Type: quantity
-
Default: -20 GtCO2/yr
-
Can be false: True
-
Unit: emissionsrate_unit
Example usage:
regional min level
Limit on the emission level (per region), mostly used for negative emissions. Can also be false, then no limit is imposed
-
Type: quantity
-
Default: -10 GtCO2/yr
-
Can be false: True
-
Unit: emissionsrate_unit
Example usage:
not positive after budget year
If true, impose net-zero emissions after budget year (2100)
-
Type: bool
-
Default: True
-
Can be false: False
Example usage:
non increasing emissions after 2100
If true, the regional emissions after 2100 are not allowed to climb.
-
Type: bool
-
Default: True
-
Can be false: False
Example usage:
baseline carbon intensity
If true, use baseline carbon intensity to calculate baseline emissions. If false, the SSP baseline emissions are used, regardless of lower GDP.
-
Type: bool
-
Default: True
-
Can be false: False
Example usage:
inertia
global
Maximum reduction speed, in % of initial emissions (should be negative) Can also be false, then no inertia limit is imposed
-
Type: float
-
Default: False
-
Can be false: True
-
Min: -inf
-
Max: 0
Example usage:
regional
Maximum reduction speed, in % of initial emissions (should be negative) Can also be false, then no inertia limit is imposed
-
Type: float
-
Default: -0.05
-
Can be false: True
-
Min: -inf
-
Max: 0
Example usage:
cumulative_emissions_trapz
If true, calculate cumulative emissions using trapezoidal interpolation. If false, cum. emissions are simply cum_emissions[t-1] + dt * cum_emissions[t]. This is less accurate, but better for numerical stability. For small dt the approximation is usually still acceptable.
-
Type: bool
-
Default: True
-
Can be false: False
Example usage:
effort sharing
regime
Type of effort sharing to be used
-
Type: enum
-
Default: noregime
-
Can be false: False
-
Allowed values:
- noregime
- equal_mitigation_costs
- equal_total_costs
- per_cap_convergence
- ability_to_pay
- equal_cumulative_per_cap
Example usage:
percapconv_year
Year of convergence to per capita emission allowance (only used when effort sharing - regime is per_cap_convergence) Can also be false, then always use grandfathering
-
Type: float
-
Default: 2050
-
Can be false: True
-
Min: 2020
-
Max: 2200
Example usage:
ecpc_discount_rate
Discount rate for historical debt in the ECPC effort sharing regime (Equal Cumulative Per Capita regime). Only used when effort sharing - regime is equal_cumulative_per_cap
-
Type: float
-
Default: 0.03
-
Can be false: False
-
Min: 0
-
Max: 1
Example usage:
ecpc_start_year
Start year for historical debt in the ECPC effort sharing regime (Equal Cumulative Per Capita regime). Only used when effort sharing - regime is equal_cumulative_per_cap
-
Type: float
-
Default: 1850
-
Can be false: False
-
Min: 1800
-
Max: 2019
Example usage:
ecpc_repayment_endyear
Year at which the repayment of the historical emission debt should be finished in the ECPC effort sharing regime. Before this year, the debt repayment is lowered linearly.
Can also be false: then the historical debt repayment is spread out equally over every time period.
- Type: float
- Default: 2050
- Can be false: True
- Min: 2030
- Max: 2150
Example usage:
```python hl_lines="2"
params = load_params()
params["effort sharing"]["ecpc_repayment_endyear"] = 2050
model = MIMOSA(params)
```
temperature
initial
Temperature in initial year of model run (2020 by default).
-
Type: quantity
-
Default: 1.16 delta_degC
-
Can be false: False
-
Unit: temperature_unit
Example usage:
TCRE
Transient Climate Response to CO2 Emissions
-
Type: quantity
-
Default: 0.62 delta_degC/(TtCO2)
-
Can be false: False
-
Unit: (temperature_unit)/(emissions_unit)
Example usage:
model
damage module
Damage module to be used
-
Type: enum
-
Default: COACCH
-
Can be false: False
-
Allowed values:
- COACCH
- nodamage
Example usage:
emissiontrade module
Emission trade module to be used
-
Type: enum
-
Default: notrade
-
Can be false: False
-
Allowed values:
- notrade
- emissiontrade
- globalcostpool
Example usage:
financialtransfer module
Financial transfer module to be used
-
Type: enum
-
Default: notransfer
-
Can be false: False
-
Allowed values:
- notransfer
- globaldamagepool
Example usage:
welfare module
Welfare and utility module to be used
-
Type: enum
-
Default: welfare_loss_minimising
-
Can be false: False
-
Allowed values:
- welfare_loss_minimising
- cost_minimising
- inequal_aversion_general
Example usage:
regionstype
Name of the region definition. Used in the mapping of the regional parameters.
-
Type: enum
-
Default: IMAGE26
-
Can be false: False
-
Allowed values:
- IMAGE26
- SSP5
- World
Example usage:
regionsmappings
List of region types and their conversion tables. Only used for regional parameters, not for aggregating or disaggregating variables or other output.
-
Type: list
-
Default: [{'regionstype1': 'IMAGE26', 'regionstype2': 'COACCH', 'conversiontable': 'inputdata/regions/IMAGE26_COACCH.csv'}, {'regionstype1': 'IMAGE26', 'regionstype2': 'ADRICE2010', 'conversiontable': 'inputdata/regions/IMAGE26_ADRICE2010.csv'}, {'regionstype1': 'IMAGE26', 'regionstype2': 'ADRICE2012', 'conversiontable': 'inputdata/regions/IMAGE26_ADRICE2012.csv'}]
-
Can be false: False
Example usage:
params = load_params()
params["regionsmappings"] = [{'regionstype1': 'IMAGE26', 'regionstype2': 'COACCH', 'conversiontable': 'inputdata/regions/IMAGE26_COACCH.csv'}, {'regionstype1': 'IMAGE26', 'regionstype2': 'ADRICE2010', 'conversiontable': 'inputdata/regions/IMAGE26_ADRICE2010.csv'}, {'regionstype1': 'IMAGE26', 'regionstype2': 'ADRICE2012', 'conversiontable': 'inputdata/regions/IMAGE26_ADRICE2012.csv'}]
model = MIMOSA(params)
regional_parameter_files
Dictionary of regional parameter files. If the regionstype of the file is different from the regionstype of the model, the file is converted using the regionsmappings
parameter.
-
Type: dict
-
Default: {'economics': {'filename': 'inputdata/regionalparams/economics.csv', 'regionstype': 'IMAGE26'}, 'MAC': {'filename': 'inputdata/regionalparams/mac.csv', 'regionstype': 'IMAGE26'}, 'COACCH': {'filename': 'inputdata/regionalparams/COACCH.csv', 'regionstype': 'COACCH'}}
-
Can be false: False
Example usage:
params = load_params()
params["regional_parameter_files"] = {'economics': {'filename': 'inputdata/regionalparams/economics.csv', 'regionstype': 'IMAGE26'}, 'MAC': {'filename': 'inputdata/regionalparams/mac.csv', 'regionstype': 'IMAGE26'}, 'COACCH': {'filename': 'inputdata/regionalparams/COACCH.csv', 'regionstype': 'COACCH'}}
model = MIMOSA(params)
regions
Dictionary of all regions with optional dictionaries defining, optionally, manual values for certain parameters for that specific region.
-
Type: dict
-
Default: {'CAN': None, 'USA': None, 'MEX': None, 'RCAM': None, 'BRA': None, 'RSAM': None, 'NAF': None, 'WAF': None, 'EAF': None, 'SAF': None, 'WEU': None, 'CEU': None, 'TUR': None, 'UKR': None, 'STAN': None, 'RUS': None, 'ME': None, 'INDIA': None, 'KOR': None, 'CHN': None, 'SEAS': None, 'INDO': None, 'JAP': None, 'OCE': None, 'RSAS': None, 'RSAF': None}
-
Can be false: False
Example usage:
params = load_params()
params["regions"] = {'CAN': None, 'USA': None, 'MEX': None, 'RCAM': None, 'BRA': None, 'RSAM': None, 'NAF': None, 'WAF': None, 'EAF': None, 'SAF': None, 'WEU': None, 'CEU': None, 'TUR': None, 'UKR': None, 'STAN': None, 'RUS': None, 'ME': None, 'INDIA': None, 'KOR': None, 'CHN': None, 'SEAS': None, 'INDO': None, 'JAP': None, 'OCE': None, 'RSAS': None, 'RSAF': None}
model = MIMOSA(params)
input
variables
GDP
Data source of GDP
-
Type: datasource
-
Default: {'variable': 'GDP|PPP', 'unit': 'currency_unit', 'scenario': '{SSP}-Ref-SPA0-V17', 'model': 'IMAGE', 'file': 'inputdata/data/data_IMAGE_SSP.csv'}
-
Can be false: False
Example usage:
emissions
Data source of baseline emissions
-
Type: datasource
-
Default: {'variable': 'Emissions|CO2', 'unit': 'emissionsrate_unit', 'scenario': '{SSP}-Ref-SPA0-V17', 'model': 'IMAGE', 'file': 'inputdata/data/data_IMAGE_SSP.csv'}
-
Can be false: False
Example usage:
population
Data source of population
-
Type: datasource
-
Default: {'variable': 'Population', 'unit': 'population_unit', 'scenario': '{SSP}-Ref-SPA0-V17', 'model': 'IMAGE', 'file': 'inputdata/data/data_IMAGE_SSP.csv'}
-
Can be false: False
Example usage:
simulation
simulationmode
If true, the model is run in simulation mode: then some variables will be imposed exogenously and fixed. If false, constraint_variables
and deactivated_constraints
are ignored.
-
Type: bool
-
Default: False
-
Can be false: False
Example usage:
constraint_variables
Dictionary of variable names with associated path to file containing values for that variable
-
Type: dict
-
Default: None
-
Can be false: False
Example usage:
deactivated_constraints
List of constraint names to be disabled
-
Type: list
-
Default: None
-
Can be false: False
Example usage: